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Stagnation Point — Line Vortex Flow of Non-
Linear Viscous Liquids

Introduction

In his classical work on vortex motion H. HELM-
norrz dealt with the irrotational motion of inviscid
fluids and established three basic theorems. Lord
Kenvin added another basic theorem concerning the
constancy of circulation around a vortex core. Ho-
wever, to be able to explain the decay of vortices
the viscosity of the fluid must be taken into account.
The solution of C. W. OSEEN viz.,
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where u, v, w denote the velocity components of
a viscous liquid of kinematic viscosity coefficient »
along the directions r, 6, z of a cylindrical system of
coordinates; was almost the first to”indicate the
diffusion of vorticity explicitly. Subsequently there
have been several other exact solutions which also
indicate clearly the decay of vorticity in a viscous
liquid. In his paper on the dying vortex, ALBERT
DE NEUFVILLE [1] has given solutions of the NAvIER-
STokES equations which include the above solution
as & special case and serve to explain the diffusion
of vorticity and the decay of the metion. The
golutions given by N. Rorr [2] are in effect the result
of combining a stagnation point flow and the flow
due to a vortex core.

In the present paper we seek to extend these
results to non-linear viscous liquids of the REINER-
RIvLIN type characterized by the constitution relation

tij=—pbijt+2udij+2pcdirdry,

assuming the coefficients of viscosity p and cross
viscosity u, to be constant.

u=20,

§1. Line vortex in a non-Newtonian liquid.

If the velocity components in the r, 8, z directions
are

(1.1) u=0, v=V(rt), w=20,
the equations of motion of REINER-RIVLIN liquids are
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On putting ¥V = Q/r the middle equation becomes
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Apart from the obvious solution 2 = a 4 72, this
equation has the solution
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which is the same as mentioned earlier. It is also

possible to obtain & class of solutions for the vorticity
equation by introducing the new independent variables
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The equation for vorticity
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then takes on the form
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and has the solutions
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denotes the LAoUERRE polynomial of degree n. The

velocity component is found to be
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and when n = 0, we recover the solution (1.4). The
above analysis shows that the velocity distribution
(1.1) with v = V{(r,t) as defined in (1.4) and (1.10)
which is known to satisfy the NAVIER-STOKES's
equations also constitutes a solution for the equations
of non-Newtonian viscous liquids. The effect of the
cross viscosity is absent in the velocity distribution
and is shown up only in the pressure distribution.
The pressure is given by
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and is made up of the components pi1 due to the
circulatory motion and pix contributed by the cross
viscosity.

The solutions (1.8), (1.10) correspond to vortices
in a non-Newtonian liquid, having a core along the
axis (r = 0) and a number of layers of alternating
directions of rotation. The circulation is zero at
infinity for all the solutions except when ¢ - co. The
axis is a singular line and the velocity and vorticity
tend to zero for all finite values of r.

§2. Stagnation point aligned with line

vortex.
If the velocity components are chosen in the form
@21 w=—4Ar, v=V(rt, w=2(dz+4+0)

the equations of motion of non-Newtonian fluids are

Ve ep 1 o [@V V2
¢ (A“ — ) ateres [(87‘7) }
2% oV
g(»-ﬁ—A 4 —-AV)
22) 8 2\8V V
=(l‘—2Al‘c)(5;+7)(-5;—7),
ap
2 —_ .
e(44%2) = — —-.

Onputtingy = Qfrandk = (u — 2.4 p)Jo=r—24,
we have from the middle equation in (2.2)
202 aQ? (82[) 1 6!))

— —Ar— =k —— 4
ort r or

(2:3) at ar

and this has be the steady state solution
A
(2.4) 2=240, [1 — exp(—-——2——lrc—z)

Comparing this with the unsteady solution (1.3) in
the case of a line vortex without the alignment of
stagnation point (4 = 0), we see that the present
solution can be regarded as that in (1.5) frozen at
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time t = (v — 2A4v)/2Av. We may reduce the

equation (2.3) to the form

,  p(fe_lde
(2.5) (_d'aT “ o do
by regarding £ as function of o = (1 + ¢, e—244-1/2
where 4 and ¢, are arbitrary constants. The equation
(2.5) is exactly like the steady state form of (2.3)
and so, analogous to (2.4) we have the following
unsteady solution
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We can get here again a class of solutions analogous
to (1.10) in the case of no stagnation point by inte-
grating the equation for vorticity
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after changing to the new independent variables
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The equation (2.8) then takes the form
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and has the solutions
(2.10) & = (constant) (7' — 1)» T - (n+1) =2 L8(2)
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The velocity component v is then found to be
2, dn—1
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and when n = 0, we recover the solution (2.6).

The radial velocity u is directed towards the axis
and the velocity gradient A is positive. The validity
of the solutions (2.4) (2.6), (2.11) is conditioned by
the fact that the dissipation function

(2.12)
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is positive definite and it is possible to choose x >0,
A >0such that ® = 0and k = (z — 2 4 ue)fo > 0.
The unsteady solution (2.6) tends to the steady
state solution (2.4) as time increases to infinity while
the solutions in (2.11) corresponding to n = 1,2, ...
decay in course of time.
The solutions

u=—Ar,
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correspond to vortices with a core along the axis
(r = 0) and a stagnation point on the axis. While
the vortices tend to decay, the on-rushing stagnation
point flow carries new circulation from infinity to-
wards the axis. Solutions of this type in Newtonian
viscous flow have already been noticed [3] and it is
significant that both the viscosity and cross viscosity
cocfficients enter the expression for the velocity field
if the flow is due to a line vortex aligned with
a stagnation point. The zeros and the relative extrema
of the expressions for the velocity about the vortex
core occur at fixed distances from the axis of the

core and the speed of propagation of such charac-
teristic values is found from

Ar?
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and that it depends on both the coefficients of
viscosity and cross viscosity besides the flow para-
meter 4. In the case of no stagnation point the speed

is found from
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to have the value
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which depends on the viscosity coefficient only.

In view of the carriage of circulation towards the
axis by the stagnation point flow and the decay of
the vortex, in equilibrium there is a viscous radius r*
given by

YT Y e v
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For r >>r* the steady solution (2.4) leads to the
potential flow Q = Q,. The viscous effect is restricted
only to a cylinder of radius of the order *.

The pressure susfaining the flow (2.13) is found
from the equations {2.2) to be
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and the component p| gives the contribution on
account of the stagnation point flow, while pr and
pii1 are due to the circulatory motion and the explicit
contribution from cross viscosity. The pressure due
to the viscous vortex is
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and for the steady stagnation point-line vortex flow
(2.4) this has the value

@
"1 A r3y 2
2.1 = —o [ =11 — S ar.
(2.18) p1r g!)oJ = [1 exp( 2"?,” dr
T
On putting 4 r3/2 k = & we have
o4
__efd [(l—emmE
(2.19) pu= T f( . )dx
z
oA (e O [e-n—otr
= ik a0 2k f P <
xr
oA [
1 2 0 < »
=—gev— —2—'};—[ [(e—% —e-22)/zx]dx.
z

The last integral above measures the change in
stagnation pressure pr; and depends on the inward
flow gradient 4 and both the coefficients u and u,.
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The total pressure difference from infinity to the
centre of the core due to the vortex is

o o]
_gQﬁAfe-z—e~21dx
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In the case of the unsteady solution (2.6) the

circulation is restricted to a domain outside a cylinder
of radius R(f) given by

(220) (RU) = 7 (1 +cye—24t).

For small values of ¢ the circulation is brought in,
in an almost inviscid way until the core is reached
and the steady solution (2.4) is approached for large ¢.

§3.

If the inflow gradient is a positive valued function
f(t) we can obtain the solution for the line vortex-
stagnation point alignment in very much the same
way as in § 2. We find that the solution analogous
to (2.6) is given by

U= — f“) T,
3.1) =2 [1 — exp[—g(t) r*]],
w=2ft)z

with
(32)

9(t) =
e exp (/2 f(t) dt)
4 f[u — 2 po f(t)] exp (f 2 f(t) dt) dt + constant ’

and the pressure distribution is

e[{(f(t) — @} +
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and the solution is valid if

BAuf®) 20,  p—3uft)20,
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