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S. K. LAKSE~MANA RAO 
Stagnation Point - Line Vortex Flow of Non- 
Linear Viscous Liquids 

I n t r o d u c t i o n  
In his classical work on vortex motion H. HELM- 

HOLTZ dealt with the irrotational motion of inviscid 
fluids and established three basic theorems. Lord 
KEI,VIX added another basic theorem concerning the 
constancy of circulation around a vortex core. Ho- 
wever, to be able to explain the decay of vortices 
thc Viscosity of the fluid must be taken into account. 
The solution of C. W. OSEEN viz., 

u = O ,  w = -  : [ 1-exp  ( -~ ;;t); 9 w = 0'9 

where u, v, w denote tho velocity components of 
a viscous liquid of kinematic viscosity coefficient v 
along the directions r,  8, z of a cylindrical system of 
coordinates; was almost the first tdindicate thc 
diffusion of vorticity explicitly. Subsequently there 
have been several other exact solutions which also 
indicate clearly thc decay of vorticity in a viscous 
liquid. In his paper on the dying vortex, ALBERT 
DE NEUFVILLE [l] hm givcn solutions of the NAVIER- 
STOKES equations which include the above solution 
as a special case and serv0 to explain the diffusion 
of vorticity and the decay of the metion. The 
solutions given by N. ROTT [2] are in effect the result 
of combining a stagnation point flow and the flow 

In the present paper we seek to  extend these 
results to non-linear viscous liquids of the Rmm- 
KNLIN type characterized by the constitution relation 

assuming the coefficicnts of viscosity p and cross 
viscosity p c  to be constant. 

$1.  L ine  vo r t ex  in a non-Newtonian  l iquid.  
If the velocity components in the r,  8, z directions 

arc 

the equations of motion of REINEB-RIVLLN liqGds are 

due to 8 V O h X  Core. 

fij = - p6ij -k 2,Udij f 2,Ucdikdkj, 

(1.1) u = o ,  w =  V ( r , t ) ,  w = o ,  

o = - -  aP I az 

On putting V = SZ/r the middle equation becomes 

Apart from the obvious solution SZ = a + /3 72, this 
equation has the solution 

which is the same as mentioned earlier. It is also 
possible to obtain 8 Class Of solutions for the vorticity 
equation by introducing the new independent variables 

s=- 1 = t .  
ra 

(1.5) 4 v t '  

The equation for VOrtiCitY 
1 a B  c = - - -  
r ar 

viz., 

(1.6) 

then takcs on the form 

and has tho solutions 

(1.8) 
C = (constant) t - (n+U e-2 LO,(s) 
mhcrc 

dn 
(1.9) dzn 

denotes the LAQUEWE polynomial of degree n. The 
velocity component is found to be 

(n == 0, 1,2,  . . .), 

Lg(z) = ( n ! ) - I  z-a ez-- (e-z mfu) 

(1.10) 

L I '  z= - 
4 r l  

and when n = 0, we recover the solution (1.4). Thc 
above analysis shows that the velocity distribution 
(l.?) with u = V(r, t )  aa dcfined in (1.4) and (1.10) 
which is known to satisfy the NAVIER-STOKES'S 
equations also constitutes a solution for the equations 
of non-Newtonian viscous liquids. The effect of the 
cross viscosity is absent in the velocity distribution 
and is shown up only in the pressurc distribution. 
The pressure is given by 

= Po -1- PI1 + PI11 
and is made up of the components duo to the 
circulatory motion and pi11 contributed by the cross 
viscosity. 

The solutions (1.8), (1.10) correspond to  vortices 
in a non-Newtonian liquid, having a core along the 
axis ( r  = 0) and a number of layers of alternating 
directions of rotation. The circulation is zero a t  
infinity for all the solutions except when t --f w. Tho 
axis is a singular line and tho velocity and vorticity 
tend to zero for all finite values of r .  

5 2. Stagna t ion  po in t  a l igned  wi th  l ine  
vortex.  

If the velocity components are chosen in the form 

(2.1) v = V ( r ,  t )  , w = 2 ( A  z + C) 
the equations of motion of non-Newtonian fluids are 

u = - A r ,  

On putting v = air and k = (p - 2 Ld pc) /e  = v - 2&4 vC 
we have from the middlc equation in (2.2) 

aQ 
at (2.3) - - 

and this has be the steady state solution 

Comparing this with the unsteady solution (1.5) in 
the cam of a line vortex without the alignment of 
stagnation point ( A  = 0) ,  we see that the present 
solution can be regarded as that in (1.6) frozen a t  
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time t = (v - 2 A ve) /2 A v . 
equation (2.3) t o  the form 

We may reduce the 

dsz 
(2.5) k (:u: 2)  + A i l a - - - ; O  d u  

by regarding S1 as function of u = ( I .  4- c, c-?d1);1/2 
where I. and c, are arbitrary constants. The equatlon 
(2.5) is exactly like the steady state form of (2.3) 
and so, analogous to  (2.4) we have the following 
unsteady solution 

JVe can get here again a class of solutiohs analogous 
t o  (1.10) in the case of no stagnation point by  i n k -  
grating the equation for vorticity 

aftcr changing to  the new independent variables 

The equation (2.8) then takes the form 

(2.9) 

and has the solutions 
(2.10) 

The vcloeity component v is then found to be 

i = (constant) ( T  - l ) n  T - ( n + l )  e--2 L:,(x) 
(71 = 0, 1,2, . . .) , 

(n = 1 , 2 , 3 , .  . .) , 
and wlicn n : 0, we recover the solution (2.6). 

The radial velocity u is directed towards the axis 
and the velocity gradient A is positive. The validity 
of the solutions (2.4) (2.6), (2.11) is conditioned by 
the fact that  the dissipation function 

is positive definite and it is possible t o  choose ,LI > 0, 
A > 0 such that  @ 2 0 and k = (p  - 2 A ,uc)/~ > 0. 

The unsteady solution (2.6) tends to  the steady 
state solution (2.4) as time increases t o  infinity while 
the solutions in (2.11) corresponding t o  n = 1,2, . . . 
dccay in course of time. 

The solutions 
'u = - d r , 

7(' = 2 ( A  2 f C) 

corretipnd t o  vortices with a core along the axis 
( r  = 0) and a stagnation point on the axis. While 
the vort,ices tend to  decay, the on-rushing stagnation 
point flow- carries new circulation from infinity to- 
wards the axis. Solutions of this type in Sewtonian 
viscous flow have already been noticed [3] and it is 
significant that  both the viscosity and cross viscosity 
cocfficients enter the expression for the velocity field 
if the  flow is due to  a line vortex aligned with 
a stagnation point. The zeros and the  reIative extrema 
of the expressions for the velocity about the  vortex 
eoro occur a t  fixed distances from the axis of the 

core and the speed of propagation of such charac- 
teristic values is found from 

showing that  the speed is 

and that  it depends on both the coefficients of 
viscosity and cross viscosity besides the flow para- 
meter A .  I n  the case of no stagnation point the speed 
is found from 

d x = d  ~ = O  (:; t ) 
to have the value 

(2.15) dr dt V?, 
which depends on tho viscosity coefficient only. 

I n  view of the carriage of circulation towardii the 
axis by the stagnation point flow and the decay of 
the vortex, in eqdibr ium there is a viscous radius r* 
given by 

For r > r *  thc steady solution (2.4) leads t o  the 
potential flow Q = 0,. The viscous effect is restricted 
only t o  a cylinder of radius of the order r*. 

The pressure sustaining tho flow (2.13) is found 
from the equations (2.2) t o  be 

and the component pi gives tlie contribution on 
account of thc stagnation point flow, while prt and 
pi11 are due t o  the circulatory motion and the explicit 
contribution from cross viscosity. The pressure due 
t o  the viscous vortex is 

p11 = L, - y d r  
m i. 

and for tlie steady stagnation point-line vortcx flow 
(2.4) this has the valuo 

m 

(2.18) p11 = -- g f2: 

r 

On putting d r2/2 k = x wc have 

X 

m 

2 

m 

2 

The last integral above measures the  change in 
stagnation pressure p11 and depends on the inward 
flow gradient A and both the coefficients p and pC. 
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The total pressure difference from infinity to the 
centre of the core due to the vortex is 

with 
(3.2) 

= m log2. 
2 k  

In the case of tho unsteady solution (2.6) the 
circulation is restricted to a domain outside a cylinder 
of radius R(t) given by 

2 k  
(2.20) (R(t))* = (1 + 4 e - 2 A t )  . 
For small values of t the circulation ie brought in, 
in an almost inviscid way until the core is reached 
and the steady solution (2.4) is approached for large t. 

§ 3. 
If the inflow gradient is a positive valued function 

f(1) we can obtain the solution for the line vortex- 
stagnation point alignment in very much the same 
way as in 3 2. We find that the solution analogous 
to (2.6) is given by 

and the pressure distribution is 

References 

111 ALBERT DB NIUm.IE,  "he dying vortex, Roc. Fifth Yid- 
weatern Conference on Fluid Hechanles 1957, pp. 385-376. 

[2] N. KOm, On the vlseous core of a tine vortex, ZAMP 9 b, pp. 

131 8. K. LAKSEXANA RAO, Some n p e d ~ l  solutions in V~SCOUS fluid 
543-553 (1958). 

motion, PrOC. Roy. b b h  A d .  82, A 2, p. 55-62. 

CXP [- go) 41 Y Verfaaaer: S. K. LAIKSEMANA RAO, Dept. of Math., 
Regional Engineering College, Warangal 
(A. P.)) India. 

v = QO -- [ I -  
r i 2u = 2 f ( t )  2 

(3.1) 




