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ROTARY OSCILLATIONS OF A SPHEROID IN AN
INCOMPRESSIBLE MICROPOLAR FLUID

S. K. LAKSHMANA RAO and T. K. V. IYENGAR
Department of Mathematics, Regional Engineering College, Warangal-506004, India

Abstract—The paper discusses the flow generated by rotary oscillations of a spheroid (prolate and oblate) in
incompressible micropolar fluid. The velocity and microrotation components are determined explicitly in
terms of spheroidal wave functions and are expressed in infinite series form. The couple on the oscillating
spheroid is evaluated and numerical studies are undertaken to examine the effects of the geometric
parameter and material constant parameters of the fluid.

1. INTRODUCTION

IN THIS paper we examine the rotary oscillations of a spheroid in an incompressible micropolar
fluid[1]. The field equations of micropolar fluids are presentable in terms of the velocity vector
q and the microrotation vector » and the theory provides for six material constants. The
spheroid is in rotary harmonic oscillation about its axis of symmetry and the amplitude of
oscillation is assumed small so that the second order and bilinear terms in the equations
describing the flow are omitted. Under the above Stokesian approximation of the flow
equations, we obtain analytical expressions for the velocity, microrotation, surface and couple
stress components and seek the evaluation for the couple on the spheroid and make a numerical
study of its variation with respect to the geometric and physical parameters.

2. BASICEQUATIONS
The motion of incompressible micropolar fluids is governed by the equations[1]

divqg=0, 2.1
p % =pt—grad p + k curl ¥ — (u + k) curl curl ¢ + (A, + 21 + k) grad (div q), 2.2)

pi 3—'; = pl=2kv + k curl g — y curl curl ¥ + (a + 8 + v) grad (div »). (2.3)

In the above, the scalar quantities p and j denote respectively the density and gyration
parameters of the fluid and are constant. The vectors q, », f, 1 are the velocity, microrotation,
body force per unit mass and body couple per unit mass. The constants {A, g, k} and {a, 8, 7}
are the viscosity and gyroviscosity coefficients and these conform to the inequalities

k=0; 2u+k=0; 30,4+2u+k=0;

24)
y=0; [Bl<vy; 3a+B+y=0.
The stress tensor ¢; and the couple stress tensor m; are given by [1]
ti=(—p+ A divq) §; + Qu + k)d; + ke (W — Vi), 2.5)
m; = a(div »)8; + By;; + yu;; 2.6)

in which the symbols p, §;, d;, @, v, and »;; have their usual meanings.

Let (§ 7, ¢) be an axially symmetric system of coordinates with base vectors (e e, e,) and
scale factors (h;, h,, hs). The spheroid oscillates harmonically about its axis of symmetry with
angular speed ) e™. The fluid flow generated by this oscillation is axially symmetric and the
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flow field vectors can be chosen in the form
q=Qe™ = V(gn)e™e, @7
and
v=[A(£n) e, + B(¢ nle,l ™. 2.8

Under the assumptions of Stokesian flow, the field eqns (2.2), (2.3) simplify to

Pg =—gradp+kcurlwv—(u+k)curl curlq, 29
pj%:—' = ~2kw+kcurlq— ycurlcurl ¥ + (a + B + v) grad (div »). (2.10)

Defining the functions f(¢ n) and g(£ %) and the operator E? in the form

div v = f(£, ) e™, @1
curlv=g(£n)e™ ey 2.12)
hy [8(h 0\, 9 (h &
E'=3 hz[ (h A ag) T ( hohs an)] @13)
we see from eqns (2.7)-(2.13) that
ipwV(£ ) =kg+ (1 + k) ) E*(hs V), (2.19)
(2k + ipjw) (Ae, + Be,) = (1/ hs) (8] am) [As(kV ~ vg)le, — (1/ hi s} (3/ 3€) hy(kV — ¥8)le,
1 af 1 af
o _3p _
3¢ an 0. 2.16)

From (2.15) it follows that

2
(v2 *%) f=0 @17
where
(P*lch) = 2k + ipjw)/(a + B+ 7) (2.18)
and
, 1 [ hohy 3\ . 3 (hihy 8 ]
V= Hhah, af( hy a£)+an( hy an) ' @.19)
From (2.15) we can also deduce that
, . k(2p,+k)] _ _ ipwk Y
[lp]w+ 2 8 o= - v E B, (2.20)

Eliminating g between (2.14) and (2.20), we obtain the following differential equation for the
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determination of V(£ 1)

Y+ O E' (R V)~ [kQ2p + k) + ipw(y + j(u + KDIE*(hs V) + ipw(2k + ipjw)(h; V) = 0.
(2.21)

On finding V(& n) from the above equation, we can find g(£ 7) from (2.14). The function f(£,7)
can be determined from (2.17). The functions A(£, n), B(£, 1) can then be determined from the
following two equations

s 1 aTy(utk) _ipwy (a+B+y)df
2k + ipju)A = 7 an[—k Ez(h3V)+(k . )(h3V)]+———hl %

oon_ 1 dTyptk) _lipwy (a+B+7y)of
QK+ ipiw)B =~ ag[ ; E2(h3V)+<k . )(h3V)]+———h2 z e

The eqn (2.21) can be expressed in the form
(E* - o)) (E* - B (V) =0 (2.29)
where the constants a?, 8% are obtained from the two equations

_ kQu + k) + ipw(y + ju + jk)
y(n+k) ’

a’+ g (2.25)

o’ B* = ipw(2k + ipje)/(y(p + k).

When a? # B2 the solution V can be obtained by the superpositiont of the solutions V,, V,
where

(E*-a®)(h V) =0, (2.26)
(E*- BY)(hVy) =0. .27

The rotary oscillation of the body and the flow arising from it are presumed to have
negligible effect at a great distance from the body and we may therefore presume that each of
the quantities V, A and B tends to zero at infinity. On the boundary of the spheroid we assume
the hyperstick condition of adherence [2]. This means that, on the boundary

q=(Qhse™)e,, (2.28)

v =3 curl(@h, ce,). (2.29)

3. PROLATE SPHEROID

Let a prolate spheroid (focal distance =2c¢) perform rotary oscillations about its axis of
symmetry with angular speed Qe If (¢ %, ¢) are prolate spheroidal coordinates, the scale
factors hy, hy, h, and the operators E? and V? are given by

hy=h=cV({(s*= 1), hy= cV(s* - 1)1 - 1)), (3.1

1We thank the referee for drawing our attention to the possibility of “resonance (a* = 8%)” in which case the solutions
of (2.26) and (2.27) would no longer be independent. As pointed out by the referee, this case arises when (v/j) = Qu + k)
(p+k)/Q2u+3k) and po=Q2u+k). Qu+3k)/(2(u+k)j) and this situation can occur in rotary as well as rectilinear
oscillation problems. We then require solutions of (E* - a?)(h; V) =0 and (E? - a??(h, V) =0 to build the solution V in
this case of resonance. The case of resonance covering both the rectilinear and rotary oscillations will be treated in a
separate paper.
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2 2
E= E’ZsTl——PS [(SZ- 1);%,+ a- tz)%i] G.2)
V2=——-———[(s 1)) +(1-t2) +2 ——21—] (3.3
5= 1) _5 ptes J)

where s = cosh £ and t = cos 7. The prolate spheroid in oscillation is given by £= § (i.e. 5 = 50).

The solution f(cosh & cos n) = f(s,f) satisfying (2.17) can be expressed in terms of the
prolate spheroidal wave functions[3]. To ensure the regularity of f(s, t) at infinity and every-
where on the axis of symmetry in the region s > s,, we select the wave functions R, (ip, s), SG,
(ip, 1)[3] and choose f(s, t) in the form

f(s,1y="Z ARG ip, ) S (ip, 1) G4

where {A4,} is an infinite set of unknown constants. The regularity requirement at infinity is
satisfied if we choose p from (2.18) such that its real part is positive. The prolate spheroidal
functions R$)(ip,s) and S§, (ip, t) have the expansions

¢

oo -1
R§)(ip,s) = [2 2 d‘:"(ip)] 201 4 (ip) K,+ 1 (p3)- (3.5)
Sia(ip,) = §, d> (ip) P,(1) (3.6)

where K., (ps), P,(t) denote the modified Bessel function of the second kind and Legrendre
polynomial respectively.
The solution V; of eqn (2.26) can be expressed in terms of the spheroidal wave functions
R (iac, s) and S{(iac, 1)[3). Likewise the solution V; of (2.27) is expressible in terms of the
functions R{X(iBe, 5), S{U(iBc, t). In the above functions, the values of @, B are to be such that
the regularity of V; and V, at infinity is ensured and this is attained by selecting the roots a, 8
from (2.25) such that each of them has a positive real part. The restriction of the radial function
to the type RY) and the angular function to the type S is also motivated by the requirements
of regularity in the region s > s,. The solutions V, and V, take the form

Vi =, B,R{)(iac, 5) S{) (icec, 1) G.7

Vo=, C,RE(iBc, s) ST(iBe, ) (3.8)

where R (iac, 5), S{)(iac, t) are given by

o -1 2 12
R®(iac,s) = ['"+22,=0‘1(r+1)(r+2)d1"(iac)} (2(s }))

TaCS
x 3 (r+1)(r+2) d\"(iac) K,.ap{acs), 6.9
r=0,1
SW(iac,y= 3, d}"(iac) PPy(1) (3.10)
r=0,1

in which K,.ap (acs) denotes the modified Bessel function of the second kind and P},(f)
denotes the associated Legendre function of the first kind. The functions RY)(iBc,s) and
S{(iBc,1) are obtained from (3.9) and (3.10) by changing a to B. The velocity component
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V(s,t) is given by
V(s,t) = 3, B,RO(iac, s) SW(iac, 1)+ 3, C,ROiBc, 5) ST) (B, 1). (3.11)

From eqns (2.22), (2.23), (3.4), (3.11) we can obtain the expression for the microrotation
components A(s,t) and B(s,?) in explicit form. These are given by

kQ2k + ipjw)c\/ (87 = 1) A(s, 1)
= ka+ B+ DV~ D) Z Ay (5 (REp,9)) S0,
~{¥(u + ke’ + k- ipwy} 3, B,R{)(ic, s)ad;[\/((l - t9))S{iliac, 1))

~ y(u + )8+ K= oy} T CRAie, ) 51V - D)SUGBe, 0], (3.12)

kQ2k + ipjw)c/(s* - 19)) B(s, 1)
= ke + B+ NS ARSip, V(L - ) 37 Sip, 1)
~ Iyl + R+ K= ipay}S, By S [V(*~ D) RO e, 5)) Siac, 1)

~ {y(u+ B+ K= ipon) T, Gy AV~ D) REBC, )] SR(iBe, ). B.13)

The functions V(s,¢), A(s,t) and B(s, ) in the eqns (3.11)-(3.13) involve three infinite sets of
unknown constants {4,}, {B,}, {C,} and these are to be determined by using the boundary
conditions on s = §;.

Boundary conditions ‘
The spheroid s = s, is in rotary oscillation with angular speed Qe™ and the hyperstick
condition [2] implies that on s = 5,
Vis, 1) = QeV((st— D - 1), (3.149)

Q ok, _ QV(s~ 1)t
hon~ V(- 1)’

A(s, )= (3.15)

CQohy__Qs\VA- 1)

S TRV (CETO R

(3.16)

The above three equations are valid on the interval —1<¢<1 and will in general enable us to
determine the three sets of constants {A,}, {B,} and {C,}. The details are shown in Appendix
Al.

Calculation of the couple on the body

The calculation of the couple on the body has to reckon with the contributions to it from
both the force stress and couple stress tensors. We can see easily that #;, is the only component
of the force stress tensor and my, m, are the only two components of the couple stress tensor
that contribute to the couple on the body. The expressions for these three quantities are
obtainable from eqns (2.5) and (2.6) and after the evaluations of the relevant components of the
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tensors dj;, »;; we see that

(tegr Mep Mpr)\=(Tpg, Mgy M) €™ (317
with

I 14
T = 3= tz)){(z”‘ =D (\/((s 1)))

k -
5K |70 (V= IV +2y 2 V(= )~ e+ B+ Vi - T

(2;.L+k)(s -1) K 14 1 3
2Vl = 1) 3 (\/«s 1»)“‘ {2c\/«s2~r2))29§“/«32"”"”B } (3.18)

2
= af + ;\—/{is—z»{\/( =0)s Ay %)F»B} (3.19)

— 2 - - -
B{\/((l ) 94, sV(s’-1) B} +Y{V((S 1) 3B _ tV/(1-1) A}'

Meo = =B levi(s=1) at T el - )" V=) s - )"

(3.20)

The contribution of the force stress tensor to the couple on the body is given by r Xt e,
where r is the position vector of the point on the body from the centre of the spheroid, t is the
stress vector and e, is the unit axial vector. This simplifies to

V(5T = DA = Nt (3.21)

and the couple on the spheroid due to the surface traction equals

1
Cr=2mc(s5= 1) V(s5— D1 = N)tgy], dt
—t

=87 2+ ks3- 1) {v«sg—m{zs,.dmac)( R{ac, )

o

+ 3 C,di"(iBc) ( RP) (iBc,s)) 50} ﬂcso] e™, (3.22)

The contribution of the couple stress tensor to the couple on the body is m-e, where m is
the couple stress vector and it is seen that the contribution to the couple on the body is

I
C =2mc*\/(s5- 1)) [-1 [(V(S* = DIy — sV(1 = )m, ], dt

1
= [previsi- 0 [ {t@+ B nvist=ifts, - wvia - engis i ar e
(3.23)

The integrand can be further simplified by replacing the functions f(s, £} and g(s, f) by their actual
expressions. The expression for f(s,t) is seen earlier in eqn (3.4) while that for g can be
obtained by means of eqns (2.14) and (3.11). We have, in fact

K 02V, + g2V, (3.24)

g(s,1) = (ipolk)V ~ &
We can see that
Co = $re V(- {(a+ B+ VI(SE—VZ Ard? () R i, 50
_ Zﬁ%‘_@(az - B)ysoZ C.di" (iBc) RE(iBe,50) — z-‘l—c-w,ﬁ(s—ﬂ Ylipo—(u+ ")“2’} e
(3.2%
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The series involving the constants {A,} in the above expression for C;; can be eliminated by
the use of the eqns (3.13) and (3.16) and this results in the following expression for Cy
containing only two sets of constants {B,} and {C,}:

Cu= %gczv((sg- 1))[0cs9\/((s§ - 1)){ y(u + k)o? + K — ipwy + ipiwk} +y(u + k) (B’ ~ ad)s X,
—{ylp + k)a* + kK = ipoy} (s§ = DX;~{y(p + k)B* + k* — ipwry} (s§ - 1)X4] e (3.26)
where

X, = 3, C,di" (iBc) R (iBe, s0)

X, =3 B,d}" (iac) (di‘s-R?g(iac,s)) : (3.27)

%0

Xo= 3 C,di ige) (3 RE2(iBe5))

o

From (3.22), (3.26) and (3.27), we can obtain the total couple C on the spheroid in the form

= ‘;‘Zcz\/ (55— D) [QesoV/ (55— D~ kQp + k) + ipjwk + y(i + k)a® = ipwy}

+y( + k) (B2 = a®) s Xy + (55— 1{kQ2u + k) — y(u + k)a? + ipwy} X;
+(s3~ I{kQu + k) — y(u + kot + ipoy)} X,] ™. (3.28)

It has not been found possible to express the couple in a finite number of terms.

Numerical work
Defining the nondimensional couple Cyp by means of the equation

C= 4—3”-(2”, + K0 Crp (3.29)

we see that

2i0°07 ot —if?
CND=SO(S(2}—1)(A2A2 +2 e "1)

2.2
+ (ﬁ_x;z_) V(83— DIX/(€c))
+(s3- 12 [ - #)X;/{ﬂd

+ (1 -—ﬁzﬁ}:‘—"’z)x‘/(ﬂc)] (3.30)

wherein the parameters 6%, A%, A?, ©7 are given by

. we? 2=k(2 +k)cz
wtk y(u+k)
o u ’: b g &&;:El (331

The couple parameters K, K are introduced by means of the relation

Cnp = Fso(s5— (- K' - iK). (3.32)
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The quantities K and K’ are numerically evaluated for a series of parameter values sy, 6%, A7,
A%, ©? by evaluating the constants {C,,} from the system of eqns (A17) and the constants {B,,}
from the system of eqns (A20) in Appendix A by truncating each system to a 5 by 5 set. This
order of truncation is motivated by the fact that the coefficients needed for the evaluation of
the constants d7™ (iac), d7" (iBc), d7" (ip) are available only to a limited extent in the published
literature[3). The variation of K and K’ is graphically presented for the polar as well as the
nonpolar case[5] in Fig. 1-12.

4. OBLATE SPHEROID

Let an oblate spheroid (focal Qistance =2c¢) perform rotary oscillations about its axis of
symmetry with angular speed Qe**. If (£ n, ¢) are oblate spheroidal coordinates, the scale
factors (hy, hy, hsy) and operators E?, V? are given by

hi=h=cV({(7+1), h=cV{(F+D1-1) @n
SO B B
B= | 1 1-05] 42)
2 2
v =“c'2(?1¢t—1)[(72+ DL -t 2%—2:5‘2] 43)

where = sinh £ and ¢ = cos 7. The oblate spheroid in oscillation is given by £= § (i.e. 7= 7).

The solution f(&n) = f(r,1) satisfying (2.17) and the regularity requirements on the axis of
symmetry for 7> 7, as well as at infinity can be expressed in terms of the oblate spheroidal
wave functions {R)ip, 7), Si(ip, H}[3]. Likewise the functions V, and V), satisfying the eqns
(2.26), (2.27) can be expressed in terms of the oblate spheroidal wave functions {R{)(iac, 7),
S®(iac, )} and {RE(iBc, 1), ST (iBc, ). It is known that the oblate spheroidal wave functions
can also be expressed in terms of prolate spheroidal wave functions by multiplying the
parameters (ip)/(iac)/(iBc) by — i and the variable 7 by i[3]. Thus the functions f(r,#), Vi(r,1),
Vi(r,t) can be expressed in terms of the prolate spheroidal wave functions. Taking the
regularity of these functions on the axis of symmetry at points 7> 7, and the regularity at
7 =10, W¢ Can write

f(r, ) = ARG (p,i0) S (p, 1) 4.4)
V](Tx t) = anR(lSrg(ac; iT)S(X‘n)(aC» t) (45)
Va(r, 1) = 2 CRON(Be, in) ST (Be, 1) (4.6)

where the functions R and S are prolate spheroidal wave functions.
The function V(7, f) is given by

V= V; + Vz
=Y B.Rac, inS{ac,t) + 3, C.RIBc, ir) ST Bc, 1). @

The functions A(7, ), B(r,t) can be obtained on using (2.22), (2.23), (4.4) and (4.7). We find that

kQk + ipjw)e /(7 + 1) A(1, 1)
= Ka+ B+ NS AN+ D) RQ, SR,

~ {7+ a* + K oy S B,RE e, i IV - P)SEac, 0]

—{v(e+ BB+ kK~ ipoy} X C,RT (e, i»r)%[\/((l - )SRBen), @8
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kQ2k + ipjw)e\/(7* + ) B(r, 1)
= (@t B+ D AR, V(1 - ) 5 (S8p, 1)
~ {7l + e+ = ipy) S B, A V(7 + )R e, in)] Sthac, 1)

—{y(p + KB+ K — ipwy} D C,,a%[\/((72+ D)RTABc, in)1STh(Be, ). (4.9)

The above expansions for V, A and B involve the three infinite sets of constants {A,}, {B,}, {C,}
and these are to be determined by invoking the boundary conditions on 7 = 7.

Boundary conditions .
The spheroid 7= 7, is in rotary oscillation with angular speed Qe™' and the hyperstick
condition[2] implies that on 7= 7,

Vit t) = Qe V(15 + (1 - ) (4.10)
) oh (75 + 1)
A 0= (3,50) =V @ID
Qahy\  —QrV((1- 1)
B = - (5% ) V(A7) @1

The above three conditions are valid on the interval —1< ¢ <1 and will in general enable us to
determine the three sets of constants {4,}, {B,}, {C,}. The details are shown in Appendix B.

Calculation of the couple on the body

The calculation of the couple on the body has to take note of the contributions to it from
the force stress as well as the couple stress tensors. It is easily seen that t,, is the only
component of the force stress tensor and m,, m,, are the only components of the couple stress
tensor that contribute to the couple on the body and these expressions can be obtained from the
eqns (2.5), (2.6). After some preliminary calculations, we find that

(tg@ My, m_gn) = (de,, Mgf, Mé,,) ei“" (4.13)
with

Qutk)(7+1) 9 | 1
T =T o (V) v V@ s DV B e

V(T +1) A t/(1- 1) B} (4.15)

seft (B 7){“/((7 o o+

N VA (e 9) % S AV (G BY)
M= P [c\/((1'2+ Nt e+ Y B]

[t\/((l—tz))AJr V(T +1) ili]

c(+ 27 T (P ) ar ) (4.16)

The contribution of the force stress tensor to the couple on the body is given by

Cr= 27Tc3(1'(2)+ 1 I V- )y, dt
S cXp+k)(r3+ 1)[\/((¢0+ 1)){23 [( R{)(ac, n')] dg" (ac)
+ 2 C ( R{(Be, n’)) dy" (Bc)} - Qcm] e (4.17)
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The contribution of the couple stress to the couple on the body equals

1
Cir =20+ 1) | (VA4 Dyt = 101 - O dt

1
=26+ )] et B ) DifCr )= 5 OV = P ]

and this simplifies to

4 .
Cn= ﬁ AVt + 1)) e X [{y(u + k)a® + k* — ipwy + ipjok)Q et /(73 + 1))

+y(p+ k) (B = D1 Yo — {y(u + k)a® + k* — ipoy} (73 + DY
—{y(u+ KB+ k* — ipuy} (15 + ) Y]

where

Y,=3 C,di"(Be) RO (Be,imy)

Y:=3 B,dl(ac) ( dT R%(ac, n))

Kl
Yo= 3 Gl (Bo) (RO n))
From (4.17) and (4.19) we obtain the total couple on the spheroid in the form

c= C:+Cn= 2\/((To+1))e"‘"><[{ kQ2p + k) + ipjwk

+y(u + k)a — ipwy}Qero V(5 + D) + y(p + K)(B* - a1 Y
+{kQRu+ k) — v +ka’+ ipoy}(r3+ 1Y,
+{kQp + k)~ y(u + k)B* + ipwy}(r§+ D Y]

Numerical work
Defining the nondimensional couple Cyp by means of the equation

C= 4%(2# + k)QCS CND e"""

we see that

2i6°0° ot i
CNozTo(Tg*'l)( lez + /\ l ) B - a)c’

+(fg+1)3ﬂ[(1 ~——A—‘—62)wmc)+( ﬁ‘/\ ‘92) Yd(ﬂc)]

where the parameters 62, A2, A%, @7, are given in (3.32).
The couple parameters K and K’ are introduced by means of the relation

Cnp = O 7o(r5+ D(— K' - iK).

_‘”““T‘_TO\/«T(Z) + 1) Y,/(Q2c)

4.18)

4.19)

4.20)

4.21)

4.22)

4.23)

(4.24)

The quantities K and K’ are numerically evaluated for a series of parameter values 7, 6°, A%,
A%, ©° by evaluating the constants {C,} from the system of eqns (B11) and the constants {B,}
from the system (B14) in Appendix B by truncating each system to a 5 X set. The variation of

K and K’ is graphically presented for the polar case and nonpolar case[5] in Figs. 13-22.



Rotary oscillations of a spheroid in an incompressible micropolar fluid 983

REFERENCES
[1) A. C. ERINGEN, J. Math. Mech. 16 (1966). pp. 1-18.
{21 S. C. COWIN, Advances in Applied Mechanics, Vol. 14. Academic Press, New York (1974).
{31 M. ABRAMOWITZ and 1. A. STEGUN, Handbook of Mathematical Functions with Formulae, Graphs and Mathe-

matics Tables. Dover, New York (1966).
[4] N. W. McLACHLAN, Bessel Functions for Engineers. Oxford University Press (1961).
[5] R.P. KANWAL, Q. J. Mech. Appl. Math. 13, 146 (1955).
(Received 12 June 1980; in revised form 24 November 1981)

APPENDIX A

Determination of the constants {A,)}, {B,} and {C,} that occur in the expressions for V(s,t), A(s,t) and B{s,!) in egns

(3.11-43.13)
From eqn (3.14) we have

f: R (iac, sy S{ (i, :)+2 C.RUNIBe, 50) SW(iBe, 1) = Qe V/({(s3- D1 - ). (A1)
R=1

The boundary conditions in (3.15) and (3.16) concerning the micro-rotation vector provide the following two equations
involving the three sets of constants {4,}, {B,}, {C,}:

Ka+ B+ VEs-DZ A"(ikaﬁ(x‘p, s)) SWip, 1)
—{ylp+ ket + ik~ tpwv}z B,R{)(iac, S5 {\/((1 - %) ${iac, )

~{7(u + B + K — ipwr} i "’(tﬁc,s.))—[\/((l ENSTAiBe, 0] = k(2k + ipjo)beV((si- D)t (AD)

kla+p+ 7)2 ARRp V- 2D 37 Stalip.1)
o+ R0+ B = ) 3, By (G OVA(5 = DIRG9 Sthiac, )
+ir+ DB+ i) 5, G, (V= DIRRB.)) 1B 0 = Kk + piodhessV (1=, (AD)

The constants {4,}, {B,}, {C,} may be presumed zero for even values of n in view of the following symmetry/antisym-
metry in the field variables:

Vis,)=V(s,- 1)
Als,5) = — A(s, - 1) (Ad)
B(s,t)=B(s,— 1)

From (A1) we can express each one of the constants B, in terms of the set {C,,} and also vice versa. The relations are

LR (fac, s)) N (i) = ch/((s.)— D) di" lac) - E M,,, liac, iBc)C.R'2, (iBe, 50); (AS5)
C.R®\(iBe, 5N “’(ch)-—ﬂc\/((so 1) di" (iBc) - 2 M, (iac,ifc) B,RD, liac, o) (A6)
where
. v
N (iac) = I_I{S(ﬂ,,)(iac, HFdt= ’gu 2(—2%%22{(1:" (iac) (AT)

with a corresponding expression for N{)(ic) and

o Ar+H(r+2)

i
M, (e, iBe) = f_ lS‘,',,’(iozc, HSY (iBe,tydt = _};‘ ar+3) di™(iBe) dV (iac). (A8)

We can divide eqn (A3) by v/((1 - 19)) and integrate the result with respect to ¢ from 0 to ¢, This gives rise to the equation
k(e + 8+ 7)2 ARG (ip, sH{SEUip, 1) - Si(ip,0)}
Hylu+ Bt + B~ ipuy} 3 B, (-—-(v«sZ— DR ac, 5)) T{iac,
=1

S0

+{y(p + k)B+ k* = ipwy} Z C, ( (Vs> ~ DRYiBe, s))) T{(iBc, 1) = k(2k + ipjw)csyt  (A9)
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where

T{(iac, )= j \/'("é‘“”})gdr— }; 4 (iac) [P, (1) - P,.,(0)] (A10)
(1)

and it is easily seen that the terms S¢a{ip, 0) and P,.,(0) are zero in view of (A4),
From eqns (A2) and (A9) we obtain

kla+ B+ MV((s3- 1))( R Gip, S))) NG p)A, +{v(p + k)e + K = ipwry} 2 B, R iac, o) Brmn iacc, ip)

+{¥(u + kB + K — ipwry} Z Ca RT) (i, 50) B (iBe, ip) = -k(2k +ipjo)eV((s§-1)dP(ip),  (AlD)

e+ B+ VRPN DDA, + x4 K™+ K= ot 3 B (VI D) RE 12 )) il 7)

i OE K= ipor} 3 Co (V7= DIRTB.9)) (B0, ip) = 12K+ oesod™(p). (AL

where
NGp)= [ Statip, OF dt = S L[4 (ip)P Al3
%)= [ (S0 dr= 3 il o), A1)
1
a,,,,,(iac,t'p)=J’7]S“’(rp, TV (iac, ) dt = 2(2 +3)d“"(mzc)d,ﬂ(lp), (Al4)
1
Buaticip)= - [ Sna-pystatiecnspoa- § XEDEDimo ey Al

with similar expressions for a,,, (iBc, ip) and 8., (iBc,ip). From (A11) and (A12) we can eliminate A, and this results in the
following relation between the constants {B,,} and {C,}:

. [ ds (IP,S)[ i — R (e, ) :|}
. 3 .
{)'(;L+k)r-'rz+kz-tp«mr}mZ:l B iac,ip) = a (i, ip) "pore 5 (s*-1) RO (o, s) +5 | [ BuRP(iac,50)

o ' aRb’..’(ip,s) 3 R (e, )
Hylu OB+ K = ipwy} 3 | | B (180, i0) = B ip) | T || (7 )W ]

d—Ra”(zp,s)
x C,R, (iBc, 50) —-k(2k+:p)w)ﬂcd“"(ip)\/((h ). ;T”GW . (A16)
I3 {1 50

From (A5) and (A16) we can eliminate the constants B, and obtain a nonhomogeneous linear system for the determination
of the constants {C}}, viz.

zAmc.R?ﬂ(wc, $0)= b (A7)

n=13,5,...where

:s (ip,s) d RE(iBe, s)
Ani = {y(p + k) + k2~ ipwy}| BraliBc, ip) — ey, (iBe, ip) R s, (s*- W

) ds R (ip,s) : R (iac, )
—{y(p+ K+ - mwv}z % B i, ip) = i, ip)| “garz = | (5% )T%L_(Ec,s—) sf Al
(A18)

) +- REXip. )
8y =3 k(2k + ipjw)Qed " (ipV/ (s5— )| 1 - T)(‘—P%_ .

At e+ €= porievii- 1) 3 { [iied

{ds (D(IDS)
Bualiaec, ip) — amalicec, ip) RO Gps) .

{ R, (iac, 5) ] }}
EIE | D S —
x| (s Sm(ﬂ-‘w, 9 +s . (A19)
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From the above infinite linear system the constants {C,} are to be determined by a numerical procedure. Then the
constants B, can be determined from (AS5) and the constants A, can be determined from either of (A11) or (A12). Thus we
have a feasible procedure for the determination of the unknown constants that occur in the expressions for the field
functions V(s,1), A(s, ) and B(s,?).

The numerical evaluation of the couple C is of particular interest and the expression for C in (3.28) involves infinite
summations on both {B,} and {C,}. To check the error in numerical evaluation of C to the extent possible, it is desirable to
obtain the constants B, as well as C, directly. The system of equations for B, can be obtained on the same lines as seen
above for the constants C,, by eliminating Cls between (A6) and (A16). The Bis are directly evaluated numerically from
the following system of linear equations:

2 rn lBIR?l)(iaC’ sﬂ) = Yn (Azo)
=1

n=1,3,5, . where

:s fa(ip,s) d—RS (iae, )
Ty = {ylp+ e’ + k2 —ipay)| Binlicc,ip)— ay, (izc, ip) T (52—1)m §
13 12 S5 s

d , d
. - == REip, 5) 72 REMiBe, )
; My, Gac, iB o N ds
- {7(["‘ + k)B2 + k2 - ‘Pm'Y} ”.lgl{ XN('}f):a(‘;l;c)C){ﬁmn (‘ﬁca 1P) = Qmp (lﬂc’ ‘p) [ s (3)(1’)’ S) }m[(sz ) R(&'(lﬁc .Y) } :‘}

(A20)
o = Ak + ipjo)2ed? (DIV(53- 1)

( 54 R‘”{tp, S)]
1= ‘3’ > (ip. 5)
—g{v(u + k)8 + K~ ipoylfeV((s5— 1)

X dlm H . i . .
ME:] [ﬁqﬂ%’%{ﬂm(tﬁc, ip)— aaiBe, ip).

[%R?:(ip,s)] ( 2 riaige.s) } H
R§ip,5) (s R?’ B (A2)
APPENDIX B

Determination of the constants {A,}, {B,}, {C,} occurring in the expressions for V(r, t), A(r, 1) and B(r, t) in eqns
4.7-(4.9)
The boundary conditions (4.10)~(4.12) yield the following equations

Y B.R{Mac, i) STh(ac, 0+ 3, CRENBe, ig) SLBe, ) = Qev/((rd + (1~ £), ®B1H

ka+8+7) 2 A+ 1»( R, w)) S0, t)—{?(ﬂ + Rl + k- z‘pmv}i BRY)(acin) /(1 = ) S1(ac, )
“{Yu+ 0B+ K~ ipwy 2 CuRR(Be,imo) g (\/((1 — %) SU(Bc, 1) = kRk + ipjw)be V((r3+ 1)), (B2)

Ha+ B+ S ARG/ - rz)j‘;(sa“(p. )
it 0+ £ i) 5 By (3 V(7 + DIRRNa 1) Siae.
+Hrlu+hp+ e~ :pwy}z G ( (VA + D)REBe, n») S8, 1) = K2k + ipju)erey/(1 - £).  (BY)

As in the case of the prolate spheroid, we may presume that the constants {A,}, {B,}, {C,} are zero for even values of #.
From (B1) we have

LR e in) NS (ac) = §00d§" (@) V(s + 1)~ 35 CuRT(Be,ir9 Mo a6, 0), (B4)

CRUBe, sfo)N“’(BC)%ﬂcd H(Be)V(rh+ 1)), - 2 B, R {ac, ir)) My (ac, Be), 8%

where

1
NGt~ [ 1stGeopar= 3 LD g oy (B6)
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& Ar+)(r+2)

1
M,,,,,(ac,Bc)=fIS‘I',Z.(ac,t)S‘II,Z(Bc,t)dt= 2 343 dy"(ac)d!"(Bc). (87
- r=0,1

From (B3) we can deduce that

k(at+p+ y)i ARSp, i S (p, ) — SE(p, 00} +{y( + K)o+ k2 - !pwy} B —(\/(T + DR Nac, in) ) TiNac, )
n=1

To

+{yle + B+ k- ipwy) ZI c,,d—r(\/((r+ 1))Rﬂ‘,.’(3c n))mT“)(ch 1) = k(2k + ipjw)Qcrot,  (B8)
where

Sln(ac»t) n
Tec = [ SEED 1= 3 a o) P,oi0) (89)

and it is easily seen that the terms S§(p,0) and P,,,(0) are zero as only odd values of » are involved. From each of (B2)
and (B3) we can express each A, in terms of {B,} and {C,}. Elimination of A, between these expressions yields

d (3) d (3)
= ar n (D, i7) ar m(ac,it)
{y(n +k)a? + k* — ipwy) Z‘. Bun (@6, P} = pmnlac,p) KOG Uy (r5+1) R T B,RY)(ac,iry)

. d Rp,ir) d SR (Be,im)
+{y(p + k) + K — ipwy} Zl Bra(BC.P) — ama( B, P} RO ). (r5+1) REGM )y + 70 | [CaR ) (Be, irg)

d (3)
df s (D, i)

o (B10)

= 2Kk + i) 2ed?(p) V(3 + 1) [1 -

The quantities @, (ac,p), Bmn(ac,p) are given by espressions analogous to those in (A14), (A15).
From (B4) and (B10) we can eliminate the constants B, and obtain a nonhomogeneous linear system for the
determination of the constants {C}}, viz.

2AH.C1R"’(Bc, i) =8, (B11)

L Rp.in 2 R (g, i
By = {¥(u+ k)B*+ k¥ — ipwy}| BialBe,p) - a1, (B, p) W (r5+1) W

ac, Bc) dr i p.in)
—{y(e + k)B* + k* = ipwy} E m Brn{@C, p) = @y (ac, p) REGD s

% g8
(m3+1) RO (aci) m+ To (B12)

- RB’.E(p, ir) )m
y(p + k)a? + k¥ — ipoy}e V(75 + 1),

where

by = k(2 + pio)led! (p) V(73 + 1) (1
_4
=3 {

d (3)
- n (P i7)
di™(ac) dr
X ’"E:l N((:'Il)m(ac){ﬂmn(ac’ P) - CY,M(L’(C, P)[ RE)JJ (p, lT) } To.

dd RY, (ac, ir)
(T(z)+ 1) R(lsrzl (ac, ”,) + To . (B13)

From the above infinite linear system the constants {C;} are to be determined by a numerical procedure. The constants {B,}
can then be determined from (B4) and the constants {A,} can be found thereafter on integrating (B2) or (B3). We have thus
a feasible procedure for the determination of the unknown constants that occur in the expressions for the field functions
V(s 1), A(7, t) and B(r, ¢).

The numerical evaluation of the couple C is of particular interest and the expression for C in (4.21) involves infinite
summations on both {B,.} as well as {C,}. It is desirable to obtain the constants {B,} as well as {C,} directly. The constants {B,}
are evaluated from the system

zrn]Bl (a(,‘, ‘70) Yne (B 14)

n=13,5,...,
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where

Z [ [% B30 m] [(# 0 B (ac, i) ]
Fn = +k +k i Bia 1P T Qn » ;
1={r(p+ ke ipwy}| Bia(ec,p) - @y (ac,p) o ). e ),

o+ b+ K= ipu) 3, M BB (g )

[d% R, ir)] { [i R (8, i)
_ 2 —_—
2B P R 1 L O R )t

d X
3 Renp.in)
] —_

2 - N
=3 k Qk + ipjw)ed(p1/(75 + l)][ G

L—j (vl + 0+ K = ipo)e V(e + + 1)

d G (p | iRm( :
3 d(l)m(ﬁc) [df Ry, (p, ir) o im Be, ir)
"2 N%<ﬂc>(ﬁ’""“’”"’)‘“m““’"’ Tem )T RTEem ),

987

(B15)

(B16)



