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ROTARY OSCILLATIONS OF A SPHEROID IN AN 
INCOMPRESSIBLE MICROPOLAR FLUID 

S. K. LAKSHMANA RAO and T. K. V. IYENGAR 
Department of Mathematics, Regional Engineering College, Warangal-506404, India 

Abstract-The paper discusses the flow generated by rotary oscillations of a spheroid (prolate and oblate) in 
incompressible micropolar fluid. The velocity and microrotation components are determined explicitly in 
terms of spheroidal wave functions and are expressed in infinite series form. The couple on the oscillating 
spheroid is evaluated and numerical studies are undertaken to examine the effects of the geometric 
parameter and material constant parameters of the fluid. 

I. INTRODUCTION 
IN THIS paper we examine the rotary oscillations of a spheroid in an incompressible micropolar 
fluid[l]. The field equations of micropolar fluids are presentable in terms of the velocity vector 
q and the microrotation vector v and the theory provides for six material constants. The 
spheroid is in rotary harmonic oscillation about its axis of symmetry and the amplitude of 
oscillation is assumed small so that the second order and bilinear terms in the equations 
describing the flow are omitted. Under the above Stokesian approximation of the flow 
equations, we obtain analytical expressions for the velocity, microrotation, surface and couple 
stress components atid seek the evaluation for the couple on the spheroid and make a numerical 
study of its variation with respect to the geometric and physical parameters. 

2. BASIC EQUATIONS 

The motion of incompressible micropolar fluids is governed by the equations[l] 

divq = 0, (2.1) 

dq pz=Pf-gradp+k curl v - (CL + k) curl curl q + (A, + 2p + k) grad (div q), (2.2) 

pj$=pl-2kv+kcurlq-ycurlcurlv+(a+B+y)grad(divv). (2.3) 

In the above, the scalar quantities p and j denote respectively the density and gyration 
parameters of the fluid and are constant. The vectors q, V, f, 1 are the velocity, microrotation, 
body force per unit mass and body couple per unit mass. The constants {h, CL, k} and {(Y, p, y} 
are the viscosity and gyroviscosity coefficients and these conform to the inequalities 

ks0; 2p+ksO; 3A,t2ptkaO; 

yao; I/+r; 3atpty~o. 
(2.4) 

The stress tensor tij and the couple stress tensor Mij are given by [l] 

tij = ( - p + Al diV q) 8, + (2~ t k)dij + kcijm(ti, - v,), (2.5) 

mii = cu(div P)8ij + pVi,j + yVj,i (2.6) 

in which the symbols p, S+ dij, o,, v,,, and vi,j have their usual meanings. 
Let (5, 7, 4) be an axially symmetric system of coordinates with base vectors (e, e,, e6) and 

scale factors (h,, h2, h,). The spheroid oscillates harmonically about its axis of symmetry with 
angular speed fl e’“‘. The fluid flow generated by this oscillation is axially symmetric and the 
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flow field vectors can be chosen in the form 

Q = Q eiwt = W, 4 eiw* e+ 

v = Mtt, 4 et + NS, hJ e’“‘. 

Under the assumptions of Stokesian flow, the field eqns (2.2), (2.3) simplify to 

??5!-_ 
P at - 

grad p + k curl v - (,u + k) curl cur1 q, 

.8V 
~JX= -2kv+kcurlq-ycurlcurlv+(a+/3+y)grad(divv), 

Defining the functions f(.$, 17) and g(& 77) and the operator E2 in the form 

div v = f(& 9) e’“‘, 

curl v = g(Q 97) eiwt eg 

we see from eqns (2.7H2.13) that 

(2k + fpio)(Ae,+ Be,) = (llh2h3)(alaq)[hs(kV- rg)lef-(llhlh3(alanh,(kV- yg)]e, 

I 

From (2.15) it follows that 

where 

and 

2uko --_ * 
at a77 

From (2.15) we can atso deduce that 

[ 
ipjw + kC& + k) 

Ptk g=-p+k I @!& V+;E2(h3g). 
3 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

Eliminating g between (2.14) and (2.20), we obtain the following differential equation for the 
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determinatiob of V(& q) 

915 

r(p + k)E4(h3 V) - [k(2~ + k) + ip~(y + j(~ + k))1E2(h3 v) + ip42k + ipjo)(h v) = 0. 
(2.21) 

On finding V([, 7) from the above equation, we can find g(& 7) from (2.14). The function f([, ~7) 
can be determined from (2.17). The functions A(& q), B(& 77) can then be determined from the 
following two equations 

(2k+ipij~)A=$--& (2.22) 

(2k+ipjw)B= -$--$[~Ez(h3V) + (k-~)(h3V)]+(nf[+Y)$. (2.23) 

The eqn (2.21) can be expressed in the form 

(E2-cr2)(E2-~2)(hjV)=0 (2.24) 

where the constants LY’, 8’ are obtained from the two equations 

(2.25) 

a2p2 = ipo(2k + ipjo)/(y(p + k)). 

When (Y* Z p*, the solution V can be obtained by the superpositiont of the solutions V,, V2 
where 

(E* - a*)(/~~ V,) = 0, (2.26) 

(E* - p2)(h3 V,) = 0. (2.27) 

The rotary oscillation of the body and the flow arising from it are presumed to have 
negligible effect at a great distance from the body and we may therefore presume that each of 
the quantities V, A and B tends to zero at infinity. On the boundary of the spheroid we assume 
the hyperstick condition of adherence [2]. This means that, on the boundary 

(2.28) 

Y = i curl(Rh3 eiw’ed). (2.29) 

3. PROLATE SPHEROID 

Let a prolate spheroid (focal distance = 2c) perform rotary oscillations about its axis of 
symmetry with angular speed fl e’“‘. If (5, 7, 4) are prolate spheroidal coordinates, the scale 
factors hi, h2, hJ and the operators E* and V* are given by 

h, = h2 = cV((s2- t*)). h3 = cd((s2 - l)(l- t*)), (3.1) 

tWe thank the referee for drawing our attention to the possibility of “resonance (a2 = 8’)” in which case the solutions 
of (2.26) and (2.27) would no longer be independent. As pointed out by the referee, this case arises when (jj) = (2~ + k) 
(F + 442~ t 34 and po = (2~ t k). (2~ t 3k)/(2+ t k)i) and this situation can occur in rotary as well as rectilinear 
&cillation problems. We then require solutions of (I? - a2)(hs V) = 0 and (I? - a2)*(hS V) = 0 to build the solution V in 
this case of resonance. The case of resonance covering both the rectilinear and rotary oscillations will be treated in a 
separate paper. 
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E22,, * 
c2( s* - t2) 

(s2- *)$+(I - I’)-$] 

v2= ,2(sL1_t’) (S1-1)~+(l-t2)~+2s~-2f~ 
[ 1 

(3.21 

(3.3) 

where s = cash 6 and t = cos n. The prolate spheroid in osculation is given by 6 = & (i.e. s = so). 
The solution f(cosh t, cos q) = f(s, t) satisfying (2.17) can be expressed in terms of the 

prolate spheroidal wave functionsl31. To ensure the regularity of f(s, t) at infinity and every- 
where on the axis of symmetry in the region s > so, we select the wave functions R53,‘(ip,s), S# 
(ip, t)[3] and choose f(s, t) in the form 

(3.4) 

where {A,) is an infinite set of unknown constants. The regularity requirement at infinity is 
satisfied if we choose p from (2.18) such that its real part is positive. The prolate spheroidal 
functions Rb3,‘(ip, s) and S’d,‘(ip, t) have the expansions 

R63,‘(ip, s) = [ in+2 5 d? (@)I-’ E d? (ip) K,+tf,2j(ps). 
r=O,l r-o.1 

(3.5) 

where K~+o12~(ps), P,(t) denote the modified Bessel function of the second kind and Legrendre 
polynomial respectively. 

The solution V, of eqn (2.26) can be expressed in terms of the spheroidal wave functions 
@3,‘(iac,s) and S$ln)(&~c,t)[3]. Likewise the solution V2 of (2.27) is expressible in terms of the 
functions ~~~(~~c, s), S~~(i~c, t). In the above functions, the values of (Y, j3 are to be such that 
the regularity of V, and V, at infinity is ensured and this is attained by selecting the roots cy, p 
from (2.25) such that each of them has a positive real part. The restriction of the radial function 
to the type R\; and the angular function to the type SC,‘,, is also motivated by the requirements 
of regularity in the region s > so, The solutions V, and V, take the form 

V, = ~B,R~~(icyc,s)S’l’,‘(hc,t) 

V2 = 2 C,,R\z (ipc, s) Sj’,(i/3c, t) 

where R\:(iac, s), S\l,)(iac, t) are given by 

R~~(iffc s)= f I .“+2~;E0,(rt l)(rt2) dt”(icuc) 1 

(3.7) 

(38 

2- ‘(2’” 1’) l/2 

3 
?RYCS 

x ,$,(r + l)(r+ 2) dt”(iarc)%+,,,(crcs), 
=. 

(3.9) 

(3.10) 

in which Krcolg (MS) denotes the modified Bessel function of the second kind and P!!!,(t) 
denotes the associated Legendre function of the first kind. The functions R\?(i@,s) and 
S\ln)(@c, t) are obtained from (3.9) and (3.10) by changing (Y to /3. The velocity component 
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V(s, t) is given by 

V(s,t)= ~&RWx,s) S{‘,‘(iLuc,t)+z C~~~(i~c,s) S~~(i~c,~). (3,111 

From eqns (2.22), (2.23), (3.4), (3.11) we can obtain the expression for the microrotation 
components A(s, t) and R(s, t) in explicit form. These are given by 

k(2k + ipjw)cd/((s’ - t’)) A@, 0 

= k(~+~~~~~((s*- 1))~ A, (~(~~(ip,s))~ Sf,!(ip, t) 

-(y(p + k)a2+ k2- ipwy}x B.R’:.‘(iac,s)$[~,/((l - t2)X%f,)(iac, t>l 

-{y(p + k)p2+ k2- ipoy}x C,,R\~(@c,s)$~((l- t’>>S%i& t)l, (3.12) 

k(2k + i~j#)c~((s2 - t’)) B(s, t) 

= - kfa! + p + r>x A,R&?(ip,s)~((l - t%$ S&ip, 0 

- {y(k f k)cu2 + k* - ipwy}x B, $[d((s2 - l))R(:,)(iac, s)] S(ll,(iw, t) 

- {y(p + k)p2 + k2- ipwy]~ C, $[q((s*- l))R’$(i/3c,s)l S$(i&,t). (3.13) 

The functions V(s, t), A(s, t) and R(s, t) in the eqns (3.1 &o-(.13) involve three infinite sets of 
unknown constants {A,}, {B,}, {C,} and these are to be determined by using the boundary 
conditions on s = so. 

Boundary conditions 
The spheroid s = so is in rotary oscillation with angular speed Q eiW’ and the hyperstick 

condition 121 implies that on s = so 

V(s,t) = QCV’((&- l)(l - tQ, (3.14) 

n ia3 nq/(s2- 1)t 
A@, 0 = ‘i;;; = t/((s2 _ t2)) > 

n ah3 
B(s,t)= -T;;2= - 

~s~((l- t*N 
v%s* - t2)) * 

(3.15) 

(3.16) 

The above three equations are valid on the interval - 1 G t < 1 and will in general enable us to 
determine the three sets of constants {A,}, {B,} and (C,}. The details are shown in Appendix 
Al. 

Calcuia~ion of the couple on the body 
The calculation of the couple on the body has to reckon with the contributions to it from 

both the force stress and couple stress tensors. We can see easily that tM is the only component 
of the force stress tensor and rntt, rnti are the only two components of the couple stress tensor 
that contribute to the couple on the body. The expressions for these three quantities are 
obtainable from eqns (2.5) and (2.6) and after the evaluations of the relevant components of the 
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tensors dii, vi,j we see that 

(3.17) 

with 

= (2~ + k)(s* - 1) a 
2c,/((s2_f2)) as(~((s~_I)))+k(2C~(~j2_lz))~(~((sz-Inv,+B} (3.18) 

(3.19) 

. 

(3.20) 

The contribution of the force stress tensor to the couple on the body is given by r x t *e, 
where r is the position vector of the point on the body from the centre of the spheroid, t is the 
stress vector and e, is the unit axial vector. This simplifies to 

and the couple on the spheroid due to the surface traction equals 

C, = 27rc3(s:- 1) 
I 

_;I/(((+ l))(l - r2)))&&,dt 

= y c2(p t k)(s$ - 1) [ v’((si - 1))f ~B,&(iac) ($ R%ac, s)> 
41 

+ xCndp(i/3c) ($ RI? (i/3c,s)),] -ho] e’“‘. (3.22) 

The contribution of the couple stress tensor to the couple on the body is mee, where m is 
the couple stress vector and it is seen that the contribution to the couple on the body is 

IW(( s2 - 1))~ - st/((l - t*})m&,, dt 

= 27T c’V((s; - 1)) 1-1 ((a! + P + Y)v’(s~ - l)rf(s, 0 - &((l - t’))&, 01, dr] e’“‘. 

(3.23) 

The integrand can be further simplified by replacing the functions f(s, t) and g(a t) by their actual 
expressions. The expression for f(s,t) is seen earlier in eqn (3.4) while that for g can be 
obtained by means of eqns (2.14) and (3.11). We have, in fact 

We can see that 

g( s, t) = (ipolk) V - +a, t pZv*). (3.24) 
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The series involving the constants {A,} in the above expression for Crr can be eliminated by 
the use of the eqns (3.13) and (3.16) and this results in the following expression for CII 
containing only two sets of constants {B,} and {C,}: 

Gr = $ C’VWI - 111[ f2cs&% S; - 1)) { y(g + k)a2 f k2 - ipor + ipiwk + y(p + k)(p2 - ff2)sOX2 

- { y(p t k)d + k* - ip~y}(s~ - 1)X3 - {y(p + k)p2 + k2 - ipwy~(~~ - 0x4 
I 

eiwr (3.26) 

(3.27) 

From (3.22), (3.26) and (3.27), we can obtain the total couple C on the spheroid in the form 

= $+‘((s: - 1))[t-kcsou’((s~- l)){ - k(2p + k) + i&k + Y(CL + kb2 - 4~4 

t y(p + k)(@ - (~~)soX, t Cs; - l){k(2p t k) - y(p f k)a* + ipoy}X~ 
t (st - l){k(2p + k) - y(p f k)a2 + ipoy)}X41 e”‘. (3.28) 

It has not been found possible to express the coupie in a finite number of terms. 

Numerical work 
Defining the nondimensional couple CNh by means of the equation 

C - 49(2r + k)Qc’C -- 
3 ND eio’ 

we see that 

2ie2e2 
ch'D=&l(+1) m+ ( 

cy2c2 - i02 _ , 
~2 

> 

+(@p &A4($- 1NW*/(W) 

f(si-1)3’2 l- 
C 

a2c2-ie2 
2 

) wm) 

wherein the parameters 8*, h2, A2, e2 are given by 

/p_Z~++k) 
k ’ 

&b+k) 
Y 

The couple parameters K, K’ are introduced by means of the relation 

CND = e2so(s; - l)( - K’ - iK). (3.32) 

(3.29) 

(3.30) 

(3.31) 



980 S. K. LAKSH~ANA RAO and T. K. V. IYEN~AR 

The quantities K and K’ are numerically evaluated for a series of parameter values so, 8’, A’, 
A2, 0’ by evaluating the constants {C,} from the system of eqns (A17) and the constants {B,,,} 
from the system of eqns (A20) in Appendix A by truncating each system to a 5 by 5 set. This 
order of truncation is motivated by the fact that the coefficients needed for the evaluation of 
the constants d:” (its), dy (@c), dy (ip) are available only to a limited extent in the published 
literature[3]. The variation of I( and K’ is graphically presented for the poIar as well as the 
nonpolar case [5] in Fig. l-12. 

4. OBLATE SPHEROID 

Let an oblate spheroid (focal distance = 2c) perform rotary oscillations about its axis of 
symmetry with angular speed fieiw’. If (5, q,$) are oblate spheroidal coordinates, the scale 
factors (h,, h2, h,) and operators E’, V* are given by 

h, = h2 = Cy’((T2 + t2>), h, = Cl/f(T2 + 1)(1 - r2)) (4.1) 

E2=: 1 
c2( T2 t f2) [(r2+ 1)$+(1-1?$] 

v2= l 
c2( 2 + t2) I (72t1)~+(l-t?)~t2T~-2t-y 

(4.2) 

(4.3) 

where r = sinh [ and t = cos 7. The oblate spheroid in oscihation is given by 6 = to (i.e. 7 = Q)_ 
The solution f(& n) = f(r, t) satisfying (2.17) and the reguIarity requirements on the axis of 

symmetry for 7 > r. as well as at infinity can be expressed in terms of the oblate spheroidal 
wave functions {Rb;(ip, T), S’d,‘(ip, t)}[3]. Likewise the functions VI and V, satisfying the eqns 
(2.26), (2.27) can be expressed in terms of the oblate spheroidal wave functions {R\;(iac,T), 
S\l,)(iac, t)} and {Ri?(i@, T), S’,‘,‘(&, t)}. It is known that the oblate spheroidal wave functions 
can also be expressed in terms of prolate spheroidal wave functions by multiplying the 
parameters (ip)~(i~c)/(i~c) by - i and the variable r by i[3]. Thus the functions f(r, t), V,(r,f), 
VZ(r,t) can be expressed in terms of the p~o~~fe spheroids wave functions, Taking the 
regularity of these functions on the axis of symmetry at points r > 7. and the regularity at 
7 = m, we can write 

f(r, 0 = ~M~~(P, idf%!!(p, t) (4.4) 

V,(qt) = ~B,R’:,‘(ac,i~)S’,‘,‘(cuc,t) (4.5) 

V2(7,f)= ~cC,R~3,‘(pc,i7)S’1~((pc,t) (4.6) 

where the functions R and S are prolate spheroidal wave functions. 
The function V(T, t) is given by 

The functions A(r,t), B(T, t) can be obtained on using (2.22), (2.23), (4.4) and (4.7). We find that 

k(2k t ipju)cd/((r* + t’))At~, 0 

= k(a + p + r)~A,v’/((~2+ l))&R8.‘(p,i?)S~~(p,t) 

- (y(p + k)cr2 + k* - ipov~zB.R~~(~~,i7f~[~((l- t”))S’,~((~c, 01 

-_(y(p + k)P2+ k2- ipoy}cC.Rlq(Pc,i7)$[v’((l- ~*)K%Wc,Ol, (4.8) 
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k(2k + ipjw)cd((7’+ t2))B(7, t) 

= -(a + P + Y)~AJ#(p,iW/((l - t’))$ (#,!,(P, t)) 

-{y(~+k)~~+k~-ipoy}~B.~[~((~~+l))RI:)(01c,i~)1S~~(~c,f) 
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- {J.$.L + k)p* + k* - ipoy}x C,-&W((r*+ l))R’:,‘(Pc, idlf#,!(kk t). (4.9) 

The above expansions for V, A and B involve the three infinite sets of constants {A,}, {B,}, {C,} 
and these are to be determined by invoking the boundary conditions on r = ro. 

Boundary conditions 
The spheroid r = r. is in rotary oscillation with angular speed R eio’ and the hyperstick 

condition[2] implies that on 7 = r. 

V(ro,f) = RCd/((r:+ l)(l- t2)) (4.10) 

(4.11) 

(4.12) 

The above three conditions are valid on the interval - 1 s t s 1 and will in general enable us to 
determine the three sets of constants {A,,}, {B,}, {C,,}. The details are shown in Appendix B. 

Calculation of the couple on the body 
The calculation of the couple on the body has to take note of the contributions to it from 

the force stress as well as the couple stress tensors. It is easily seen that tE,+ is the only 
component of the force stress tensor and nrFB mfi, are the only components of the couple stress 
tensor that contribute to the couple on the body and these expressions can be obtained from the 
eqns (2.5), (2.6). After some preliminary calculations, we find that 

with 
(4.13) 

M,= -P 
[ 

x4(1 - t*)) jg + d/((T2 + 1)) B 

CL&T* + t*))at C(T2 + tq3’* 1 

+ y w/(u - t*)) 
[ C(T2 + f2)3’2 A + 

x4(T2 + 1)) aB 
CyQ(T2 + ?))a7 1 * 

The contribution of the force stress tensor to the couple on the body is given by 

C, =27x3(7;+ 1) 
I 

’ V((T;+ t2)(1 - t*))(&,),dt 

=~c*(p+k~~~:tl)[~((~~+l))[ZB.[(~R::’(ac,ir)] dp(ac) 

+~C.($R@(pc,iT)) d~(/3c)]-~cro]e’Wf. TO 
70 

(4.15) 

(4.16) 

(4.17) 
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The contribution of the couple stress to the couple on the body equals 

Gr = 27&((7: + l))/_; [v’((r’+ l))tmff - r~‘((l - t2))q&, dt 

= 271’c2v’((d + O)[/_~ {(a + B + r)(g + MT, 0 - yg(T, hW - ~ZN~, dt] e’“’ (4.18) 

and this simplifies to 

C, = g c2q((ri + 1)) ei‘“’ x [{y(p + k)d + k2 - ipoy + ipjuk}flcn,d((~~ + 1)) 

+ Y(,X + k)(p2-a2)~oY2-{y(p + k)d+ k*- ippwy}(ri+ 1)Yd 

-tr(~+k)pZ+k2-i~~yj(~~+1))Y41 (4.19) 

where 

From (4.17) and (4.19) we obtain the total couple on the spheroid in the form 

c = C, + C, = ~c$‘((T$+ 1)) eio’ x [{ - k(2p + k) + ipiok 

+ y(p + k)a2 - ip~~}~c~~~(~T~ + 1)) f Y(CL + k)(~‘- ly*)rey2 

+ {k(2p + k) - y(,u + k)a2 t ipoy)(~~+ 1) Y3 
+ (k(2p + k) - y(p + k)@ + ipwyj(~~ + 1) YJ. 

Numerical work 
Defining the nondimensional couple C’,, by means of the equation 

C = $2~ + k)fbc3 C,, eiot 

we see that 

(4.20) 

(4.21) 

(4.22) 

c,, = ql(7;+ l)(g+ U2$ ie2- 1)+(P2;p2)czr&/((((7:t l))Y*/(l[tc) 

+ (7; + 1)3’2 
[( 

1 - (4.23) 

where the parameters e2, h2, A’, B2, are given in (3.32). 
The couple parameters K and Ii’ are introduced by means of the relation 

C,, = t92q,(Ti + I)( - K’ - iK). (4.24) 

The quantities K and K’ are numericaIly evaluated for a series of parameter values rO, e2, A~, 
A*, B2 by evaluating the constants {C,} from the system of eqns (Bll) and the constants {B,) 
from the system (B14) in Appendix B by truncating each system to a 5 x 5 set. The variation of 
K and K’ is graphically presented for the polar case and nonpolar case[5] in Figs. 13-22. 
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APPENDIX A 

Determination of the constanfs {A,), @I.) and {C,} fhar occur in the expressions for Vfs, t), A(s, t) and B(s, t) in egns 
(3.llH3.13) 

From eqn (3.14) we have 

2 B,Rl~(iac,s3SIX(iac,t)+ 2 C,R!:(i@c, so) S!‘,$pc,f)= WJ/((sf- l)(l -t’)). (Al) 
n-l n-l 

The boundary conditions in (3.15) and (3.16) concerning the micro-rotation vector provide the following two equations 
involving the three sets of constants {A.}, {II.}, {C,}: 

- {y(p + k)a2 t kZ - &y}wzI B,Rjz(iac, so)-$/((l - t’)) S\‘,$iac, f)] 

-_(y(h + k)/?* t k2- ipoy} 2 C.Rj~($c,sO)&J(l - t*))S\P(ipC, t)] = k(2k t ipjo)ficQ((s$- l))f, 
n=, 

642) 

k(a f P + Y) 3 A,R63,‘~ip,sh4(1- ~‘))$$N~, t) 
“=I 

+fy(p + k)a’+ k*- ipoy)~~, B, (-$\i(csz - l))R’:,‘(iac,s))f,Sll,(iac, t) 

+ itir + k)B’ + k2 - ipw)‘i~$, C, (&.4 s’- l))R~~(i~~, $1) S~~(i~c,~) = k(2k t ipj~)~es~,~((~ - t’)). (A31 
* 

The constants {A,), {B,), (C,) may be presumed zero for even values of n in view of the following symmetry/antisym- 
metry in the field variables: 

V(s,t)= V(s,-i) 1 

A(s, t) = - A(s, - t). (A41 

B(s, t) = B(s, - t) 

From (Al) we can express each one of the constants B, in terms of the set (C,} and also vice versa. The relations are 

x 
R,R1S(iac,sg)N~~o(iac) =iOcV((s:- l))dh”(iac)- 2 M,,(iac,ipc)CmRI~(ipc,s,); 

m=, 
645) 

C,R’:,‘(iPE,s~)N~~fipc) = &4(s: - l))db” (i@c) - 2 M,,(iac,i~c)B,R\~(iac, so) 
?n=l 

6%) 

where 

N!,‘i(iac) =l,{S\‘.‘(iac, t)}‘dt = ,~,2”:2,“,‘;:2’{d:“(iac)}i 

with a corresponding expression for N!,‘,$flc) and 

M,, (iac, i@c) = S\‘,‘(iac, t)S\‘,!,(i& t) dt = 
=’ 2(r+ l)(r t 2) 

q ,= .I (2r+3 
d~“(ipc) dy(iac). 

fA7) 

W) 

We can divide eqn (A31 by +&I - t’)f and integrate the result with respect to t from 0 to t. This gives rise to the equation 

Ma + B + y)g A,RWp, sK%Xip. t)- S&Yip,@} 
“=I 

+ {y(p t k)a* f k* - ipwvI”$, B.($(t’((s’- l))RI?(iac, s))) T\‘,‘(iac, t) 

+{v(cc+k)82+k2-ipwy}~~,C.($(~(( 

so 

s2 - 1NR\?(iPc, s)) 
> 

?‘\‘,,(ipc, t) = k(2k + ipjo)OcsOt (A9) 
m 
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where 

T\1, (iccc, t) = I f sy,‘(iac f) 
o md’ = ,I, 5 

dt”(iacW,+,W - Pr+dO)l 

and it is easily seen that the terms #,‘(ip, 0) and P,+,(O) are zero in view of (A4). 
From eqns (A2) and (A9) we obtain 

&+B+ Y)~((s:- l))(iRb:‘(ip,s))) 
z 

N%p)A, +Ir(k + k) CC* t k2 - ipoy} 2 &RI’; (iac, so)&,, (iac, ip) 
xl m=I 

t {y(p + k)/?* t k* - ipoy} i C,R\% (ipc, so)/?mn (ipc, ip) = i k(2k t ipjw)fk d\/c(si - 1)) dp” (ip), 
m=l 

k(a+ /3 t Y)R~~(ip,s,)N’,O,‘(ip)A, t {y(p t k)a* t k*- ipwy} 2 E, ($(\l(s2- l))Ri%(iac,s)).a..(ioc,ip) 
m=l 

+ Iyb f kM2+ k2 - ipvlmz, Cm (f$d( s2 - 1))R\3A(ific, s) 
) 

ga,,,,,(i&ip) = ik(2k t ipju)Kh&“(ip). 

where 

Nf’(ip) = 
I 

’ [SaJ,‘(ip, t)]* dt = $ 
-1 ,= ,I 

&Id:” (b)12, 

I 

I Z’ 
amn (iac, ip) = S~~(ip,t)Tl’~(iac,t)dt= 

-I ,= ,, (2,2c 3) 3 
-dd:“(irrc)d~:,(ip), 

=’ 2(rt l)(rt2) 
P,,,” (iac, ip) = - I_‘,$\/((1 - t2))Sc,‘A(iac, t)) Sb!!(ip, t) dt = & (2r f 3) d!” (iac) d%, (ip) 

(AlO) 

Wl) 

6412) 

(Al3) 

(A14) 

(Al5) 

with similar expressions for a,,,” (@c, ip) and pm,, (ipc, ip). From (Al 1) and (A12) we can eliminate A, and this results in the 
following relation between the constants {B,,,) and {C,): 

6416) 

From (A5) and (A16) we can eliminate the constants B, and obtain a nonhomogeneous linear system for the determination 
of the constants {Cl}, viz. 

I 

7 
A,,,c, R\:‘( i/k, s,,) = S ” (A17) 

=I 

n = 1,3,5,...where 

A,, = (y(~ + k)B2+ k2- ipwyj h(i& iP)- %(@GiP) 

[$RW;s)jl $R:‘,‘(i@,s) 

Rb3,‘(ip s) (s2 - 1) 
Rf(ipc,s) +$I I so 

Bmn (hc, ip) - a,,(iaG iP) 

&,(iac, ip) - a,,(iac, iP) 
sg 

i RI: (iac, s) 

Ri3,!Jiac, s) ” I 11 r. 
6419) 
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From the above intinite linear system the constants {C.} are to be determined by a numerical procedure. Then the 
constants B, can be determined from (AS) and the constants A, can be determined from either of (All) or (A12). Thus we 
have a feasible procedure for the determination of the unknown constants that occur in the expressions for the field 
functions V(s, f), A(s, 1) and B(s, t). 

The numerical evaluation of the couple C is of particular interest and the expression for C in (3.28) involves intinite 
summations on both {E,} and {C,,}. To check the error in numerical evaluation of C to the extent possible, it is desirable to 
obtain the constants R,, as well as C,, directly. The system of equations for R, can be obtained on the same lines as seen 
above for the constants C,,, by elim~ating Cis between (A$) and (Al@. The 8:s are directly evaluated n~e~c~ly from 
the foilowi~ system of linear equations: 

n = 1, 3, .$...where 

- { y(p t k)p* t k* - ipo~l$, Pmn (ii% 4) - amn (i& 44 
$ ~%ttG-% $1 

3 I> ‘) R\z(Q?c, s) + ’ $0 

6421) 

7” = i k(2k t ipiw)Qc&” (ip)g((si - 1)) 

-i { y(g t k)p* t k* - ipwy}flc~/((s~ - 1)) 

2 dAm(iSc) 
i 1 m=l JP (ipc) PmnGSc, ip)- a,.(&, ip). 

mm 

$Rl%i%,s) 

(‘* - 1) R~~(i~c,s) ” I)1 jg ‘322) 

APPENDIX B 
Detemrination of the constants {A,,}, {B,}, {C,} occurrihg in the expressions for V(T, t), A(T, t) and B(T, 1) in eqns 
(4.7)-(4.9) 

The boundary conditions (4.10)-(4.12) yield the following equations 

As in the case of the prolate spheroid, we may presume that the constants {A,}, {B,}, {C,,) are zero for even values of n. 
From (Bl) we have 

(B4) 
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Mm (w PC) = I’ SC(ac,r)Sr~(gc.t)dt= (B7) 
-1 

From (B3) we can deduce that 

k(a + p f y)“$, A,RK,'(p,i~,){sb~(p, f) - S&?p,O)) f {y(p + k)n2+ k2 - ip~y}~$, B, (i (V/(T~ + l)Rl,‘(uc, iT))) T\!:(ac, t) 
3, 

x 

t {y(p + k)$ t k’- ipwy) ,F, c,,: (d((r2 t I))R?(Pc, ir)),~lT\?(ipc, I) = k(2k + ipjw)hqt, (W 

where 

(B9) 

and it is easily seen that the terms S#,‘(p,O) and P,+,(O) are zero as only odd values of n are involved. From each of (B2) 
and (B3) we can express each A, in terms of {B,} and {C,}. Elimination of A, between these expressions yields 

IY(P + kb2+ k*- ipov)g, Pm,bc~~)- G,.(GP) 

t Iy(p f kW+ k2- ipwylm$, P,,,.(Pc.P) - %JBc, P) 

= 5 k(2k + ipio)~cd?(p)V((d+ 1)) d. (BN 

The quantities a,,(ac,p), p,,(ac,p) are given by espressions analogous to those in (A14), (AIS). 
From (B4) and (BlO) we can eliminate the constants B. and obtain a nonhomogeneous linear system for the 

determination of the constants {C,}, viz. 

A.,C,Rj:‘(@c,ir,J = 8, (Bll) 

where 

A,! =I++ k)P2+ k*-ipwJ h.(Pc,~)-%(L%P) 

@I21 

8, = i k(2k + ipj4cd?“(pN((6+ 1)) (I- 
~Rb!(P,iT) 

R63.‘tp, iTj ) 
m 

= t { y(p t k)a2 t k* - ipoy}hV((d + 1)). 

(B13) 

From the above infinite linear system the constants {C,] are to be determined by a numerical procedure. The constants {B.} 
can then be determined from (B4) and the constants {A,} can be found thereafter on integrating (B2) or (B3). We have thus 
a feasible procedure for the determination of the unknown constants that occur in the expressions for the field functions 
V(T, t), A(T, t) and B(r, 1). 

The numerical evaluation of the couple C is of particular interest and the expression for C in (4.21) involves inhnhe 
summations on both {B,} as well as {C,}. It is desirable to obtain the constants {B,} as well as (C,} directly. The constants {B,} 
are evaluated from the system 

~I.PIRI?(ac,iro) = 7.. (B14) 

n = 1, 3, 5,. ., 
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where 

(B 15) 

(Bl6) 


