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Introduction

Several researchers over years have studied the oscillatory flow problems
concerning various classes of fluids. Kanwal [1, 2] has studied analytically the
oscillations of symmetric bodies like circular cylinder, sphere, spheroid and
elliptic cylinder in classical viscous liquids. Frater [3, 4] has examined the oscil-
lations of a sphere and a circular cylinder in a viscoelastic fluid of Oldroyd’s—B
type and studied numerically the effects of the viscoelastic and frequency
parameters on the drag experienced by the bodies. S. K. Lakshman Rao et al.
[5,6,7,8,9] have examined the harmonic oscillations of a circular cylinder,
sphere, spheroid as well as an elliptic cylinder in micropolar and couple stress
fluids. Kumar [10] has discussed the oscillations of a circular cylinder and a
sphere in a fluid-particle suspension and studied the effects on the drag experi-
enced by the bodies with reference to the geometric and fluid characteristic
parameters.

The present paper aims at obtaining an expression for the drag experienced
by an elliptic cylinder performing rectilinear oscillations along major/minor axis
of the cross-sectional ellipse in an infinite expanse of a fluid-particle suspension
[11]. The equations of motion are linearized under the assumption of smallness
of the amplitude U of oscillation. The stream function governing the fluid flow
is determined and is expressed as a series of Mathieu functions. The drag on a
part of the cylinder of length L units is obtained and is expressed in terms of
parameters K and K'. The variation of K and K’ is studied numerically with
reference to the eccentricity parameter, as well as the physical parameters of the

fluid.
Basic equations and statement of the problem

The equations of motion of an incompressibie fluid particle suspension were
derived by Saffman [11] under the assumptions:
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(1) the dust particles present in the fluid are uniform in size and shape;
(i) the net effect of the dust on the fluid is equivalent to an extra force pro-
portional to the “dust particle-fluid particle” relative velocity and
(ii)) the number of dust particles per unit volume is constant. The equations
of motion are [11]

divg=0 (1)
oG

Q{a—‘jﬂq-vm}=—Vp—qu(qu)+K1N(qs—q> @
é'

ON . _

o +div(Ng) =0 )

where § is the fluid velocity vector, g, is the particle velocity vector, ¢ is the
density of the fluid, m is the mass of each suspended particle, p is the pressure
at any point, g is the fluid viscosity and N is the number of particles per unit
volume. The parameter K, = m/t where 7 is the relaxation time parameter: 7 is
the time taken by a suspended particle to adjust itself to the motion when there
is a disturbance.

An elliptic cylinder is assumed to perform rectilinear oscillations along the
major or minor axis of the cross-sectional ellipse with velocity U exp (iot).
Assuming U/{co) to be small where ¢ is the semifocal distance of the cross-sec-
tional ellipse, under the Stokesian approximation, neglecting the nonlinear
terms, the linearized version of the Eqgs. (1) to (4) is given by

divg =0 (3)
0g _ o
e =—Vp—uVx(Vxd + K,N@—9) (6)
oG o
A _ K - 7
oN
SV Ng)=0 ®

The number density N is assumed to be constant and in view of this Eq. (8) takes
the form

divg, =0. 9

Let («, B, z) be a curvilinear system with z axis along the axis of the cylinder
and (a, B) a plane elliptic coordinate system.
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Let h,, hy, h,(= 1) be the scale factors and é,, €, é, the unit vectors along
a, f, z directions. The velocity vector appropriate to the problem is

q=ulo, B t)e, +vl p 1) (10)
and we introduce the stream function (e, f, t) through

oy oy
hyu=— h,
T T an
The particle phase velocity vector can be assumed to be
‘L:us éa + g éﬂ' (12)

Using (10), (11) and (12) in the Eq. (6), the linearized versions of the equations of
motion are

Ou op
h—=————pu— —
ey == = (V) + K N — 0 (13)
ov Op
== aﬁw-(v W)+ K, N (o, — v) (14)
in which
1 /9> @2 )
h=h,=hg;Vi= hz(az-Fng). (15)

Since the oscillation of the cylinder is harmonic, we may take

{y (@ 8,0, plo B, 1), us (2, B, 1), v, (2, B, 1)}

= {F (OC, ﬂ)’ P (a, ﬂ)’ U, (e, ﬁ)s V_;(O(, ﬁ)} eXp (iO't). (1 6)

Using Eq. (16) in (13) and (14)

op . OoF ) V2 .

aa"""@ 6/)’( F)+ K, N({Us - U) 17

oP OF

-a—ﬁ—=—zgaa +,ua~(V2F)+K NI, —V). (18)
Eliminating Us and Vg from (17), (18) using (7), we get

Vi(Vi —a®)F(x, f)=0 (19)
where

a2=(1+f)ia~raz f:M. 20)

v+iver 0
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It is to be noted that the parameter a? in (20) is complex and for no values of
the material parameters can be purely imaginary.

The operators V2 and (V2 — a?) that appear in Eq. (19) commute and Eq.
(19) is linear and homogeneous. It can be checked directly that if F (o, f) and
F, (a, p) are solutions of

ViF,=0 (1)

(V2 —-ad)F, =0 (22)
respectively, then

F=F,+F, (23)

is a solution of (19).
Conversely, taking

(V}i—-a®)F=G (24)
(19) becomes
ViG =0. (25)

If G = F, is the general solution of (25) and F, is the general solution of
(V2 — a?) F; = 0, the solution of (24) is seen to be

F=F —— (26)
and there is no loss of generality of F is written as F, + F, (as in (23)).

Thus the solution of (19) can be written in the form

F=F,+F, (27
where F, and F, are solutions of

ViF,=0; (V- a*)F, =0. 28)

The arbitrary constants that appear in F(a, ) are to be determined using
the no slip condition on the boundary of the oscillating body and the regularity
conditions far away from the body. It is to be noted that the boundary and
regularity conditions are to be implemented on F = F, + F; and not on F,, and
F, individually. The implementation of these conditions will be discussed at
appropriate places later in the paper.

Oscillations parallel to major axis

We define the elliptic coordinates (o, §) by the relation
x+iy=ccosh(x+if) (29)
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and assume that the cross-section of the cylinder is given by a = «,. The scale
factors for the frame are
h, = hg = h = c(cosh® « — cos® §)'/2. (30)

Assuming that the cylinder is performing harmonic oscillations parallel to the
major axis, the condition of no-slip on the boundary and the regularity condi-
tion far away from the body lead to

c

ulo, f,t) = %sinh a-cosfexp(iot)
(1)
vl ) =— %cosh a-sinfexp(iat)
on o = o, and
u,v >0 as a— w. (32
These are equivalent to the conditions
F(o, f) =— usinha-sinff
oF ' on o = o, (33)
—=—1u‘coshu-sinf
oo
and
oF
F(a,ﬁ),a(a,ﬁ)ﬁO as o — 0. (34
The conditions (33) and (34) suggest the solution of (21) in the form
Fole, )= Y C,exp(—no)sinnf. (35
n=1
The Eq. (22) can be rewritten in the form
o2 0% a?¢?
{&3+ép—~2—(cosh2oc—c032ﬂ)}ﬂ=O. (36)
Writting
Fi(o, f) = R(0) S(H) 37
we find that R and S satisfy the Mathieu differential equations [12, 13]
a*c?
R" (&) — {A + 5 cosh 20:} R(@=0 (38)
a*c?
S"(p) + {A + cos 2/3} SBH =0 (39)
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where A is a constant of separation. The Eq. (39) has the periodic solution

ceéy <ﬁﬂ - a24cz>: §€y <:8: - a24cz> (40)

corresponding to a discrete set of values of A which are functions of a2 ¢*/4. For
the present problem we need only the solutions se,, and these correspond to the
characteristic numbers A = a,,,, ,, 4 = b,,,. , . These functions are given by the
Fourier sine series expansions

2.2 ©

S (ﬂ, - %) = 3 (— 1y 4G sin 2r + 1) @1)
aZ cZ ©

se2m+2(ﬁ, ——4~> = T (-1 BEES Y sin 2 + 2 )

In these expansions, the coefficients A and B are functions of the parameter
a*c?
4
The solutions of the modified Mathieu Eq. (38) corresponding to the solu-
tion given in (41), (42) and which vanish as o« — oo are given by [12]

a?c?
G _
ek2m+1<aa 4 )
_ P2m+1 Z A(2m+1) I ace™ K _acea
TZA(Zm+1) 2r+1 r 2 r+1 2
ace * ace®
1 K 43
+ r+1( 2 ) r( 2 )} ( )
a’c?
Gek -
e 2m+z<°‘7 2 )
Sym m ace™® ace®
= et % pen () o (57)

() () »

in which I and K are modified Bessel functions.
Now the function F, (a, f) is given by

© 2 .2 2 .2
F (o ) = ZD,,Gek.,(oc,—‘”)se,.(,—“) (45)
n=1 4 4




Vol. 39, 1988 Drag on an elliptic cylinder in a fluid particle suspension 655

and the solution of Eq. (19) is obtained by superposing the solutions F, and F,
given in (35) and (45) respectively. Thus we have

F(x, p) = j{‘; C,exp(—nao)sinnf

0 2 .2 2 .2
+ 3 D Gek, (o, — 5 Vse (g~ L), (46)
n=1 4 4

The constants {C,} and {D,} in (46) can be determined using the boundary
conditions (33). This determination is facilitated by writing

2.2 2.2 e
Gek, <oc, - “4C )sem (ﬂ, - “4c ) = Y F, (0)sinnf 47)
n=1

and using the expansion of se,,, .1, S€,,1, given in (41), (47), we notice that

Frpirn@=0 n=2456,...

a*c?
=(—U””A$ﬁ”Gebmﬂ<%—-4 ) (48)
n=2r+1, r=0,1,2,...
and
Fopian@)=0 n=1,375,...
a’c?
=(-—Um+’BﬁﬁEZ’Gek2m+z<a,*- y ) (49)
n=2r+2, r=012,....
Thus
F{o, f)= > {Cn exp(—no)+ > DmFm,,(oc)} sinnfl. (50
n= m=1

Using the boundary conditions (33), we get the following system of linear alge-
braic equations in {C,}, {D,):

C,exp(—noy)+ X D, F, . (0y) =— Ucsinha,d,; (51)
m=1

—nC,exp(—nag)+ Y D, F,,.(2)=— Uccosho,d,; - (52)
m=1

Eliminating C, from (51), (52), we get the following infinite nonhomogeneous
system of linear equations in the unknowns {D,};

S {1 Fy(t0) + Fi (o)} Dy = — U exp (50) . (53)
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This leads to the determination of the constants {D,} and employing later either
(51) or (52), it is possible to determine {C,}.

Pressure distribution
The pressure p is given by
pla, p,1)=Pla, fexp (iot) (54)

and P can be determined from (17) and (18). Using (7) in (17) and (18) and noting
that F is given by (50), solving the equations we get

P(a, f)=—pua*?XC,exp(—na)cosnp. (55)

Drag on the cylinder
The components of the stress tensor can be obtained from the relation

The nonvanishing components of the stress are 7,,, 7,5, Tg,s Tgp and 7,,. The
stress vector is

Taa e_az + Tmﬂ éﬁ + Taz éz (57)

and the drag per length L of the cylinder is given by
2
D=cL | {t,sinha-cos f — 7,5 cosho -sinf},_,, df. (58)
0

Evaluating the stress components on the boundary « = o, and integrating the
expression in (58), we have

D=mnpua*cLexp(iat) {C,; + Ucsinh a, - cosh ag}. (59)

Limiting case

By allowing o, to zero, the oscillating elliptic cylinder reduces to a flat plate
harmonically oscillating along its edge. The stream function y(a, f, t) and the
constants C, and D, can be determined as before. The drag on the flat plate is
seen to be

npa*cLexp(iot)Cy. (60)
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Oscillations parallel to minor axis

This case can be treated similar to the case of oscillations parallel to major
axis and we briefly state results below:
We introduce the elliptic coordinates (o, ) by

x+iy=csinh(x+if) {61)
and in this case

h = ¢ {sinh® ¢ + cos® f}1/2. (62)
On the cylinder « =

F(a,fj =~ Uccoshu-sinf

SF (63)
—(, /Y=~ Ucsinho-sinf
O
The appropriate solution of Eq. (21) is
Folo, ) = % Crexp(—na)sinnf. (64)
n=1
The solution F, («, ) of (22) is taken in the form R (x) S(B) and we have
a2 2
R" (o) — {/1 + > cosh Zoc} R()=0 (65)
a2 C2
S”(ﬁ)+{/1— 5 cos 2,5}5(ﬁ)=0. (66)

4
discrete set of characteristic values of the separation constant A.
In this problem we need only the functions se, corresponding to the
characteristic numbers A = b,, ., and A = b,,,, ,. These have the Fourier sine
series expansions

a*c? a*c?
The solutions of (66) are {c ' ([)’, ~—>, se, ([)’, ——4—)} corresponding to a

22 o
S€om 41 (/’7’ *") = Zo BY i Vsin 2r + 1) 67)

sezw(ﬂ,“ ‘ ) = 3 BEWDsin (2r + 1) 4. (68)



658 T. K. V. Iyengar, N. Srinivasacharyulu and J. V. Ramana Murthy ZAMP

The solutions of (65) which correspond to the above solutions and which
vanish as o — oo are the modified Mathieu functions Gek%, ., Gek,, ., given
by

2.2
ac Sam+1
* Y= amr L
Gek2m+1(oﬂ’ 4 )"nt2,,,+1)

ace™* ace®
D)) e

c? s
2m+2
Gek%,.» (oc, - —) =
2m+ 2
4 n Bgm*2

(258 ) (10)

The solution F, («, f) for the Eq. (22) is given by
0 2 .2 2 .2
Fio B =3 DiGekt(a,— L )se, (85 (71)
n=1 4 4
and as before

F,f)=F,+F, = Y Ctexp(—no)sinnf
n=1

2

2 2.2
v o (s 2E ac )
D} Gek? (oc, y )sen(ﬂ, y ) (72)

Here again by introducing the functions F¥ (x) as before we recast F(a, f) as
below:

Ms

+

n

I

1

w

F(,fy= X {Cr exp (—na) + i DﬁF,:,“,,(a)} sinn f (73)

n=1
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where the functions F,}, (x) are defined by

Flii,00=0 n=2,46,...
aZCZ
(zzrﬁtl)GekZmH( T4 )
n=2r+1; r=0,1,2,... 74)
Fioisn@=0 n=135,...
2,2
- B Gekgs (1 - 2
n=2r+2, r=0,1,2,.... (75)

Using the boundary conditions in (63), the equations that lead to the determina-
tion of {C}} and {D}} are

2]
Crexp(—nuay)+ > DiF}(ay) =— Uccosha,d, (76)
m=1
«© .
—nCrexp(—noy) + X DEFY (ag) =— Ucsinhaydy, 77
m=1
T T T T T T T
0.9 ~
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x
RT=0-1
RY=0.01
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Figure 1 PT —»

Variation of K (major axis).
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Figure 2
Variation of K (major axis).

Eliminating C} from (76), (77), we get
X {nFr (o) + Foy (o)} D = — Ucexp (ao) Iy (78)
m=1 .

and in principle we can determine D} and hence later C} using either of (76) or
(77). Thus the stream function is completely determinable.

Pressure Distribution: The pressure
pl, B, ty=p(x, Pexp(ict) is seen to be
plo, Bty =—pua®> {TCrexp(—na)cosnp} exp(iot) (79)
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Variation of K’ (major axis).
Drag on the cylinder
The drag on the cylinder per length L is given by
2n
D=cL | {t,cosha-cosf — 1,4 sinho - sin f},—,, df (80)
0

and this reduces to

rnua*cLexp (iat) {C¥ + Ucsinh a, cosh oy} {81)
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Figure 4
Variation of K’ (major axis).

Limiting case

By allowing o, to zero we can recover the case of a flat plate performing
harmonic oscillations transverse to its plane. Taking o, = 0 and solving the
system of Egs. (76), (77) we can determine CF¥, D and write the stream function.
The drag in this case is obtained as

nua’cLC¥exp(iot). (82)

Numerical work

In both the cases of the oscillations of the elliptic cylinder parallel to the
major axis and minor axis the drag on the body can be expressed as

D=—MU(’L—LS~2)(iK+K’)eXp(iat) (83)

where M is the mass of the fluid displaced by the cylinder of length L and is given
by

M =z gL c? cosh o, sinha,. (84)
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Variation of K (minor axis).

The variation of the drag parameters K and K’ introduced in (83) is studied
numerically.

The numerical determination of K and K’ involves the determination of C,,
D, and C¥, D¥. The system of Egs. (53) involving D,, is an infinite one and we
have to necessarily truncate the system suitable to get solution. The elements of
the coefficient matrix involve modified Mathicu functions which have infinite
series expansions involving the modified Bessel functions I, and K, as well as the
coefficients A, B [12, 13].

The eigenvalue parameter A present in (38), (39) has an infinite series ex-
pansion in powers of (ca./2) and the leading terms are available in the classic
work of Mch Lachlan [12]. We have evaluated A using all the terms given therein.
The functions F,,, («) and F,,, () are needed for odd values of m and n only and
accordingly these are evaluated form,n = 0, 1, 3, 5, 7, 9. Any attempt to truncate
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Variation of K (minor axis).

the system at a higher order stage will involve the numerical evaluation of an
enlarged set of constants AY, B and functions Gek,.

The case of minor axis is also dealt with on the same lines.

The figures show the variation of K and K’ for various frequency parameter
values P T = g o c?/u, relaxation time parameter R T = ¢ 7 and mass concentra-
tion f = 0.2
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Figure 7
Variation of K’ (minor axis).
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Figure 8
Variation of K’ (minor axis).
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Abstract

An elliptic cylinder is performing oscillations parallel to either of the principal axes of the
cross-sectional ellipse in a fluid particle suspension. The stream function governing the flow and the
velocity components are determined in terms of Mathieu functions. The drag on the cylinder is
evaluated and expressed in terms of two parameters K and K'. The effects of the variation of the
frequency parameter, eccentricity parameter and relaxation time parameter on the drag parameters
K, K is studied numerically.
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