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Introduction 

Several researchers over years have studied the oscillatory flow problems 
concerning various classes of fluids. Kanwal [1, 2] has studied analytically the 
oscillations of symmetric bodies like circular cylinder, sphere, spheroid and 
elliptic cylinder in classical viscous liquids. Frater [3, 4] has examined the oscil- 
lations of a sphere and a circular cylinder in a viscoelastic fluid of Oldroyd's-B 
type and studied numerically the effects of the viscoelastic and frequency 
parameters on the drag experienced by the bodies. S. K. Lakshman Rao et al. 
[5, 6, 7, 8, 9] have examined the harmonic oscillations of a circular cylinder, 
sphere, spheroid as well as an elliptic cylinder in micropolar and couple stress 
fluids. Kumar [10] has discussed the oscillations of a circular cylinder and a 
sphere in a fluid-particle suspension and studied the effects on the drag experi- 
enced by the bodies with reference to the geometric and fluid characteristic 
parameters. 

The present paper aims at obtaining an expression for the drag experienced 
by an elliptic cylinder performing rectilinear oscillations along major/minor axis 
of the cross-sectional ellipse in an infinite expanse of a fluid-particle suspension 
[11]. The equations of motion are linearized under the assumption of smallness 
of the amplitude U of oscillation. The stream function governing the fluid flow 
is determined and is expressed as a series of Mathieu functions. The drag on a 
part of the cylinder of length L units is obtained and is expressed in terms of 
parameters K and K'. The variation of K and K' is studied numerically with 
reference to the eccentricity parameter, as well as the physical parameters of the 
fluid. 

Basic equations and statement of the problem 

The equations of motion of an incompressible fluid particle suspension were 
derived by Saffman [11] under the assumptions: 
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(i) the dust particles present in the fluid are uniform in size and shape; 
(ii) the net effect of the dust on the fluid is equivalent to an extra force pro- 

portional to the "dust particle-fluid particle" relative velocity and 
(iii) the number of dust particles per unit volume is constant. The equations 

of motion are [11] 

div q = 0 (1) 

{~176 } e ~ + ( q ' V ) ~ /  = - V p - t t V x ( V x q ) + K t N ( q  s-(~) (2) 

} m ( at + G "  V) = - K1 (0s - q) (3) 

aN 
- -  + div ( n  q~) = 0 (4) 
at 

where q is the fluid velocity vector, q~ is the particle velocity vector, 0 is the 
density of the fluid, m is the mass of each suspended particle, p is the pressure 
at any point, p is the fluid viscosity and N is the number of particles per unit 
volume. The parameter K 1 = m/~ where r is the relaxation time parameter: r is 
the time taken by a suspended particle to adjust itself to the motion when there 
is a disturbance. 

An elliptic cylinder is assumed to perform rectilinear oscillations along the 
major or minor axis of the cross-sectional ellipse with velocity U exp (iat). 
Assuming U/(c a) to be small where c is the semifocal distance of the cross-sec- 
tional ellipse, under the Stokesian approximation, neglecting the nonlinear 
terms, the linearized version of the Eqs. (1) to (4) is given by 

div q = 0 (5) 

aO - Vp - #Vx(Vxq) + K1N(q~ - q) (6) 
Q at 

m - -  = - 1 1 ({/~ - q) (7) 
8 t  

aN 
- -  + V .  ( N 0 s )  = 0 (8)  
at 

The number density N is assumed to be constant and in view of this Eq. (8) takes 
the form 

div G = O. (9) 

Let (a, fl, z) be a curvilinear system with z axis along the axis of the cylinder 
and (c~, fl) a plane elliptic coordinate system. 
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Let h,, h a, h~(= 1) be the scale factors and ~=, O~, ~ the unit vectors along 
e, fl, z directions. The velocity vector appropriate to the problem is 

Cl = u(a, fl, t) ~ + v(a, ,8, t) ~ (10) 

and we introduce the stream function ~u(c~, fl, t) through 

O~u h~v 5~u h~u - -  O--fi, --- ~ -  (11) 

The particle phase velocity vector can be assumed to be 

4, =UsO~ + VsY~. (12) 

Using (10), (51) and (52) in the Eq. (6), the linearized versions of the equations of 
motion are 

~u 8p 
~o h ~ - 5aa /x ~-~ (V 2 q/) + K ,  N (us -- u) (13) 

+ g~-~ (VtZ ~) + K1N(v~ - v) ~h 

in which 

h = h~, = h~; V~ ---h~ ~a2 + �9 

Since the oscillation of the cylinder is harmonic, we may take 

0u(~, fl, 0, p (c~, fl, t), us(c~,/~, 0, vs (c~, fl, t)} 

= {F (c~, fl), P (0r ~ ,  U s (c~, fl), V~ (a, fl)} exp (i cr t). 

Using Eq. (16) in (13) and (14) 

5P 5F ; 
a-~ = ioG ~fi -- /t (V~ F) + K~ N (Us - U) 

�9 5F 5 
~--~ -- - - i ~ a ~ - +  ~ b~ (v~ F) + K~ N(V~ - V). 

Eliminating U s and V s from (17), (18) using (7), we get 

v~ (v~ - .~) F (~, ~) = 0 

where 

a 2 = ( l  + f ) i ~ - v a  2, f _ N m  
v + ivaT: 

(54) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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It is to be noted  that the parameter  a 2 in (20) is complex and for no values of 
the material  parameters  can be purely imaginary. 

The opera tors  V 2 and (V~ - a 2) that  appear  in Eq. (19) commute  and Eq. 
(19) is linear and homogeneous .  It can be checked directly that  if F o (e, fl) and 
F 1 (~, fl) are solutions of 

V 2 Fo = 0 (21) 

(V~ --  a 2) F 1 = 0 (22) 

respectively, then 

F = F o + F 1 (23) 

is a solut ion of (19). 
Conversely,  taking 

(V~ - a 2) F = G (24) 

(19) becomes  

V 2 G = 0. (25) 

If  G = Fo is the general solut ion of  (25) and F1 is the general solut ion of 
(V 2 - a 2) F~ = 0, the solut ion of (24) is seen to be 

F~ (26) F = F 1 a2 

and there is no loss of generality of F is writ ten as F o + F~ (as in (23)). 
Thus the solut ion of (19) can be writ ten in the form 

F = F o + Fa (27) 

where Fo and F 1 are solutions of 

V~ F o = 0;  (V~ - a z)/;1 = 0.  (28) 

The arbi t rary constants  that  appear  in F (~, fl) are to be determined using 
the no slip condi t ion on the bounda ry  of the oscillating body  and the regularity 
condit ions far away from the body.  It  is to be noted  that  the bounda ry  and 
regularity condit ions are to be implemented on F = F o + F, and not  on F o and 
F1 individually. The implementa t ion of  these condit ions will be discussed at 
appropr ia te  places later in the paper. 

Oscillations parallel to major axis 

We define the elliptic coordinates (~, fl) by the relation 

x + iy = c cosh (~ + ifl) (29) 
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and assume that the cross-section of the cylinder is given by c~ = %.  The scale 
factors for the frame are 

h, = hp = h = c(cosh2 ~ - c o s 2  fl) 1/2 . (30) 

Assuming that the cylinder is performing harmonic  oscillations parallel to the 
major  axis, the condi t ion of no-slip on the bounda ry  and the regularity condi- 
tion far away  from the body  lead to 

g c  . 

u (~, fl, t) = ~- smh ~.  cos fl exp (i a t) 

(31) 
~/c 

v (cq fl, t) = - -~ cosh ~.  sin fl exp (i a t) 

on e = ~o and 

u , v ~ 0  as c~--, oe. (32) 

These are equivalent  to the condit ions 

F (~, fl) = -- u c sinh c~- sin fl 
~F on ~ = ~o (33) 

- u ccoshcr sinfl 

and 

~F 
F(a ,  f l ) , ~ ( c t ,  f l ) ~ 0  as a ~  oo. (34) 

The condit ions (33) and (34) suggest the solut ion of (21) in the form 

Fo(e, f l ) =  ~ C ~ e x p ( - n a ) s i n n f l .  (35) 
n = l  

The Eq. (22) can be rewritten in the form 

{~ 2 82 a 2 c 2 } 
873 + 8fl2 2 (cosh 2 :r -- cos 2 fl) F 1 = 0. (36) 

Writting 

we find that 

R "  ( ~ )  - -  

s" (p) + 

F 1 (c~, fl) = R(oO S(fl) (37) 

R and S satisfy the Math ieu  differential equat ions [12, 13] 

+ ~ -  cosh 2 ~ R (~) = 0 (38) 

f'~o a2 c2 fit +  --cos 2 = o (39) 
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where 2 is a constant of separation. The Eq. (39) has the periodic solution 

a z c2"~ ce,,(fl, -~ ), sere@, a4c2 ) (40) 

corresponding to a discrete set of values of 2 which are functions of a z c2/4. For 
the present problem we need only the solutions s % and these correspond to the 
characteristic numbers 2 = a2,, + 1, 2 = b2, . + 2. These functions are given by the 
Fourier sine series expansions 

(/7, a72- ) ~. se2m+i = (--tv"+ra(Zm+*)sin( "~2r+l + l)fl (41) 
r = O  

(]7 a4c2 ) = ~ (--1)'+' n<2"+Z' sin (2r + 2)fl (42, S e 2 m + 2  , "-"2r + 2 
r = 0  

In these expansions, the coefficients A and B are functions of the parameter (a4c2) 
The solutions of the modified Mathieu Eq. (38) corresponding to the solu- 

tion given in (41), (42) and which vanish as ~ ~ oe are given by [12] 

Geka.+a@, a4c-2- ) 

' ~ {i (ace-~) ( ~ )  P z m +  i A(2m+ 11 K r  + 
- -  ~ * 2 r +  1 7 ~ A i  2 r e + l )  r = O  r T 1 

+ 1 , + 1 ( ~ )  K,t~)~[ace~\] 

Gekz,+2(7, a4c-2- ) 

(43) 

(44) 

in which I and K are modified Bessel functions. 
Now the function F1 (a,/7) is given by 

a4c  ) = , s e n  , - -  _ _  
n = l  

a/) (45) 
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and the solution of Eq. (19) is obtained by superposing the solutions F o and F 1 
given in (35) and (45) respectively. Thus we have 

F (ct, fl) = ~ C. exp ( -- n ~) sin n fl 
n = l  

+ .~=1D. Gek.(a, a4cZ) se.(fl, a~2).  (46) 

The constants {C.} and {D.} in (46) can be determined using the boundary 
conditions (33). This determination is facilitated by writing 

Gek,.@ a4c2- ) (fl, a4c2) ~ , se,. = F,.n(a ) sinnfl (47) 
n = l  

and using the expansion of se2,.+ 1, Se2m+2 given in (41), (47), we notice that 

f 2 m + l , n ( O 0  = 0 rl = 2, 4, 6,... 

( a4c2 ) ----(--1)  m+r ~t~2m+l)~2r+l G e k 2 m + l  ~, 

n = 2 r + l ,  r = 0, 1,2,.. .  
and 

F2m+2,,(c~) = 0 n = 1,3,5, . . .  

( a4cZ- ) = (__ l)m+r x~2r+2it:~t2m+2) Gek2,,+2 0c, (49) 

n = 2 r + 2 ,  r = 0, 1 ,2, . . . .  
Thus 

F(a, fl)= ,=1 ~ {C, exp(--nc0 + ,~=1 ~ D,,,F,,,,(~)}sinnfl. (50) 

Using the boundary conditions (33), we get the following system of linear alge- 
braic equations in {C,}, {D,): 

C, exp ( -  no%) + ~ D m Fro,,(%) = - Uc sinh eo ft,1 (51) 
m = l  

o0 

- n C. exp ( -  n %) + • D m f',..(c%) = - Uc cosh % ft,1 .- (52) 
m = l  

Eliminating C. from (51), (52), we get the following infinite nonhomogeneous 
system of linear equations in the unknowns {Din} ; 

{n F~, (O~o) + F~n n (~o)} Dm = - -  U c exp (0Co) ft,1. (53) 
r r t = l  
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This leads to the determinat ion of the constants {Din} and employing later either 
(51) or (52), it is possible to determine {C,}. 

Pressure distribution 

The pressure p is given by 

p (~, fl, t) = P (~, fl) exp (i o- t) (54) 

and P can be determined from (17) and (18). Using (7) in (17) and (18) and noting 
that  F is given by (50), solving the equations we get 

P (~,/~) = - # a 2 22 C, exp ( -  n ~) cos n ft. (55) 

Drag on the cylinder 

The components  of the stress tensor can be obtained from the relation 

vii = - - P  6i~ + 2 kt ei~. (56) 

The nonvanishing components  of the stress are z,,,  v~p, z~,, vpp and rzz. The 
stress vector is 

~ ,  ~ + r~  0 B + ~ 0~ (57) 

and the drag per length L of the cylinder is given by 

2n  

D = c L ~ {z~ sinh e .  cos fl - z~a cosh c~. sin fl}~ =,o dfl. (58) 
0 

Evaluat ing the stress components  on the bounda ry  e = % and integrating the 
expression in (58), we have 

D = r~lua2cLexp ( iat)  {C t + Uc sinh c~ o �9 cosh Co}. (59) 

Limiting case 

By allowing % to zero, the oscillating elliptic cylinder reduces to a fiat plate 
harmonical ly  oscillating along its edge. The stream function ~u (~, fl, t) and the 
constants C, and D, can be determined as before. The drag on the flat plate is 
seen to be 

zc r 2 c L exp (i a t) C1. (60) 
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Oscillations parallel to minor axis 

This case can be treated similar to the case of oscillations parallel to major  
axis and we briefly state results below: 

We introduce the elliptic coordinates (~, fl) by 

x + iy = c sinh (c~ + ifl) (61) 

and in this case 

h = c {sinh 2 o~ + cos 2/~} 1/2 (62) 

On the cylinder c~ = c% 

F (c~, fl) = - U c cosh ~.  sin fl 

OF (63) 
~ -  (~, fl) = - U c sinh ~.  sin fl 

The appropriate  solution of Eq. (21) is 

Fo (~, ]0 = ~ C* exp ( -  n c 0 sin n ft. (64) 
n = l  

The solution F 1 (c~, fl) of (22) is taken in the form R (~) S (fl) and we have 

R" (~) - + ~ cosh 2 ~ R (~) = 0 (65) 

S" (fl) + }-- cos 2 S (fl) = 0. (66) 

The solutions of (66) are em ' 4 J '  sere ~ corresponding to a 

discrete set of characteristic values of the separat ion constant  2. 
In this problem we need only the functions sen corresponding to the 

characteristic numbers 2 = b2,~+ 1 and L = b2m+ 2. These have the Fourier  sine 
series expansions 

$82m+ 1 ~ 2 r +  1 
r = O  

( f l , ~ - ) =  ~ ~ ' z"+l ' s in(2r+l) f l .  (68) Se2m+ 2 ~ 2 r + 2  
r = O  
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The solutions of (65) which correspond to the above solutions and which 
vanish as ~ --> o0 are the modified Mathieu functions G e k~,= + 1, G e k2,= + 2 given 
by 

(a4c -) Gek~m+l  ", -- 7cB~2rn+l) 

~, R(2m+l){' ( I s  r (828") �9 _ _  K r +  1 - -  r=O 

+l~+~(ac2-~)K,(a2e--~=)} (69) 

Gek2m+2 ~, ~ B~2m+ a) 

~'=0 

-I,+2(ac2-----~)K, Ia2e---~=)} (70) 

The solution F 1 (~, fl) for the Eq. (22) is given by 

-~ , se, , (71) n=l 

and as before 

F (~,/~) = & + r~ = C* exp ( -  n a) sin n ]J n=l 

+,=,~ D* Gek* , a 2 se,~t~,-~).  (72) 

Here again by introducing the functions F~*, (~) as before we recast F(~, fl) as 
below: 

~ .  ~ -  ..1~ t C: ~ (- n=' + ..1~ ~ si=~ ~73, 
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where the functions F*.(cO are defined by 

F2*+ 1,. (c0 = 0 n = 2, 4, 6 , . . .  

~(Zm+ ~) Gek~m+ l (cz a4cZ ) 
a 1 2 r +  l , - -  . 

n = 2 r + l ;  r = 0, 1 ,2 , . . .  (74) 

F2",.+2.,,(c0 = 0 n = 1, 3, 5 . . . .  

--n(2"+2) Gek*m+2( , a4c2 ) 

n = 2 r + 2 ,  r = 0 , 1 , 2  . . . . .  (75) 

Using the boundary  condit ions in (63), the equations that  lead to the determina-  
tion of {C*} and {D*} are 

C* exp ( -  n Cr + ~ D m* F~.* ( % )  = - U c cosh % c~.l (76) 
r t l = l  

-- n C.* exp ( -  n c%) + ~ D m* F~.*' (O~o) = - U c sinh cr o d.z (77) 
�9 "rt = 1 

t 

0.9 

0.8 

0.7 

0.6 

03 

0.4 

I I T I ~ I I 

~ R T = 0 . 2  i 

 2~ - 
-- ,~,.o = 1 - 2  R I = 0 . 0 0 1  - 

0 . 3 - -  I 
0 .8  1-0 

Figure 1 
Variation of K (major axis). 
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Figure 2 
Variation of K (major axis). 

Eliminating C* from (76), (77), we get 

{n F*, (0%) + F~.*' (%)} Dr,* = - U c exp (0%) ~,1 (78) 
r n = l  

and in principle we can determine D* and hence later C* using either of (76) or 
(77). Thus the stream function is completely determinable.  

Pressure Distribution: The pressure 

p (~, fl, t) = p (e, #) exp (i cr t) is seen to be 

p (c~, ,8, t) = - / z  a 2 {E C* exp ( -  n c~) cos n fl} exp (i o- t) (79) 
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Variation of K'  (major axis). 
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Drag on the cylinder 

The drag on the cylinder per length L is given by 

2 ~  

D = cL S {T~,cosh 0~-COS]? -- T,a sinhc~, sin/?},,=~o dfl 
o 

and this reduces to 

(80) 

nlzaZ cLexp (iat) {C* + Uc sinh ~o cosh ~o} (81) 
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Figure 4 
Variation of K' (major axis). 

Limiting case 

By allowing ~0 to zero we can recover the case of a flat plate performing 
harmonic oscillations transverse to its plane. Taking ~o = 0 and solving the 
system of Eqs. (76), (77) we can determine C*, D* and write the stream function. 
The drag in this case is obtained as 

z~ # a 2 c L C* exp (i o t). (82) 

Numerical work 

In both the cases of the oscillations of the elliptic cylinder parallel to the 
major axis and minor axis the drag on the body can be expressed as 

MU(~--~-~) (iK+K')exp (iat) (83) D = -  

where M is the mass of the fluid displaced by the cylinder of length L and is given 
by 

M = ~z Q L c 2 cosh cr o sinh ~o- (84) 
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The variation of the drag parameters K and K'  introduced in (83) is studied 
numerically. 

The numerical determination of K and K'  involves the determination of C,, 
D, and C*, D*. The system of Eqs. (53) involving Dm is an infinite one and we 
have to necessarily truncate the system suitable to get solution. The elements of 
the coefficient matrix involve modified Mathieu functions which have infinite 
series expansions involving the modified Bessel functions I r and Kr as well as the 
coefficients A~, B m [12, 13]. 

The eigenvalue parameter 2 present in (38), (39) has an infinite series ex- 
pansion in powers of (ca./2) and the leading terms are available in the classic 
work of Mch Lachlan [I 2]. We have evaluated 2 using all the terms given therein. 
The functions F,,, (~) and F~,, (c~) are needed for odd values of m and n only and 
accordingly these are evaluated for m, n = 0, I, 3, 5, 7, 9. Any attempt to truncate 
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Variation of K (minor axis). 

the system at a higher order stage will involve the numerical evaluation of an 
enlarged set of constants AN, B~ and functions G ek,.  

The case of minor axis is also dealt with on the same lines. 
The figures show the variation of K and K '  for various frequency parameter 

values P T = ~ a c2/i l, relaxation time parameter R T = a z and mass concentra- 
tion f = 0.2. 
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Abstract 

An elliptic cylinder is performing oscillations parallel to either of the principal axes of the 
cross-sectional ellipse in a fluid particle suspension. The stream function governing the flow and the 
velocity components are determined in terms of Mathieu functions. The drag on the cylinder is 
evaluated and expressed in terms of two parameters K and K'. The effects of the variation of the 
frequency parameter, eccentricity parameter and relaxation time parameter on the drag parameters 
K, K ~ is studied numerically. 
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