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THE SLOW STATIONARY FLOW OF INCOMPRESSIBLE
MICROPOLAR FLUID PAST A SPHEROID
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Abstract—The paper examines the slow stationary flow of incompressible micropolar fluid past a spheroid (prolate and
oblate) adopting the Stokesian approximation, so that the inertial terms in the momentum equation and the bilinear
terms in the balance of first stress moments are neglected. The flow over the space outside the body is analyzed and the
velocity, microrotation, stress and couple stress are obtained analytically in infinite series form. The drag on the body is
determined and it is observed that there is no couple exerted on the body. Numerical studies are undertaken to see the
variation of the drag withrespect to the geometric as well as the physical flow parameters. These have been presented in
the form of figures. Micropolarity of the fluid has an augmenting effect on the drag. In an Appendix, an alternative
method of determining the drag is indicated.

L. INTRODUCTION

Tue THEORY of micropolar fluids initiated by Eringen[1] is a subclass of the theory of simple
microfluids[2] initiated earlier by Eringen himself. In the micropolar fluid theory, apart from the
classical field of velocity, there are two additional field variables, viz. the microrotation vector »
and the gyration parameter j, introduced to explain the kinematics of micromotions. The
microrotation vector represents the rotation of the rigid particles in a small volume element
about the centroid of the element in an average sense. This is local in character and is in
addition to the usual rigid body motion of the entire volume element. The theory departs from
the classical Navier-Stokes model of viscous fluids in the following two aspects: {i) sustenance
of couple stress in the fluids; (it} the nonsymmetry of the stress tensor.
The field equations of micropolar fluid dynamics are

[/ -
at+d1v(pq)—0, {.h

p%%=pf—grad p+keurl 5 —{(u+k)curl curl g+ (A, +2u + k) grad (div q), (1.2)

pjg—:=p|“ 2kv + k curl g — y curl curl 7 + (o + B + v) grad (div ) (1.3)

in which q, #, f, 1 are, respectively, the velocity, microrotation, body force and body couple
vectors per unit mass and p is the pressure. The constants p and j are density and gyration
parameters while {A,, 4, k} and {a, 8, vy} are material constants which are governed by the
inequalities

k=0; 2u+k=0; 3\ +2u+k=0; y=0; 3a+B8+y=20; |Bl<y. (1.4)

{A1, 1, k} may be called the viscosity coefficients while {a, B8, v} the gyroviscosity coefficients.
The stress tensor #; and the couple-stress tensor m; = —¢;,,A?? are given by

ti =(=p + A div q)§; + Qu + k)e; + kejm (0™ — v™), (1.5)
my = (a div 9)8; + B;; + vy, (1.6)

In (1.5) and (1.6) »; and 2; are the components of the microrotation vector and vorticity vector,
respectively, e; denote the rate of strain components and comma denotes a covariant differen-
tiation.

In this paper we examine the slow stationary flow of an incompressible micropolar fluid past
a spheroid. As is usual with the classical investigations of the problem, as a first step, the
inertial terms of the momentum equation and the bilinear terms in the balance of first stress
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moments are neglected and the flow over the space outside the body is obtained under the
above (Stokesian) approximation. The velocity, microrotation, stress and couple stress are all
analytically obtained in infinite series form and the drag on the body is determined. We see that
the body, however, does not experience any couple. The variation of the drag as well as the
drag ratio with respect to the geometric and physical parameters of the flow is examined
numerically.

2. FLOW EQUATIONS IN AN AXIALLY SYMMETRIC FRAME

Let e, €4, e, be unit base vectors of the cylindrical polar system (7, ¢, z). The flow past the
spheroid has a uniform stream at infinity and the flow of the fluid is in the meridian plane. All
physical quantities are independent of ¢. The velocity and microrotation vectors can, therefore,
be presumed in the form

q = u(r, 2)e, + w(r, 2)e,, 2.1
b= B(r, 2)e, (2.2)
and the stream function ¥(r, z) can be introduced such that

_v A 4
ru = 7 rw= e 2.3)

The equations governing the flow are, therefore, given by

» —k%ﬂp +k) (V’—;li)u, (2.4)
% k("B B ) Fu+ KV, 2.5)
—2kB+k("“ ‘;‘:)+y(v2—;‘§)3 =0 (2.6)

where the operator V2 is the Laplacian given by

* 139
29 19
\% _3r2+rar+5?' 2.7
Eliminating p between (2.4) and (2.5) and using (2.3) we see that
4.
K(V-5)B =+ hEY 2.8)
where the Stokesian stream function operator E? is given by
=10 25 (29)
o ror’ 3zt ‘
The eqn (2.6) now assumes the form
2.
B =kEL 4y (72— )8 (2.10)

so that from (2.8) and (2.10) we have

_1 y(p + k)
B —2r[E2\I'+——k—,—E‘\If]. @.11)
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Eliminating B between (2.8) and (2.11) and utilizing the identity

IN(A_1
(w-2)(¢)=1Ef 212
we see that
/\2
(E‘—?E‘>\If =0 (2.13)
where
A? _kQu+k)
EaEr) @

Thus, the problem of the slow stationary flow of an incompressible micropolar fluid past a
spheroid with a uniform stream parallel to the axis of symmetry at infinity is governed by the
system of partial differential equations

(Eﬁ—ﬁ—zE“)\ho 2.15)

and

B= 21r [E"I' et k)E“‘PJ (2.16)

The determination of the velocity and microrotation fields will be possible if the above two
equations are supplemented by appropriate conditions relevant to the problem at the boundary
and at infinity. We presume that at infinity, the flow is a uniform stream and the microrotation
must vanish there. At the boundary T of the solid we presume the hyperstick condition of
adherence so that

q(xr, 1) =qr 2.17
and
v(xr, t) = vr (2.18)
where xr is a point on the solid boundary and q and # denote the velocity and microrotation
prescribed on it. It may be stated that while other possible forms of boundary conditions for
polar fluids have been contemplated, no definite conclusions in this regard and the hyperstick
condition of adherence seems to be the most plausible.
The eqns (2.15) and (2.16) indeed characterise the slow flow of an incompressible micropolar

fluid past an axially symmetric body of any shape. However, the analysis will be tedious in
most of the cases in view of the difficulty in finding the appropriate solutions for the equation

(E’—%;)\[f ~0. (2.19)

3. PROLATE SPHEROID
Let (£ 7, ) be prolate spheroidal coordinates such that

z+ir=ccosh(¢(+in) 3.1
and let

coshé=s,cosn=t (3.2)
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The solution of eqn (2.15) can be obtained by superposing the solutions of the equations

EYW =90 (3.3)
and
E-A)w=0
2= 3.4)

on each other.
For the prolate spheroidal coordinates the Stokes stream function operator E? is given by

E'= l [———32 —coth fi + i cot i]
c*(cosh® ¢ —cos® ) | 9€2 E an? ™
e {(sz—z)a—zm ~—z2)‘3—2} (3.5)
LT ) as? att )

(i) Solution of the equation E*¥ =0. The solution of (3.3) is exhibited in the form

¥ =¥,+ ¥, (3.6)
where
Vo= —3 UcXs?= 1)1 1) 3.7)
and
¥y = A= 11= ) X Gp(P(D). (338)

The function ¥, in (3.7) represents the stream function due to a uniform stream of magnitude U
and parallel to the axis of symmetry at infinity. We see that E*¥,=0 and hence ¥, has to
satisfy the equation

E“I’] = O. (39)
In the function ¥, given in (3.8) the factor P,.(t) denotes the derivative of the Legendre

polynomial P, (t). The choice of the functions G,.(s) is conditioned by the requirement that
¥, satisfies the eqn (3.9). We restrict the functions G, ,(s) further such that

BN, = (st 1)(1-17) 20 Anar Qlar(S)P (1) (3.10)

where Q..i(s) is the derivative of the Legendre function Q,.(s) of the second kind. It is easily
checked that the r.h.s. expression in (3.10) is a solution of the equation

E}Y=0 (3.11)
and so the restriction on the functions G,.(s) in (3.8) so as to validate the eqn (3.10) will

automatically allow the eqn (3.9) to be satisfied. Applying the operator E? on the equation in
(3.8) and equating the result with the expression in (3.10) we see that

21[{02 = DGt — (n + (1 + D Gpir($)Ppir(t) = 2014..“62(32— Q)P (D). (3.12)

We may write the r.h.s. expression in (3.12) as a combination of the derivatives of Legendre
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polynomials in ¢ by using the identities

(nth(n+2) _, An+(n+2) (ntDn+2) p

(l—tz)P.'m(l):—m n+3(t)+m+—5)1’,"+1(f)—m n1()
(3.13)
and
, _(n+thHn+2) ., _ An+D(n+2) 4, (n+Dn+2) .,
(52’"1)0"4.1(.5')-—(2”—”’)’(2‘;1’:'5‘50"4.3(.9) (2n+ l)(2n+5)on+l(s)+(2n+])(2n+3)0n—l(s)~
(3.14)

The relations (3.13) and (3.14) are valid for n=1,2,3,.... They are also valid for n =0 if in
(3.13) the term P’ (f) is interpreted as zero and in (3.14) the term Q' (s) is defined as
~s/(s2=1). After introducing these changes in the r.h.s. of (3.12), we may compare the
coefficients of P/ ,(t) on either side and then we are led to the following system of ordinary
differential equations for the function G, (s)

(52— DGrii(s) +45G 1(5) — n(n + 3)Crsi(5) = grea($) (3.15)
where
L (n+D(n+2) _ (n+3){n+4) .
gn-i»](S)— [ [(2ﬂ+3)(2f2+5) n+il (2n+5)(2n+7)‘4ﬂ+3}0n+3(3)
2 (n—Dn _(n+Dn+2) , 3.16
¢ [,(2;: Hen D™ T @n+ Dn +3)A"+'} n-i(s). C.16)

The systems in (3.15) and (3.16) are valid for n =0, 1,2, 3,... and the term on the r.h.s. of (3.16)
involving A_; is to be deleted for obtaining g,(s).

The function G,.(s) is found by integrating the differential eqn (3.15) by the method of
variation of parameters and we have

G = 1P lcr$)+ Brir Qo) ~ i [ (22 10, 51851
So

Qni(s) PR ,
tat b ), T DPrals)8nn()ds (3.17)

for n=0,1,2,3,.... In the integrals in the above equation the lower limit s, is the value
specifying the boundary of the prolate spheroid past which the flow is being examined and the
domain of the flow is thus restricted to the range 50 <s. As s >, the flow has to be a uniform
stream and to ensure this we have to choose a,,; =0 in (3.17). Hence we have

Gp(s) = Bn+lQ;+1(s)'(;‘%‘)t(l‘;(l'§%§')'£: (s*= DQ51(5)gn+1(s) ds
Qrnils) g .
+(—;;;~]T('n—+2—)fso(s2~ DP . 11(5)8n1i(s) ds. (3.18)

The functions g,.,(s) involve one set of constants {A,} (eqn (3.16)) and hence the functions
G,.4(s) involve two sets of constants, viz. {A,,,} and {B,.}.

(i) Solution of the equation (E*—(A%/c*))¥ = 0. The solution ¥, of this equation is taken in
the form

P, = cV((s~ 1)(1 = 2)R(s)S(1). (3.19

LFES Vol. 19, No, 2-C
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Substituting this in the eqn (3.4) we notice that R(s) and S(¢) satisfy the differential equations

(s*= 1)R"(s) + 25R'(s) - (A F A%+ )R =0 (3.20)

s2-1
and

1
1-t

(1= )S"(t) - 2S'(8) + (A - 2)s =0 (3.21)

where A is the separation parameter.

These are spheroidal wave differential equations and have the sets of solutions {R;,(iA, 5)}
and {S,.(iA, 1)}, respectively. The functions R,, are radial spheroidal wave functions and S,
are angular spheroidal wave functions. (Notation as in[3]). The function R,,(iA, s) has the
representation

R 9= {3 r+ 10+ 2ara0) (=" (z)"

s

}";' i m (4 1)(r + NG, apnlits)  (322)
r=0,1

where C,,3p(iks) denotes a cylinder function.

To ensure regularity of the solution ¥, at infinity, we have to restrict the radial wave
function to R(iA, s) which arises from (3.22) by taking the cylinder function C,.;,(iAs) as the
Hankel function of the first kind, viz. Hy;(iAs). The Hankel function is expressible in terms
of the modified Bessel function of the second kind in the form

H"3p(irs) = (2/m) exp (=(r + 5/2)in[2) K, 13p(As) (3.23)
and we have, therefore
@ -1 1/2 2_ 1/2
ROA, 5)= {72 3, (r+ 1)(r+ e} () (5)
S (4 1)(r+ 2)d" (M) K, 4 3n(A$). (3.24)

r=0,1

To ensure regularity of the solution in the flow region, it is also necessary to restrict S, to the
angular wave function of the first kind S{)(iA, t) which has the expansion

%

ST, t) = 2 d;"(i))P (1) (3.25)
r=0,1
and
PO = V(1= P3Pt (3.26)
denotes the associated Legendre function of the first kind.
The coefficients d!*(iA) in the above expansions are constants depending on the parameter
iA and the suffix r has the value 1,3,5,... or 0,2,4, ... depending upon the odd or even nature

of n+1.
We have, therefore, the solution ¥, of (3.4) in the form

¥, = cV((s*- 1)(1-12) i C,RONIA, 5)STA, £) (3.27)
n=1

where {C,} are constants.
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(iii) Stream function and microrotation. The stream function ¥ satisfying the eqn (2.15) is
given by

\I’=‘I’0+‘I’|+‘I’2 (3.28)
and, therefore, we have
1 2 S ' S (3) s (1) ;
V=—50r+r Y Guis)Praat)+r F CREXIA, $)STA, 1) (3.29)
n=0 n=1
in which
r=cV((s’-1)(1- 1Y) (3.30)

and G, ((s) is given in (3.18). It can now be seen that

Ev=r3 4,0, +.(s)Pn+.(t)+—fr 2 C.REA, )SiA, 1) (331)
n=0
and

E‘\If—)‘—, 2 RO\, 5)SE(i, 1), (332)

From eqns (2.16), (3.31) and (3.32) it follows that the only nonvanishing component of the
microrotation vector, viz. B(s, ) is given by

B, t)=§ZAn+,Q:.+l(s)Pn+.(t)+"”" X 2 REGA, )SBGA, . (B33)

The expression for ¥ in (3.29) involves three infinite sets of unknown constants, viz. {A,}, {B,},
{C,} and these have to be determined by utilizing the conditions on the boundary s = s, of the
spheroid. The super adherence or the hyperstick condition yields the following equations
(s, t)=0
ﬂ(s, H)=0; on s=s¢,. (3.34)
as
B(s,t)=0
It is also true that (3¥/dt) =0 on s = s,. But this is not independent of the conditions in (3.34).
In principle it should be possible to determine the constants {A,}, {B,}, {C,} by invoking the
conditions (3.34). However, it does not seem to be possible to find explicit evaluation for these
constants and one has to resort to determination by numerical computation for specific values

of the various parameters of the problem.
The eqns (3.34) can be put in the form

V(53 1) 3, B Quer(soP A0+ 5. CLRAAA, s9STA, D = UeVi(s3- D1 - 9,
(335)

- C’g)[SOQ:m(SO) = (n+1)(n +2)Quri($))Bast P +/(53- 1)

2:: { RE, S)} . Sthia, t)——so\/(l (3.36)

Vi(s3-1)) 2)A,,+.Q£.+.(so)P“>.(t)+2‘2“y+ k) S > R, s)SRIAH=0.  (33)
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The functions P"(¢) form an orthogonal set on the interval —1 <t <1 and so it is possible
to obtain from eqns (3.35) and (3.36) two distinct expressions for B,., which are both linear
forms in the vector {C,,} apart from an additional term independent of the constants {C,,}. The
functions S{N(¢) also constitute an orthogonal set on the interval —1 <t <1 and it is, therefore,
possible from each of (3.35) and (3.36) to express the constants C, as linear forms involving the
vector {B,,}, here again with an additional independent term. However, the eqn (3.37) does not
contain the constants B,, and it is, therefore, preferable to obtain the expressions for B, in
terms of the constants C,, as suggested in the first alternative above. We may then eliminate the
constant B, between these two relations and obtain a nonhomogeneous linear algebraic system
of equations for the unknowns {C,}. This is an infinite system and exact evaluation of the
constants C, in explicit form is not possible. The constants C, can, however, be evaluated by a
numerical method after deciding the stage of truncation of the infinite system. The constants B,
are already seen to be expressible in terms of the constants {C,} and we may, therefore,
determine these also numerically after the determination of the constants {C,,}. The constants
A, are also expressible in terms of C,’s from (3.37) and can thus be evaluated once the C,’s

are determined.
From (3.35)-(3.37) we obtain the following three systems of equations for {A,}, {B,} and

{Ca}.

V(53 DBusiQrer(50)+ 3 Cadi™MREAIA 50 = 3 UeV(sE= 1oons 339)

c{(n + 1)(n +2)Qu1(S0) — 56Qn+1(50)} Brsr + 21 Cnd ™IV ((s3- 1))

d . 1
X {ER&,(U\, S)}S_ = i UCS()S(),,, (339)

V(3= QA+ 2D S € dinOREG 9 =0. (40

From (3.38) and (3.39) we can eliminate B,., and then arrive at the following system of
nonhomogeneous linear algebraic equations for the determination of the constants {C,}

S DunCp=an n=0,1,2,3,... (3.41)
m=1
where
Dun = () (53~ D50 (- REMIA))
~ (1 + 1)(n +2)Qns(50) — 50Qhe1(s0)IRELN, So)} (3.42)
and
___ U
@ =~ T (3.43)

The constants B,., and A,.; are then determined from (3.38) and (3.40), respectively. The
coefficients D,,, in the system (3.41) depend on the two parameters A and s, and numerical
determination of the constants C,, will, therefore, be possible only when these parameters are
assigned specific values. The constants B,, may then be determined from the eqn (3.38).
However, to determine the constants A,., from (3.40), we have to specify an additional
parameter, viz. Qu + k)/(y)c?.

It is well known from the theory of spheroidal wave functions that the coefficients d,;™ have
to be defined as zero when n+m +1 is a positive odd integer. In the system (3.41) we see that
the r.h.s. vector {a,} has only one nonvanishing component ay corresponding to n = 0. Hence
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the subsystem of (3.41) given by
2—:1 D2n+l.2m C2m = 0 (344)

is a homogeneous subsystem and we may choose the constants C,, Cy, Cs, etc. to be equal to
zero. From (3.38) and (3.40) we now easily see that the constants B, and A, are also zero when
n is an even positive integer. We may, therefore, rewrite the expressions for stream function ¥
and microrotation component B in the form

¥ = -% Ur+7 3 Gansi($)Poner) 1 2 ConriREa(ih, 9)SThnesit ) (345)
and

_% Z A2n1Q2 i1 ()P 2pin() +=—— B2 Eiz Cont1RPnsi(id, $)S{h, 1 (iA, 1) (3.46)

(iv) Pressure distribution. The equations of motion (2.4) and (2.5) are written with reference
to the cylindrical frame of coordinates. In the prolate spheroidal frame, we may write them in
the form

_uth o yptk) 1
as =2 Na Y "ok & l)at(E“‘l') (3.47)
and
p__Cutk o Yptk) o
at  2c(1-1)os 75 ED T t3ke(1=1) as(EﬂI') (3.48)

Using the expression for ¥ given in (3.45) we find that

L~ —u+hc z (1 + D21+ DA Qhnar(8)Pans(8) (3.49)
and
B =-Qu-+ ke 3, (1+ D+ DAzes1Qsner(5)P ) (3.50)

Either of the above two equations is readily integrable and we have
p=—-Qu+k)c Zo(ﬂ + D)(2n + DAz 11 Qons1(8) Py (1) (3.51)

(v) Rate of deformation. The velocity vector q can be written in the form

q= qfef + q‘nen (352)
where
- 1 v
fAVIT-AT-T) ot
(3.53)
1 v

&= G- -1) s
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The rate of strain components are given by

1 ¥, sQ2s2-1-¢
by = c3(s2_ t2){\y.\'t +s2_ tz‘(s(z_ t2)(s2__ 1)) r}

_ 1 _ sV, 122 -1-5Y }
€nn __W—_—;T){ ’q,Sf + s?_ t2+(s2_ t2)(1 _ t2)q,s

c(s
. = 1 {s‘l’,+t‘lfs}
# AT -HlsT-1"1-¢2

(S -1 -)Y,
€y = Cpe = 263(s2_ {2)\/((52 - 1)(1 e tz))

A (Cited))) PO A4 (B )2 2
A=V -1)  A(sT-V([(s2-1))
Cp = yp = €ng = €4y = 0. (3.54)

The spin = (1/2)curl q has only one nonzero component w, in the direction of the vector e, and
this is given by

_ 1
“ 2T (1 - 1))

E™. (3.55)

The surface stress #; for the micropolar fluid is given by eqn (1.5) and we find that the only
nonvanishing components of #; are ty, ., tss, ten e These are given by

te=—p+Qu+k)eg,

tn =P +Qu+ ke,

tys =P +Qu+k)egs, (3.56)
tey = Qu + k)eg, + k(wy — B),

te = (Qp + k)e, — k(wy — B).

The stress vector t on the boundary of the body is given by

t= t&ef + tg,,e,,. (3.57)
We find that
(téf)s=so = “P(So, t) (358)
and
_ E*Y
(tf‘n)s=so - (”’ + k){C\/((Sz _ ])(l _ t2))}s=s0- (359)
The stress vector has the component
(Stress)axial = \/((Sol— t )){t\/((s2 - 1))t£§ - S\/((l - tz))tf'n}s=sn (360)
in the direction of axis of symmetry and
1
(Stress) i = ez =g {s VI = Dt + VIS = D)= (3.61)

in the radial direction in the meridian plane. The resultants of these two vector components
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over the entire surface of the body are obtained by integration and it is seen that the radial
component integrates to zero. Thus, the resultant of the stress vector on the body is a force in
the direction of the axis of symmetry and this gives the drag on the body. The drag D can be
written in the form

D =2wc™V((s3~ 1)) f l, {tV(s*— Dt — sV((1 - )t} oesy dt (3.62)
and this simplifies to

2meV(53- D)+ I V(sF = 1)QU(s03 A1 ~ (1 + RheseV (3= DIQHso A

2 ©
(0SS Cound MRG0 | B8

Using the eqn (3.40) we may eliminate the series involving the constants C,,, in the above
expression for the drag and after further simplification we see that the drag due to the surface
stress is given by

D= g‘;rc3(2u +kA,. (3.64)

The drag on an axially symmetric body in the Stokes’ flow of micropolar fluid has been
expressed through an elegant formula by Ramkissoon and Majumdar[6]). The drag on the
prolate spheroid seen above is also recoverable from the above formula and this is shown in the
appendix.

Writing
Dy=4nwQu + k)Uc (3.65)
and
Ai=(A)U)c? (3.66)
we see that the drag is equal to
Dy(A,13). (3.67)

We may refer to A,/3 as the nondimensional drag and this depends upon the eccentricity of the
spheroid, the micropolarity parameter and an additional material constant (2u + k)c?/y.

The only nonvanishing shear stress components are ¢, and f,.. The symmetry of the shear
stress that obtains in classical nonpolar fluid flow is no longer valid and we have the shear stress
difference

+AU & 4
e f . UZOCW.R‘.%%M(M,s)S‘I'.%m(iA, ) (3.68)

len =l =

where
Cons1 = Connil(Ue). (3.69)
(vi) Couple stress. The couple stress tensor m;; is given by (1.6) and we see that the only

nonvanishing components of this tensor are m,4, my,, My, My,
We find that

- 1 JB
My = AV (sT= tz)(l _ t?)) {BIB +y(1- tz)'g}
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- 1 _ 2B }
My, = C\/((S?'— {2)(1 _ {2)){3(1 t )6t + th

- 1 _ 9B
mM—C\/((Sz“tz)(Sz—l)){ BSB+7(SZ l)as}

1 iB
Mo S (T (- 1)){'8(“‘2_ 0y - (3.70)

The couple vector is mge, and on the boundary it reduces to

V(P -1) aB
(cx/((s2 - 1) s )mo%' (3.71)

It is seen that the resultant couple vector due to the couple stresses on the spheroid equals

t 2
2. _ 42
V(s 1) L Vi(s2—t ))( Lzo(m&)moed, d¢) dt 3.72)

and this vanishes since [{"e, d¢ =0.
The moment of the stress vector about the centre of the spheroid is

m={ze, +re) Xt (3.73)

and the integral of this over the surface of the spheroid is seen to be zero. The scalar moment
of the stress vector about the axis of symmetry is m- e, and this is zero every where. Thus,
there is no couple exerted on the body in spite of the fluid sustaining a couple strese.

(vity Numerical results. The drag on the spheroid is numerically evaluated for several
parametric values by computing the values of the constants C, from the system of eqns (3.41)
by truncating it to a 5 by 5 system. The motivation for this order of truncation is the fact that
the coefficients needed for the evaluation of the constants d™"(i) are available only to a limited
extent in the published literature [3].

The drag on the prolate spheroid is given by (3.64) in the polar case. The drag in the
nonpolar case[4] is

2 -1 A
$mulc |2 log ot - so] ~8mulc(%) . (3.74)

The nondimensional drag for the polar fluid is
R D 1471"2;1. + kU (3 75)
3 ( )polar ) A

and this for the nonpolar fluid is given by

é) _[s%%»i sot+1 r
(3 =[S e ] (3.76)

The drag ratio for the prolate spheroid is defined as the ratio of the drag on the spher9id
with the drag on a sphere of diameter equal to the minor axis of the meridian ellipse generating
the spheroid. The drag on a sphere of radius cVi(s3- 1)) is equal to[5]

3n2u + ) UcV((s3— 1) (3.7

| "AZ(A\/«sla— D+ )
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where

A2=2(u + k)k, (3.78)

and hence the drag ratio in the polar case is given by

4 _ 1 A
V(O 1))[‘ MOV -D) + 1)]< 3) 3.1

This for the nonpolar fluid becomes

4 (A
IV(s5—1) ( 3 ),,' (3.80)

The graphs giving the drag and drag ratio for several parameter values show that the
magnitudes of the drag and drag ratio increase with so and also with each of the parameters A?
and A.
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4. OBLATE SPHEROID
Let (£ n, ¢) be oblate spheroidal coordinates such that

z+ir=csinh(¢+in) 4.)H
and let
sinhfé=7 cosqn=t 4.2)

We can build up a solution of the eqn (2.15) by the superposition of the solutions of the
equations

EW=0 @43)
and
/\2
(52 - ?,)\v =0, (4.4)

In the oblate spheroidal coordinate system, the Stokesian stream function operator E? has the
representation

E*= ! [32 —tanh §i+ o —cot —a—]
c(sinh? £ + cos? n)| 082 o " an? K an

-1 [(12+1)‘92+(1—z2)"z] @.5)
ci('r’+t’) o s ’
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(i) Solution of EY¥ =0. The solution of (4.3) is exhibited in the form

¥=9¥,+¥, 4.6)
where
\['0=—%Ucz(rz+ na-+ 4.7
and
¥ =+ 1)1~ 32)20 Hp 1 (iT)P (1) 4.8)

In (4.8) the function P, () denotes the derivative of the Legendre polynomial P,.,(¢) and the
function H,.(ir) is to be defined later. The function ¥, in (4.7) represents the stream function
due to a uniform stream at infinity of magnitude U in the direction of the axis of symmetry.
Since ¥, has to satisfy the eqn (4.3) we select the functions H,,(i7) in (4.8) such that

B\ = s+ (1 =) 3 Ayt QuenlinP () (49)

where Q). (i) is the derivative of the Legendre function of the second kind. It is easily seen
that the r.h.s. expression in (4.9) satisfies the equation

E*=0 (4.10)

and the choice of the functions H,,(ir) in (4.8) must be so as to validate (4.9). From the
equation for ¥, in (4.8) we can calculate E*¥,. On using the two identities

v nnt]) L. 2n(n+1) ey h(n+1) S
(D =~ G = an + 1 @4 G = 1yan +3 2 Gt w13 )
@.11)
and
B wp___ nntl) , 2n(n+1) ey nnt1) ,
=P =~ e T 0 G = Ban 37D~ @+ Dan 737 )
4.12)

the expression for E*¥, can be recast and identifying this with the expression in (4.9) we have
the equation

2
(r*+ l)gd;;Hm(ir)Jr 4T%Hn+|(i‘r)— n(n +3)H,\(it) = hyi(it) (4.13)
where
v 2|t 1)(n+2) _ (n+3)(n+9) .
halir) ¢ [(2]14-3)(2" +5)An+1 (2n+5)(2n+7)An+3]Qn+3(”’)

of _(m=1)n _(n+DH(n+2) o
e [(2!1 -D@2n+ I)A"“' Qn+)2n + 3)An+|]0n-1(17)

for n=0,1,2,3,.... (4.14)

For n =0, we have the term h;(ir) from the r.h.s. of (4.14) by deleting the term involving the
coefficient A_, and noting that

ir
2+ 1

QLy(ir) = . 4.15)
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The differential eqns (4.13) constitute a linear system and H,.((ir) can be determined by
integration using the method of variation of parameters. We have

Hnﬂ(if) = anﬂp;ﬂ(i’f) + ﬂn+lO;¢+l(iT)
iP liT)
(n+DH(n+2)

_ Q) +1liT)
(n+Hn+2)

(4 1)Ql (i) ir) A (4.16)

L

f TR+ )P (i i) .
ki)

The lower limit 7, in the above integrals is positive and specifies the surface of the oblate
spheroidal body which is nondegenerate. We stipulate that ¥, -0 as 7 — o« and this requires that
a,1 =0 in (4.16). Thus, we have

iP i)
(n+H{n+2)

Qunlin) |7 o .
RCESICES) 10(72+1)P,.+1(l'r)h,.+1(rr)dr. (4.17)

Hyrlit) = Bunn Qlpoalin) + ] " (14 D)Qhi(ir W (i) dt

It is noted that these functions involve two sets of constants, viz. {B,.;} and {A,.} (through
By i(iT)).

(i) Solution of (E*~(A%/c}))¥ = 0. We can choose a solution of this equation in separable
form using the radial and angular oblate spheroidal wave functions R,,(iA, 7) and S;,(iA, H{3]
and we have then

¥ =cV({(#+1)(1- 1Y) 2 CoR, (A, 7)S1,UA, ). 4.18)

It is well known that the oblate spheroidal angular wave function S;,(iA, t) can be represented
as a prolate spheroidal wave function by changing the parameter from iA to A. Also, the oblate
radial wave function R;,(iA, 7) can be represented as a prolate spheroidal radial wave function
by changing the parameter from iA to A and the variable from 7 to ir. Hence, the solution ¥, of
the eqn (4.4) may, therefore, be chosen in the form

¥, = V(7 + 1)(1 - 1)) 2 CuRin(A, i1)Sia(X, 1) (4.19)

where the functions R and S now specify the prolate spheroidal functions. The requirement of
regularity of solution on the boundary restricts the angular function to the type S{(A, £). Since
the function ¥, has to vanish at infinity, we select the radial function in (4.19) to the specific
type RCXA, ir). (Ref. [3]). We have, therefore, the solution ¥, of (4.4) in the form

Wy = V(4 (1= ) S, CRE, iSEA, 1) (4.20)
n=1

where {C,} are constants. The functions R£)(A, i) and S{(A, ) are given by the expansions

RP, ir) = [im g (r+ 1)(r + 2)d1"(A)]_'(l)”2 ("b; ‘)1/2

1 A T
5:6' (r+ 1D+ Dd " K, (A7) @21
Al

e

and

S, 1) = % d"()PUL(D) @4.2)
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where K,.3»(A7) is the modified Bessel function of the second kind and P{},(¢) is the associated
Legendre function of the first kind.

(1)) The stream function and microrotation. The stream function satisfying the eqn (2.15) is
given by

V=V,+¥,+V¥, (4.23)
and, therefore, we have
V== JUP P S Hy(i)Ph) + r 3 CRAOL NS D 424)
where
r=cV((r*+ 1)1 -12) (4.25)

and H,,,(ir) is given in (4.17).
The only component B of the microrotation vector given in (2.16) is given by

wtk 2

B(r, t)= ZoAn+IQ’n+|(iT)Pln+l(t)+T

ﬁNI >

2, CREA, in)STI, ). (4.26)

N~

The expression for ¥ in (4.24) consists of three infinite sets of constants, viz. {4,}, {B,},
{C,} and these are to be determined by the boundary conditions on the spheroid 7 = 7, Using
the hyperstick condition of adherence we have on the boundary 7= 7,

Y(r,t)=0
FA _
—37(7, H=0 (4.27)
B(7,t) =0
and it is also true that
v _
W(T’ H=0 (4.28)

onT=r

The three sets of constants {A,}, {B,}, {C,} have to be determined by invoking the above
boundary conditions. However, it does not seem to be possible to have explicit evaluation of
these constants since each of the three sets is an infinite set and the boundary conditions lead to
an infinite linear but coupled system of equations involving them. One has, therefore, to resort
to the evaluation of these constants by numerical computation for specific values of the
parameters in the problem. The three conditions in (4.27) can be put in the form

VA1) S, B Qs imPRAD + 3 CREN, i) SR, 0= 3UeV((h+ D11 - 1),
n=0 n=1
4.29)

¢ SO{TOQ;HUTO) + (73 + DiQ" (i)} By P (2)

S, 1) = % UcryV((1 - 17), (4.30)

=79

V(73 + 1)) 2:‘,] C, {%R‘,’,Z(/\, ir)}

V(r3+1) ioAmo;H(ifo)P;'i.(t)+M S CRO, i) SBA N =0, (431)
n= n=]

LES Vol. 19, No. 2-D
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The functions P{"(¢) constitute an orthogonal set on the interval —1 <¢ <1 and it is, therefore,
possible to obtain from (4.29) and (4.30) distinct expressions for B,,, involving the set of
constants {C,}. Eliminating B,,; from these two resulting expressions, we are led to a
nonhomogeneous linear system of algebraic equations for the set {C,,}. These can, however, be
evaluated by a numerical method after deciding the stage of truncation of the infinite system.
The constants {B,} can then be evaluated since each of the B,’s is expressible in terms of the
set {C,}. From eqn (4.31) it is possible to express A, in terms of the C,’s and we can,
therefore, evaluate the constants {A,}.

From (4.29) to (4.31) we derive the following three equations by using the orthogonality of
the function P{(¢)

VR D QaliBrnr+ S Cud " WREBO i) = SV (754 D)o 43)

ClraQaon(i) + (3 + i} Buer + 3, Cor/(a8+ 1) REAA, i)

T=T0

x dy™(A) = % Uco6pn, (4.33)

V(53 + 1) Qpoilire) Ane: +§3"—Y+—"’ S Cod "™ (R, i) = 0. (4.34)
m=1

Eliminating B,., from (4.32) and (4.33) we have the following linear nonhomogeneous system
of algebraic equations for the unknown constants C,

x

DpCn=0a, n=012,... (4.39)
m=1
where
D = dL”*(A)[{roo;H(iTo) (4 1)(n +DiQu G RDUA, img)
Hrd DOl (R ) | 436
T=70
and
___ iUc
ARV RN (43D
forn=0,1,2,3,....

As in the case of prolate spheroid here again we have to resort to numerical determination
of the coefficients A,, B,, C,. Further it is also seen that the system (4.35) can be partitioned
into the two subsystems

1bgs

DZn,mCm = Qzp,
m=1 =
n=0,1,2,... (4.38)

L

D2n+1.mCm = Qan+1
1

and the second subsystem turns out to be a homogeneous system for the same reason as in the
case of prolate spheroid. We may, therefore, presume that the coefficients C,,, are all zero.
From this we can also see that the coefficients B,,, A,, are also trivial. The constants C,,,, are
determined from the first subsystem

Y DiomstComer = a2a 1 =0,1,2,... (4.39)
m=0
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The stream function ¥(r, t) and the microrotation component B(7, t) are, therefore, expres-
sed in the following form

V0= =3 UP+ 73 o iDPian+1 3, ConeiRah S0 1), (440)

+k)t

B(r, 1) =1 2 A2n+IQ2n+l(lT)P2n+](t)+ 2 Z Con1RPsi(A, i) ST ai(A, 1), (4.41)
24

(iv) Pressure distribution. The equations of motion (2.4) and (2.5) can be written in the form
below using oblate spheroidal coordinates (7, ).

ap_ Qu+k) 9

yut+k) 9
ar  2c(r? +1)at(E2 )= aED) (442)

2ke(r2+ 1) ot

P _ Qu+k)

it~ 2e(-Far b D et B, (4.43)

2ke(1-t%) 7

These can be written in the form below on substituting for ¥ in (4.40)

L= -@u+K)e 3 @0+ D1+ DAgesi Qgreair)Pavei 1) 444
B =+ Kc S, 1+ D+ DAz Qareiir)Phs (1), (445)

We find from either of these on integration the following expression for the pressure dis-
tribution

P, 1)=Qu+ Klic 3, (14 D2 +1) Az Qorsiir)Paes (1), (4.46)

(v) Surface stress. The velocity vector q can be written in the form

Q= gee, + gqe, (4.47)
where
U= /(O + 1) ot
_ ! av
b OA-0) o (4.48)
The rate of strain components are given by
_ 1 Q22+ 2+ )r
€= c(r*+ ) [‘P" (P+)E+) " P+ tz\y ]
_ 1 B (1-12=2% ¥, ]
o =T tz)[ Yot ma-n T v e
1 v, | ¥,
€os = 3(7. + t2) [ 1- 12:, (449)

b o= (T+1)‘I’"—(1—t2)\l’"
o= S 33+ V(P + D - P)

P A ((515)) A/ (G S ))) A&
K+ (D) P+ N1 - )

€ns = €on = € = €4 = 0.
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The spin = (1/2) curl q has only one nonzero component w, in the direction of the vector e4 and
this is given by

_ !
% = 3T - ¥ (4.50)

The only nonvanishing components of f; (defined in (1.5)) are t,, t,,. ts4 te and Loz
To evaluate the drag on the spheroid we note that the stress vector t on the boundary of the
body is given by

t =l t e, 4.51)
We find that
(teg)y=—p(70, ) (4.52)
and
_ (u + k)EXY
(Ferdy = {C\/((72 (- t’))} “.33)

The stress vector has the component

(Stress).yia = WT}—M—2)—){t\/((T2 + D)t — TV((1 = Dt} (4.54)

along the direction of axis of symmetry and
- 1 2 2
(StresShadia = 77777 7 )){f\/((l — Dty + V((1H+ D)t} (4.55)

in the radial direction in the meridian plane. The resultants of these two vector components
over the entire surface of the body are obtained by integration and it is seen that the radial
component integrates to zero. Thus, the resultant of the stress vector on the body is a force in
the direction of the axis of symmetry and this gives the drag on the body. The drag D can be
written in the form

D =2mcV((r}+1) f‘] {EV(7 + Dt — TV((1 = )y}, d1 (4.56)

and this simplifies to
2mc 2w + k)3 + 1) {— 2 4iQim) -2 f_‘l (1-1) 20 Ao 1 Qs (70 P (1) dt} (4.57)

and this is seen to be
‘3—‘7;&(2,; +k)A,i. (4.58)

This expression for the drag can also be recovered from the elegant formula of Ramkissoon
and Majumdar[6). This is shown in the Appendix.
Writing

Dy=47Qu +k)Uc (4.59)
we see that the drag is
Dy - (Ay/3) (4.60)

where
A, = Ail(UIcY. (4.61)
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We may refer to (A,/3) as the nondimensional drag and this depends upon the eccentricity of
the oblate spheroid, the micropolarity parameter A and an additional material constant
u + k)cy.

The only nonvanishing shear stress components are ¢, and f,. These two are no longer
equal in view of the polar nature of the fluid and the shear stress difference has the expression

ben g = M’-*—U 3 CorriRE3en(h, NS (46
where
. Con
Coni1 = {Jc* L (4.63)

{(vi) Couple stress. The couple stress tensor m; is given by the eqn (1.6) and we see that the
only nonvanishing components of this tensor are

Mgy Mpn, Meg, M.

We find that
- 1 ptB _ 9B }
R (Casg N MR
P 1 2 ‘th }
mo == e BV OO
| 5B (4.64)
Mo = c\/((72+ v Ve e
_ yrB
e A CaR v e ]
The couple vector is mge4 and on the boundary it reduces to
V(T +1) (QE))
(c'\/((72+ P)\ar )/ (4.65)
It is seen that the resultant couple vector due to the couple stresses on the spheroid is
1 2
V(3 + 1) f V((73+ 1Y) ( f (Mgg) o d¢) dt (4.66)
-1 $=0
and this vanishes since
2
f €y d¢ =0.
0
The moment of the stress vector about the centre of the spheroid is
m = (ze, +re,) Xt 4.67)

and the integral of this over the surface of the spheroid is zero. The scalar moment of the stress
vector about the axis of symmetry is m-e, and this is zero everywhere. Thus, there is no
couple exerted on the body in spite of the fluid sustaining a couple stress.

(vii) Numerical results. To extract numerical information and evaluate the drag on the body

the system of eqns (4.35) was solved by restricting the system to a 5 by S linear system. The
drag on the body is (see (4.58))

dn(Qu + k)

3 A =47Qu+k) Uc'—43—- (4.68)
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and for the nonpolar fluid the drag has the value[4]

8mulc
To— (T8~ 1)cot™! 7o (4.69)
The nondimensional drag for the polar fluid is (A,/3) and for the nonpolar case it is
(?) =[15— (73— 1) cot™ 7,]". 4.70)

The drag ratio for the oblate spheroid is defined as the ratio of the drag on the spheroid to
the drag on a sphere of radius equal to the semimajor axis of the meridian ellipse. The drag on
the sphere of radius cV((r3+1)) is[5]

3nUcQu + V(3 + 1) (4.71)

|- T
AAV{(r3+ 1) +1

The drag ratio for the oblate spheroid for polar fluid is

4 ~ i A
W) [1 RO+ D)+ 1]( 3 ) @7
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Fig. 11. Variation of polar drag with respect to 7o.



Flow of incompressible micropolar fluid

1 i 1 1

—

-

< ™~ w w ~4

10
9

(8€£0%.986-0=0L) boip JpDjogd

Fig. 13. Variation of polar drag with respect to A.

4.0

1

05

(=2
o

120
nor-
100~
90
eor
70}

6olp Jpiog

1
)
w

l
o
<

30~

20

10—

215

Fig. 12. Variation of polar drag with respect to 7,.



216 S. K. LAKSHMANA RAQ and T. K. V. IYENGAR
=t
vy
&£
(‘\\1'/ J"I\\ = w
¢ LA ~
0.
>.:;ev R
—i+
-2
™
p=
e
- L
o~
-2
™~
w
-1 -
~2
L i i H i i 1 i i £ {
«© ~ o w o~ © ~ o w o~ o -4 [=3
~2 ~ ~3 L - ~ o~ o~ - -
(ELP(990 T =9, )bpdp 00y
0-,\
v
1 1 | 1 | ! | 1 ! 1 i
~ - o @ - o~ w w ~3 b ~ - o
- - (8200£7514=0L)60ip Jvjog

Fig. 15, Variation of polar drag with respect to A.

Fig. 14. Variation of polar drag with respect to A,
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and this ratio for the nonpolar fluid equals

4 A
W5+ 1))( 3 ) (4.73)

The figures giving the drag and the drag ratio for varying values of the parameters A and A®
show that the drag as well as the drag ratio increase with 7, and also with each of the
parameters A% and A.
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APPENDIX

The drag on an axially symmetric body in the Stokes flow of micropolar fluid has been expressed by an elegant formula
by Ramkissoon and Majumdar[6]. This can be expressed in the form

D=du(u+k) n EEY (AD)
n"“
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where
p=V(ri+z) (A2)

is the polar radial distance of the point from the origin and ¥, ¥, denote, respectively, the stream function of the flow and
its asymptotic value. From the solutions presented earlier, it is clear that for both the prolate and oblate spheroids

‘]’—\lf0=‘lf|+\l/2, (A})

For the prolate spheroid

2_ 2.2 1-£
pf=c%s*1- P (Ad)
and the expressions for ¥, and ¥, are given in (3.8) and (3.27), respectively. It is easily seen that

i 252=0, (AS)

pox

The contribution to the limit of (p¥,/r?) arises only from the first term r2G,(s)P(t) in the expansion of ¥, and after some
calculation, we see thats

SEW sG\(s) = c_’s,ﬁ (A6)
Thus we have the drag on the prolate spheroid given by
D =47Qu + kA3 (A7)
For the oblate spheroid
p2=c272(1+‘°2'2) (A8)

and the expressions for ¥, and ¥, are given in (4.8) and (4.20), respectively. It is easily seen that the only contribution to
the limit in (A1) arises from the term r2H,(ir)P|(?) in ¥,. By straight forward calculation it is seen that

It 7H(ir) = ic*A,f3. (A9

Hence the drag on the oblate spheroid equals

4nQu+ AN (A10)



