
hf. I Engng Sci. Vol. 19. pp. IS%220 
@ Pergamon Press Ltd., 1981. Printed in Great Britain 

THE SLOW STATIONARY FLOW OF INCOMPRESSIBLE 
MICROPOLAR FLUID PAST A SPHEROID 

S. K. LAKSHMANA RAO and T. K. V. IYENGAR 
Department of Mathematics, Regional Engineering College, Warangal-506004, India 

Abstract-The paper examines the slow stationary how of incompressible micropo1~ fluid past a spheroid (prolate and 
oblate) adopting the Stokesian approximation, so that the inertial terms in the momentum equation and the bilinear 
terms in the balance of first stress moments are neglected. The flow over the space outside the body is analyzed and the 
velocity, microrotation, stress and couple stress are obtained analytically in infinite series form. The drag on the body is 
determined and it is observed that there is no couple exerted on the body. Numerical studies are undertaken to see the 
variation of the drag with respect to the geometric as well as the physical flow parameters. These have been presented in 
the form of figures. Micropolarity of the tluid has an augmenting effect on the drag. In an Appendix, an alternative 
method of determining the drag is indicated. 

1. INTRODUCTION 

THE THEORY of micropolar fluids initiated by Eringen[I] is a subclass of the theory of simple 
microfluids[2] initiated earlier by Eringen himself. In the micropolar fluid theory, apart from the 
classical field of velocity, there are two additional field variables, viz. the microrotation vector u 
and the gyration parameter j, introduced to explain the kinematics of micromotions. The 
microrotation vector represents the rotation of the rigid particles in a small volume element 
about the centroid of the element in an average sense. This is local in character and is in 
addition to the usual rigid body motion of the entire volume element. The theory departs from 
the classical Navier-Stokes model of viscous fluids in the following two aspects: (i) sustenance 
of couple stress in the fluids: (ii) the nonsymmetry of the stress tensor. 

The field equations of micropolar fluid dynamics are 

z + div (pq) = 0, (1.1) 

p$=pl-gradp + k curl v - (y + k) cur1 curl q + (Al + 2,~ + k) grad @iv qh (1.2) 

.dv 
~Jdf=+-2kv+k curl q - y curl curl fi t (a t p + y) grad (div iJ) (1.3) 

in which q, C, f, 1 are, respectively, the velocity, microrotation, body force and body couple 
vectors per unit mass and p is the pressure. The constants p and j are density and gyration 
parameters while {Al,@, k} and (a,@, y} are material constants which are governed by the 
inequalities 

kz0; 2PtkkO; 3A,t2PtkkO; ~20; 3a+p+yrO; !Ptr-Y (1.4) 

{A!, /-L, k} may be called the viscosity coefficients while (a, B, y} the gyroviscosity coefficients. 
The stress tensor tij and the couple-stress tensor mij = -ejpqh?’ are given by 

tij = (-p + At div q)Sij + (2~ + k)eij + keiia(o”’ - P), (1.5) 

mij = (a div i;)Sii + pvi.j t yvj,i. (1.6) 

In (1.5) and (1.6) pi and 2wi are the components of the microrotation vector and vorticity vector, 
respectively, e/j denote the rate of strain components and comma denotes a covariant differen- 
tiation. 

In this paper we examine the slow stationary flow of an incompressible micropolar fluid past 
a spheroid. As is usual with the classical investigations of the problem, as a first step, the 
inertial terms of the momentum equation and the bilinear terms in the balance of first stress 
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moments are neglected and the flow over the space outside the body is obtained under the 
above (Stokesian) approximation. The velocity, microrotation, stress and couple stress are all 
analytically obtained in infinite series form and the drag on the body is determined. We see that 
the body, however, does not experience any couple. The variation of the drag as well as the 
drag ratio with respect to the geometric and physical parameters of the flow is examined 
numerically. 

2. FLOWEQUATIONSIN ANAXIALLYSYMMETRIC FRAME 

Let e, e6, e, be unit base vectors of the cylindrical polar system (r, 4,~). The flow past the 
spheroid has a uniform stream at infinity and the flow of the fluid is in the meridian plane. All 
physical quantities are independent of 4. The velocity and microrotation vectors can, therefore, 
be presumed in the form 

q = u(r, z)e, + w(r, z)e,, (2.1) 

F = B(r, z)e+ (2.2) 

and the stream function 9(r, z) can be introduced such that 

The equations governing the flow are, therefore, given by 

where the operator V2 is the Laplacian given by 

v22+!i+ a2 
ar2 rdr Z’ 

Eliminating p between (2.4) and (2.5) and using (2.3) we see that 

where the Stokesian stream function operator E2 is given by 

E&a2_!2+a2 
a? r ar az2' (2.9) 

The eqn (2.6) now assumes the form 

so that from (2.8) and (2.10) we have 

(2.4 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2. IO) 

(2.1 I) 
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Eliminating B between (2.8) and (2.11) and utilizing the identity 
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(I’$)(;) =;E2f 

we see that 

where 

A2 _ k(2p + k) 
2- Y(P + k) * 

(2.12) 

(2.13) 

(2.14) 

Thus, the problem of the slow stationary flow of an incompressible micropolar fluid past a 
spheroid with a uniform stream parallel to the axis of symmetry at infinity is governed by the 
system of partial differential equations 

and 

(2.15) 

(2.16) 

The determination of the velocity and microrotation fields will be possible if the above two 
equations are supplemented by appropriate conditions relevant to the problem at the boundary 
and at infinity. We presume that at infinity, the flow is a uniform stream and the microrotation 
must vanish there. At the boundary r of the solid we presume the hyperstick condition of 
adherence so that 

and 

(2.17) 

(2.18) 

where xr is a point on the solid boundary and q and fir denote the velocity and microrotation 
prescribed on it. It may be stated that while other possible forms of boundary conditions for 
polar fluids have been contemplated, no definite conclusions in this regard and the hyperstick 
condition of adherence seems to be the most plausible. 

The eqns (2.15) and (2.16) indeed characterise the slow flow of an incompressible micropolar 
fluid past an axially symmetric body of any shape. However, the analysis will be tedious in 
most of the cases in view of the difficulty in finding the appropriate solutions for the equation 

3. PROLATE SPHEROID 

Let (& q,d) be prolate spheroidal coordinates such that 

z+ir=ccosh([+in) (3.1) 

and let 

(2.19) 

(3.2) cash 6 = s, cos n = t. 
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The solution of eqn (2.15) can be obtained by superposing the solutions of the equations 

and 

E4’P=0 (3.3) 

(3.4) 

on each other. 
For the prolate spheroidal coordinates the Stokes stream function operator E2 is given by 

E2= 1 d2 a2 

c2(cosh2 6 - cos2 1)) 
--i-cothti+--cot $ 
at at a772 av 1 

1 
= &2 _ p) ~(s2 - 1); + (1 - 12)~]. 

(i) Sollrtion of the equation E* = 0. The solution of (3.3) is exhibited in the form 

q=*\VofPr 

where 

and 

‘Pi = c2(s2- l)(l- ~')~~~G.,l(s)PX,(t). 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

The function Y,, in (3.7) represents the stream function due to a uniform stream of magnitude U 
and parallel to the axis of symmetry at infinity. We see that E2’4!, = 0 and hence tVr has to 
satisfy the equation 

E+l’, = 0. (3.9) 

In the function ‘PI given in (3.8) the factor P;+,(t) denotes the derivative of the Legendre 
~lynomial P,+,(t). The choice of the functions G,,+t(s) is conditioned by the requirement that 
tV1 satisfies the eqn (3.9). We restrict the functions G,+,(s) further such that 

E2V, = c2(s2-- l)(l - P)“~~A.+,Qb+,(~)Pnrl(l) (3.10) 

where ~~+~(~) is the derivative of the Legendre function ~~+,t~) of the second kind. It is easily 
checked that the r.h.s. expression in (3.10) is a solution of the equation 

E2f =0 (3.1 I) 

and so the restriction on the functions G,+r(s) in (3.8) so as to validate the eqn (3.10) will 
automatically allow the eqn (3.9) to be satisfied. Applying the operator E2 on the equation in 
(3.8) and equating the result with the expression in (3.10) we see that 

$oI{b2 - ~SG+,(SW’ - ( n + 10 +2)G,+,(sW:+,W =n&%+,C"(s2- t2)Qb+hPA+,(0. (3.12) 

We may write the r.h.s. expression in (3.12) as a combination of the derivatives of Legendre 
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~lynomials in t by using the identities 
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(n + I)(n + 2) 
(1 - W:+,(t) = - (2n + 3)@ + 5f:+3w + (Zn + l)(Zn + 5) 2(n + IXn + 2, P’ n+l (f) - (2n + *)Qn + 3) 

(n f I)fn + 2) p;_,fr) 

(3.13) 

and 

(S2- l)QA+,(s) = (2n + 3)(2n + fj) (n + lJtn +2) Q’ n+3 ,s,-::nn,‘:::;l,‘,‘:,~:,,cs,+,::: 1 ;;~;n+~~)Q:_,(s)* 

(3.14) 

The relations (3.13) and (3.14) are valid for n = 1,2,3,. . . . They are also valid for n = 0 if in 
(3.13) the term P’,(t) is interpreted as zero and in (3.14) the term Q’,(s) is defined as 
-s/(s*- I). After introducing these changes in the r.h.s. of (3.12), we may compare the 
coefficients of P:+,(t) on either side and then we are led to the following system of ordinary 
differential equations for the function G,+,(s) 

(s2 - W;+,(s) + 4sG;+,(s) - nfn + 3)G,+,(s) = g,+,(s) (3.15) 

where 

g,+,(S) = c2 [ 
(n -t I)@ + 2) (n -I- 3)(n + 4) 

(2n + 3)(2n + S)Aa+, ~(2~ + .5)(2# + 7)An+3 3 Qk+l(s) 

- c2 (2n “,:‘n”+ l)A”-, - (2j, + 1)(2n + 3)An+, I 
(n + l)(n t 2) 

1 Q;-,(s). (3.16) 

The systems in (3.15) and (3.16) are valid for n = 0, 1,2,3,. . . and the term on the r.h.s. of (3.16) 
involving A_, is to be deleted for obtaining g,(s). 

The function G,+,(s) is found by integrating the differential eqn (3.15) by the method of 
variation of parameters and we have 

Q;+,(s) 
+tn+l)tnt2) SO I ‘ts2- W:+,tskn+,ts)ds (3.17) 

for n =0,1,2,3 ,.... In the integrals in the above equation the lower limit so is the value 
specifying the boundary of the prolate spheroid past which the flow is being examined and the 
domain of the flow is thus restricted to the range so < s. As s -)m, the flow has to be a uniform 
stream and to ensure this we have to choose a,,+, = 0 in (3.17). Hence we have 

G+ds) = B,+,Q:+,(sFtn 3;;; 2) I 
’ ts2 - l)Q;+,(s)g,+,(s) ds 

30 

Q:+,(s) 
+wM+2) SO I ?s2- W’;+,(sk,+,~s)ds. (3.18) 

The functions g,,+,(s) involve one set of constants {A,,} (eqn (3.16)) and hence the functions 
G,+,(s) involve two sets of constants, viz. {A,,,} and {I?,,+,}. 

(ii) S~~~~jo~ of the e~~u~~o~ fE2 - {A2~c2))~ = 0. The solution qv2 of this equation is taken in 
the form 

v* = ck%s* - l)(l - t*))R(s)S(t). (3.19) 
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Substituting this in the eqn (3.4) we notice that R(s) and S(t) satisfy the differential equations 

(s*-ll)R”(~)+2sR’(s)-(A+h*s*&)R=O (3.20) 

and 

(1 - t*)s(t) - ZtS’(t)+ (3.21) 

where A is the separation parameter. 
These are spheroidal wave differential equations and have the sets of solutions {R,,(iA, s)} 

and {S,,(iA, t)}, respectively. The functions R,, are radial spheroidal wave functions and S’, 
are angular spheroidal wave functions. (Notation as in[3]). The function R’,(iA, s) has the 
representation 

R,,(iA, s) = { r$‘, (r t l)(r t 2)d:“(iA))-’ ($-!)“*(6)“’ 

m 

3 ’ ‘r-“+‘n(r t l)(r t 2)df”(iA)C,+312(iAs) 1 (3.22) 
i== ,I 

where Cr+3,2(iAs) denotes a cylinder function. 
To ensure regularity of the solution Y2 at infinity, we have to restrict the radial wave 

function to R\z(iA, s) which arises from (3.22) by taking the cylinder function C,+,2(iAs) as the 
Hankel function of the first kind, viz. H !!j3,2(iAs). The Hankel function is expressible in terms 
of the modified Bessel function of the second kind in the form 

H!‘!3n(iAs) = (2/7r) exp (-(r + 5/2)id2)K,+&As) (3.23) 

and we have, therefore 

RI;(iA s) = I , [ ‘““Fx”(r t l)(r t 2)&“(U)]-‘(-$)“*($!)“* 

7 p ’ (r t l)(r t 2)df”(iA)K,+,2(As). (3.24) 
r= .I 

To ensure regularity of the solution in the flow region, it is also necessary to restrict S’, to the 
angular wave function of the first kind S\‘,‘(iA, t) which has the expansion 

and 

S\‘,(iA, t) = %‘, &“(iA)P$,(t) (3.25) 

P;?,(t) = V/(1 -P)&+,(t) (3.26) 

denotes the associated Legendre function of the first kind. 
The coefficients &“(iA) in the above expansions are constants depending on the parameter 

iA and the suffix r has the value 1,3,5, . . . or 0,2,4, . . . depending upon the odd or even nature 
of ntl. 

We have, therefore, the solution ‘P2 of (3.4) in the form 

q2 = cq/((s*- I)(1 - 1*)) “2’ C,R’:,‘(iA, s)S’$(iA, t) (3.27) 

where {C,} are constants. 
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(iii) Stream function and microrotation. The stream function q satisfying the eqn (2.15) is 
given by 

*==i)+q,+y* (3.28) 

and, therefore, we have 

in which 

* = -i U? + r2 2 G,+,(s)P’,+,(t) + r 2 C,R$?(iA, s)S$(iA, t) 
n=O II=1 

r = cd((s2 - l)(l - t’)) 

(3.29) 

(3.30) 

and G”+,(s) is given in (3.18). It can now be seen that 

E2* = r2 2 A,,+IQ:+l(s)P:+l(t)+$r 2 C,R’:,‘(ih, s)S\‘,(iA, t) 
n=O #!=I 

E4q = $r “z, C,R\%iA, s)S’$(iA, t). 

(3.31) 

(3.32) 

From eqns (2.16), (3.31) and (3.32) it follows that the only nonvanishing component of the 
microrotation vector, viz. B(s, t) is given by 

B(s, 0 = ~“~oA.,IQb+t(s)P’,+l(t)+~~ n~,C.Rf%iA, s)S{‘,‘(iA, t). (3.33) 

The expression for q in (3.29) involves three infinite sets of unknown constants, viz. {A,}, {II,}, 
{C,} and these have to be determined by utilizing the conditions on the boundary s = so of the 
spheroid. The super adherence or the hyperstick condition yields the following equations 

ws, t) = 0 
1 

!$s,t)=O on s=so. 

t 
B(s, t) = 0 J 

It is also true that (H/at) = 0 on s = so. But this is not independent of the conditions in (3.34). 
In principle it should be possible to determine the constants {A,}, {II,}, {C,} by invoking the 
conditions (3.34). However, it does not seem to be possible to find explicit evaluation for these 
constants and one has to resort to determination by numerical computation for specific values 
of the various parameters of the problem. 

The eqns (3.34) can be put in the form 

C~/c(d- 1)) 2 &+,Qb+dso)P%(t)+ 2 C,R’:,‘(iA, so)S\‘,(iA, t) = k C.kd((s~- l)(l - t2)), 
n=O II=1 

(3.35) 

- cfo [~oQh+d~o) - tn + l)(n + 2)Qn+,t~o)l~“+,~‘,‘!Io + l//<sa - 1) 

$, G{$R%iA, s)]s=soS\$iA, t) =~soV(l - t2), (3.36) 

Cd/c(d- 1))~~oA.,,0:+~(s)PP!l(t)+2(2’~’ “)“z, C.R\;(iA, so)S’$(iA, t) = 0. (3.37) 
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The functions P’,“(t) form an orthogonal set on the interval -1 it I 1 and so it is possible 
to obtain from eqns (3.35) and (3.36) two distinct expressions for B,+, which are both linear 
forms in the vector {Cm} apart from an additional term independent of the constants {C,,,}. The 
functions S{‘,‘(t) also constitute an orthogonal set on the interval -1 it I 1 and it is, therefore, 
possible from each of (3.35) and (3.36) to express the constants C,, as linear forms involving the 
vector {B,}, here again with an additional independent term. However, the eqn (3.37) does not 
contain the constants B,,, and it is, therefore, preferable to obtain the expressions for B, in 
terms of the constants C,,, as suggested in the first alternative above. We may then eliminate the 
constant B, between these two relations and obtain a nonhomogeneous linear algebraic system 
of equations for the unknowns {C,}. This is an infinite system and exact evaluation of the 
constants C, in explicit form is not possible. The constants C, can, however, be evaluated by a 
numerical method after deciding the stage of truncation of the infinite system. The constants B, 
are already seen to be expressible in terms of the constants {C,} and we may, therefore, 
determine these also numerically after the determination of the constants {C,,,}. The constants 
A, are also expressible in terms of Cm’s from (3.37) and can thus be evaluated once the Cm’s 
are determined. 

From (3.35H3.37) we obtain the following three systems of equations for {An}, {B,} and 

{CJ. 

cd((si - l))B,+,Qh+,(s,J + 2 C,,,d!,m(iA)R\-?,(iA, so) = i CJcd/cCs~ - 1))60,, (3.38) 
m=l 

c{(n + l)(n + 2)Q,+d3 - SOQ~+I(SO)IB~+I + $, Cmdm,m(iA)~/((si - 1)) 

X 
d 

--R(3A(iA s) 
ds ’ 

(3.39) 
S=Q 

cd/((sf - l))Qh+,boMn+, + 2(2P’t “‘s, C,,,dfim(iA)R\~(iA, s,,) = 0. (3.40) 

From (3.38) and (3.39) we can eliminate B “+, and then arrive at the following system of 
nonhomogeneous linear algebraic equations for the determination of the constants {C,,} 

$,DnmCm=an n=0,1,2,3 ,... (3.41) 

where 

- Kn + I)@ + 2)Q,+d3 - ~oQ’,+hdlZC!M, SO)) (3.42) 

and 

%I = -&f_ ]))~O”. 

The constants B,,, and A,,+, are then determined from (3.38) and (3.40), respectively. The 
coefficients Da,,, in the system (3.41) depend on the two parameters A and so and numerical 
determination of the constants C,,, will, therefore, be possible only when these parameters are 
assigned specific values. The constants B, may then be determined from the eqn (3.38). 
However, to determine the constants A,+, from (3.40), we have to specify an additional 
parameter, viz. (2~ .t &)/(y)c*. 

It is well known from the theory of spheroidal wave functions that the coefficients di”’ have 
to be defined as zero when n t m t 1 is a positive odd integer. In the system (3.41) we see that 
the r.h.s. vector {(u,} has only one nonvanishing component a0 corresponding to n = 0. Hence 
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the subsystem of (3.41) given by 
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2 4n+1,2&2m = 0 (344) 
m=l 

is a homogeneous subsystem and we may choose the constants C2, C4, C,, etc. to be equal to 
zero. From (3.38) and (3.40) we now easily see that the constants B” and A, are also zero when 
n is an even positive integer. We may, therefore, rewrite the expressions for stream function * 
and microrotation component B in the form 

* = -5 Ur2 + r2 2 G2n+,b)Ph,+,(f) + r 2 C2n+,R\~~n+,(iA, ~)Sl!l~+,(iA, t) 
n=O n=O 

(3.45) 

and 

B =$z A2,+,Q;,+,(s)P;“+,(t) +qg $ Gn+,R%+,(iA, s)SI!j,+,(iA, t). (3.46) 
” 0 ” 0 

(iv) Pressure distribution. The equations of motion (2.4) and (2.5) are written with reference 
to the cylindrical frame of coordinates. In the prolate spheroidal frame, we may write them in 
the form 

and 

ap _ (2~ + k) a(,,,) _ Y(P + k) 
YG - 2c(s2 - I) at 

(3.47) 

(3.48) 

Using the expression for \I’ given in (3.45) we find that 

and 

z = -(2~ + k)c 2 (n + l)(2n + l)&“+,Q;“+,(~)&“+,(f) 
n=O 

(3.49) 

$ = -(2~ + k)c 2 (n + l)(2n + l)&“+,Q,“+,(s)P;“+,(t). 
n=O 

Either of the above two equations is readily integrable and we have 

(3.50) 

P = -@CL + k)c “zob + IWn + I)A2,+,Q2.+,(s)P2,+,(t). (3.5 I) 

(v) Rate of deformation. The velocity vector q can be written in the form 

where 

(3.52) 

I 
46 = 

aT 
c’d((s’- t2)(s2- l))at’ 

I av 
qq = c2q/((sz- t2)(l - P))as’ 

(3.53) 
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The rate of strain components are given by 

1 
ett = +2 _ t2) 

1 
e STyI t(2t2 - 1 - S2) 
rlr) = c3(S2 _ r2) -‘s, + m + (S2 _ r2)( 1 _ t2)‘s 

( s2 - l)*,, - (1 - PpP,, 
e&l = e,, = 2c3(sZ- f)q((s’- l)(l - t2)) 

SV((S2 - l))*, td(( 1 - P)pP, 
- c3(s2 - P)2d/(( 1 - P)) - c3(s2 - P)2~/((s2 - 1)) 

e, = e, = e,, = e,, = 0. (3.54) 

The spin = (1/2)curl q has only one nonzero component o, in the direction of the vector eg and 
this is given by 

1 
% = 2cd((s2 - l)(l - t2))E20* 

(3.55) 

The surface stress tij for the micropolar fluid is given by eqn (1.5) and we find that the only 
nonvanishing components of tij are &, t,,, t,, th, t,,. These are given by 

tzl = -P + (2~ + k&, 
f, = -P + (241. + be,,,, 
tM = -p t (2~ + ic)e@, 

Q = (2~ + k)e, + k(w, - B), 

t,,, = (2~ + k)etv - k(o, -B). 

The stress vector t on the boundary of the body is given by 

We find that 

and 

t = tf,es + ttqeq 

(t&S0 = -Pbo, 0 

(4Js=hl = (CL + 4 c\/(($:2;(l - 12))],=,“. 
The stress vector has the component 

in the direction of axis of symmetry and 

(St~eshadial = v((s/_ r2)) W/((l - t2wg + ta2- u&7&=,, (3.61) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

in the radial direction in the meridian plane. The resultants of these two vector components 
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over the entire surface of the body are obtained by integration and it is seen that the radial 
component integrates to zero. Thus, the resultant of the stress vector on the body is a force in 
the direction of the axis of symmetry and this gives the drag on the body. The drag D can be 
written in the form 

D = 2&V/((s: - 1)) 1-1 (tV(( s2 - l))tfl - sd((l - t*&},=,, dt (3.62) 

and this simplifies to 

277c*~/(ts;- IN{ (2~ + k)cd/(ts; - l))Q,(s&% - (P + k)cs~~((s;-- 1 ))Q;(~o&, 

-(CL + &) 
(3.63) 

Using the eqn (3.40) we may eliminate the series involving the constants CZn+r in the above 
expression for the drag and after further simplification we see that the drag due to the surface 
stress is given by 

D =47x3(2/1 + k)A,. (3.64) 

The drag on an axially symmetric body in the Stokes’ flow of micropolar fluid has been 
expressed through an elegant formula by Ramkissoon and Majumdar[6]. The drag on the 
prolate spheroid seen above is also recoverable from the above formula and this is shown in the 
appendix. 

Writing 

D,, = 4~(2~ t k)CJc (3.65) 

and 

A, = (AJU)c* (3.66) 

we see that the drag is equal to 

L&(&3). (3.67) 

We may refer to A,/3 as the nondimensional drag and this depends upon the eccentricity of the 
spheroid, the micropolarity parameter and an additional material constant (2~ t k)c*/y. 

The only nonvanishing shear stress components are t& and t,,, The symmetry of the shear 
stress that obtains in classical nonpolar fluid flow is no longer valid and we have the shear stress 
difference 

(3.68) 

where 

c*;Zn+, = C*.+,l(r/c). (3.69) 

(vi) Couple stress. The couple stress tensor mij is given by (1.6) and we see that the only 
nonvanishing components of this tensor are m,,+, m+,,, mM, m,, 

We find that 

1 
m~=-C~((~*-~*)(l_t2))(~~~+~(l-t*)~] 
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1 
m 

r 
2 JB 

Qa = - c,/((s2 - 9)( 1 _ g2)) PU - f )yg- + .ytB 1 

I 
m 

H = cd((s2 - t*)(s* - 1)) { -PsB + y(s*- I)%} 

1 
mH = cv’((s2 - f2)(s2 - 1)) 

j3fs2- l&sB) (3.70) 

The couple vector is m&e,+ and on the boundary it reduces to 

i 
~L’((s* - 1)) aB - 
c~(/((s2- t2)) as ) ,=,,e4* (3.71) 

It is seen that the resultant couple vector due to the couple stresses on the spheroid equals 

(3.72) 

and this vanishes since Jb’“e+ d4 = 0. 
The moment of the stress vector about the centre of the spheroid is 

m=(ze,+re,)Xt (3.73) 

and the integral of this over the surface of the spheroid is seen to be zero. The scalar moment 
of the stress vector about the axis of symmetry is rn. e, and this is zero every where. Thus, 
there is no couple exerted on the body in spite of the fluid sustaining a couple strese. 

(vii) Numerical results. The drag on the spheroid is numerically evaluated for several 
parametric values by computing the values of the constants C,, from the system of eqns (3.41) 
by truncating it to a 5 by 5 system. The motivation for this order of truncation is the fact that 
the coefficients needed for the evaluation of the constants ~~(~A) are available only to a limited 
extent in the published literature [3]. 

The drag on the prolate spheroid is given by (3.64) in the polar case. The drag in the 
nonpolar case[4] is 

$+I so+1 -’ 
210gs_l-so 

0 I 

The nondimensional drag for the polar fluid is 

2 = (D),r,,/4n(2~ t k)Uc 

and this for the nonpolar fluid is given by 

Al 0 I s:t1 

7, = yogf@+ 1 
-1 * 

0 

(3.74) 

(3.75) 

(3.76) 

The drag ratio for the prolate spheroid is defined as the ratio of the drag on the spheroid 
with the drag on a sphere of diameter equal to the minor axis of the meridian elhpse generating 
the spheroid. The drag on a sphere of radius c~((s~- 1)) is equal to[5] 

37$2&k + k)UcL&- 1)) 

[ 
1 

I 

(3.77) 

l TP(At/((sc:- I)+ 1) 
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A= = 2(/~ + k)lk, (3.78) 

and hence the drag ratio in the polar case is given by 

4 1 4 
3V/(M - 1)) I lX(A~((s2,-l))+l) I( 3 1 . 

This for the nonpolar fluid becomes 

4 A, 

3V/(W 1)) 7 ( 1 n’ 

(3.79) 

(3.80) 

The graphs giving the drag and drag ratio for several parameter values show that the 
magnitudes of the drag and drag ratio increase with so and also with each of the parameters A2 
and A. 
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Fig. 3. Variation of polar drag with respect to A. 
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Fig. IO. Variation of polar drag ratio with respect to A. 

4. OBLATE SPHEROID 

Let (t,~, 4) be oblate spheroidal coordinates such that 

ztir=csinh(ttiT) 

and let 

(4.1) 

sinh 5 = T, cos 17 = t. (4.2) 

We can build up a solution of the eqn (2.15) by the superposition of the solutions of the 
equations 

and 

E"P=O (4.3) 

(4.4) 

In the oblate spheroidal coordinate system, the Stokesian stream function operator E2 has the 
representation 

I 

(4.5) 
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(i) Solution of E? = 0. The solution of (4.3) is exhibited in the form 

207 

*=wJt1v, (4.4) 

where 

TO = -+c2(T2t 1)(1 -P) (4.7) 

and 

T, = C2(T2 t I)(1 - f2)~~o~“+,(iT)PI+,(f). (4.8) 

In (4.8) the function Pi+,(t) denotes the derivative of the Legendre polynomial P,+l(t) and the 
function I&+,(k) is to be defined later. The function V0 in (4.7) represents the stream function 
due to a uniform stream at infinity of magnitude II in the direction of the axis of symmetry, 
Since q, has to satisfy the eqn (4.3) we select the functions IIn+* in (4.8) such that 

E*% = c2b2 + Of1 - 1’) ~~oA,,,Q.+,(ir)Pb+,(f) (4.9) 

where QL+,(ir) is the derivative of the Legendre function of the second kind. It is easily seen 
that the r.h.s. expression in (4.9) satisfies the equation 

E2f =0 (4.10) 

and the choice of the functions H”+l(ir) in (4.8) must be so as to validate (4.9). From the 
equation for 9, in (4.8) we can calculate E2VVI. On using the two identities 

and 

the expression for E2T, can be recast and identifying this with the expression in (4.9) we have 
the equation 

d2 (7* + 1),72H,,,(i~) t 47;11;Hm+,(i7) - n(n t 3)H,+,(i7) = hn+,(i7) (4.13) 

where 

hn+r(ir) = -c2 
[ 

(n •t l)(n -I- 2) (n + 3)(n + 4) 
(2n + 3)(2n + 5J&+, - (2n + 5j(2n + 7)A,tl Qk+j(rr) 

I 

+ ” [ 
(n - 1)n (n + l)(n + 2) 

(2n - 1)(2n t 1)A"-'-(2n t 1)(2n t 3)An+’ 3 Q’-1(i7) 

for n =0,1,2,3 ,.... (4.14) 

For n = 0, we have the term hr(ir) from the r.h.s. of (4.14) by deleting the term involving the 
coefficient A_] and noting that 

i7 
Ql,(i7) = - 

r*t 1’ 
(4.15) 
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The differential eqns (4.13) constitute a linear system and K+,(ir) can be determined by 
integration using the method of variation of parameters. We have 

I”+, = LY,+,Ph+,fi7)+Pn+,Qfr+l(iT) 

iP;+l(iT) 
+(n+l)(n+2) ‘0 I 

‘CT’+- l)Q~+r(ir)hn+r(ir) dr 
* 

1)Ph+l(iT)h,+,(i7)dT. 

(4.16) 

The lower limit r. in the above integrals is positive and specifies the surface of the oblate 
spheroidal body which is nondegenerate. We stipulate that ‘PI + 0 as r -) QZ and this requires that 
am+1 = 0 in (4.16). Thus, we have 

It is noted that these functions involve two sets of constants, viz. {B.+J and {A,,,} (through 

am+,). 
(ii) Sof~fjo~ of (Et - (Az~c2))~ = 0. We can choose a solution of this equation in separable 

form using the radial and angular oblate spheroidal wave functions I?,,(& 7) and .‘$,,(iA, t)[3] 
and we have then 

It is well known that the oblate spheroidal angular wave function S,,(iA, t) can be represented 
as a prolate spheroidal wave function by changing the parameter from iA to A. Also, the oblate 
radial wave function R,,(iA, 7) can be represented as a prolate spheroidal radial wave function 
by changing the parameter from iA to A and the variable from c to ir. Hence, the solution \I’? of 
the eqn (4.4) may, therefore, be chosen in the form 

V2 = cd/((7” + IN1 - t2)ln$, CJMA, idSdA, t) (4.19) 

where the functions R and S now specify the ~~o~uje ~p~e~oj~a~ functions. The requirement of 
regularity of solution on the boundary restricts the angular function to the type S&A, t). Since 
the function q2 has to vanish at infinity, we select the radial function in (4.19) to the specific 
type R\;(A, ir). (Ref. [3]). We have, therefore, the solution P2 of (4.4) in the form 

‘P’z = ct/((r” + l)(l - t’)) 2 C,Rj?(A, k)Sfijt)(A, t) (4.20) 
fl=l 

where {C,} are constants. The functions R%A, k) and $‘,‘(A, t) are given by the expansions 

Rr)(A k) = in+2 n I [ ,&r+ I)(r+2)d:“(A)]-‘(-3”2 (y)“* 

3 
7c ’ (r + l)(r + 2)dl”(A)K,+&A~) 

I= .I 
(4.21) 

and 

(4.22) 
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where K,+&h7) is the modified Bessel function of the second kind and P!‘!,(t) is the associated 
Legendre function of the first kind. 

(iii) The stream function and microrotation. The stream function satisfying the eqn (2.15) is 
given by 

9=*o+v,+Q, (4.23) 

and, therefore, we have 

where 

(4.24) 
ll=l 

r = cd((? + I)( I - t’)) (4.25) 

and H,,+,(h) is given in (4.17). 
The only component B of the microrotation vector given in (2.16) is given by 

B(r, t) = i”~~A.+,Qb+lcir)P’,+,(t) + Fsn$, C,Rf!(A, i7)3(1:(A, t). (4.26) 

The expression for * in (4.24) consists of three infinite sets of constants, viz. {A,}, {B,}, 
{C,} and these are to be determined by the boundary conditions on the spheroid 7 = 70. Using 
the hyperstick condition of adherence we have on the boundary T = 7. 

9(T, t) = 0 

$7, t) = 0 

B(T, t) =o 

and it is also true that 

$(T, t) = 0 

(4.27) 

(4.28) 

The three sets of constants {An}, {II,,}, {C,} have to be determined by invoking the above 
boundary conditions. However, it does not seem to be possible to have explicit evaluation of 
these constants since each of the three sets is an infinite set and the boundary conditions lead to 
an infinite linear but coupled system of equations involving them. One has, therefore, to resort 
to the evaluation of these constants by numerical computation for specific values of the 
parameters in the problem. The three conditions in (4.27) can be put in the form 

cd/i(d t 1)) 2 f3.+I@,+l(i70)P’,‘!I(t) t 2 C,R\?(A, iTO)S\jl(A, t) = !jUcd((Ti+ l)l(l - t2)), 
n=O n=l 

(4.29) 

+ d((d + 1)) 2 Cn [ $R\:(A, id) #!(A, t) = ; kTod(( 1 - t’)), (4.30) 
I#=1 7’70 

cd((d+ l))“~oA.+,Qb+,(i7a)P~~,(t) + 2(2pyt k)n$l C,R’:,‘(A, iTo)S(ljl(A, t) = 0. (4.3 1) 

DES Vol. 19. No. Z-D 
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The functions P’,“(t) constitute an orthogonal set on the interval -1 5 t I 1 and it is, therefore, 
possible to obtain from (4.29) and (4.30) distinct expressions for II,+, involving the set of 
constants {C,,,}. Eliminating II,+, from these two resulting expressions, we are led to a 
nonhomogeneous linear system of algebraic equations for the set {C,,,}. These can, however, be 
evaluated by a numerical method after deciding the stage of truncation of the infinite system. 
The constants {B,} can then be evaluated since each of the B,‘s is expressible in terms of the 
set {C,,,}. From eqn (4.31) it is possible to express A, in terms of the C,,,‘s and we can, 
therefore, evaluate the constants {A,}. 

From (4.29) to (4.31) we derive the following three equations by using the orthogonality of 
the function P(‘)(t) n 

(4.32) 
m=I 

(4.34) 

Eliminating II,+, from (4.32) and (4.33) we have the following linear nonhomogeneous system 
of algebraic equations for the unknown constants C,,, 

where 

2, D,,,C,,, = a, n = 0,1,2,. . . (4.35) 

and 

t (Tit l)Q:+,(iTo) $?\?(A, iT) 

illc 
a’ = -q((T;t 1))“‘” (4.37) 

(4.36) 

for n =0,1,2,3,. . . . 
As in the case of prolate spheroid here again we have to resort to numerical determination 

of the coefficients A,, B,, C,. Further it is also seen that the system (4.35) can be partitioned 
into the two subsystems 

(4.38) 

and the second subsystem turns out to be a homogeneous system for the same reason as in the 
case of prolate spheroid. We may, therefore, presume that the coefficients C,,,, are all zero. 
From this we can also see that the coefficients B2”, Azn are also trivial. The constants Czn+, are 
determined from the first subsystem 

z. 4n,2m+lC2m+l = ~2” n = 0,1,2,. . . (4.39) 
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The stream function q\v(r, t) and the microrotation component B(r, t) are, therefore, expres- 
sed in the following form 

V(1(7, t) = - f Ur* t r* 2 H2”+,(i7)P;“+, (0 + r”zo C2n+A?ln+dk WSI!l,+dk 0, (4.40) 
n=O 

(iv) Pressure distribution. The equations of motion (2.4) and (2.5) can be written in the form 
below using oblate spheroidal coordinates (T, t). 

dP _ (2p + k) qE2q, _ Y(P + k) a 4 

a-T - 2c(r2 t 1) at 2kC(72 t 1) at@ % 
(4.42) 

(4.43) 

These can be written in the form below on substituting for q in (4.40) 

g = -_(‘& + k)c n$o(2n + I)(n + l)A2,+,Q;.+,(i7)P2,+I(f) (4.44) 

$ = (2~ + k)c 2 (n + 1Kh + l)A2n+,Q2n+,(iT)P;n+,(f). (4.45) 
n=O 

We find from either of these on integration the following expression for the pressure dis- 
tribution 

~(7, t) = (2~ + k)ic (n + 1)(2n + 1)A2,+,Q2,+,(i7)P2,+,(t). (4.46) 
n=O 

(v) Surface stress. The velocity vector q can be written in the form 

where 

(4.47) 

1 a9 - 
qE = c*~/((T*+~*)(T*+ 1)) at 

I av 
4” = A//((72 t P)( 1 - P)) Z’ 

The rate of strain components are given by 

1 
ec6 = C3(T2 t P) L 

Y 
r’ 

_ (2T*tt*t1)7~ _ t 
(T2 + t*)(T* t 1) ’ -1 72 t PVT 

1 
e 
m = c3(2 + t*) [ 

-9 + (1-r*-20 q, ; ;%z 
rf (T*t P)(l -P) 7tt 1 

1 

L 
79 PP 

% = c3(T2t t2) yT&+* 
I 

(7* + l)qm - (1 - t*)q,* 
e&I = e”, = 2c3(r2 t P)d/((72 t l)(l - P)) 

d\/(( 1 - t*pP, d/((T2 + 1NQ, 
+ C3(T2 + t*)*~/((T* t 1)) - c3(72 + t*)*d((l - P)) 

(4.48) 

(4.49) 

ev-5 = e+n = et4 = e, = 0. 
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The spin = (l/2) curl q has only one nonzero component o, in the direction of the vector em and 
this is given by 

I 
@+ = 2c-\/((? + I)( 1 - P)) lzZq\IT. (4.50) 

The only nonvanishing components of tii (defined in (1.5)) are t,, t,,, t,+ t, and t,,. 
To evaluate the drag on the spheroid we note that the stress vector t on the boundary of the 

body is given by 

We find that 

and 

t = ttce, + thev (4.5 1) 

(r& = - P(ro, 0 (4.52) 

The stress vector has the component 

WressLial = d((TJ+ t2JJ Wl((T2 + l))t& - 41 - t2))t&l 

along the direction of axis of symmetry and 

(StreZ),,dial = &{Td((l - t2)& + rd((T2 + l))t*Vl 

(4.53) 

(4.54) 

(4.55) 

in the radial direction in the meridian plane. The resultants of these two vector components 
over the entire surface of the body are obtained by integration and it is seen that the radial 
component integrates to zero. Thus, the resultant of the stress vector on the body is a force in 
the direction of the axis of symmetry and this gives the drag on the body. The drag D can be 
written in the form 

D = 2m2d/((T; t 1) 
I 

’ {d/((? t I))& - ~d((l - t2))Q, dt (4.56) 
-I 

and this simplifies to 

27rc3(2p + k)(r;+ l)[-~A,iQl(ir,)-:l_ll(l - t2)“~~A2ni,Q;n+,(i7il)P;n+l(t)ddfj (4.57) 

and this is seen to be 

4 
3nc3(2y t k)A,i. (4.58) 

This expression for the drag can also be recovered from the elegant formula of Ramkissoon 
and Majumdar[6]. This is shown in the Appendix. 

Writing 

Do = 47~(211. t k) Uc 

we see that the drag is 

where 
Do. #I/3) 

A, = A,i/( U/c’). 

(4.59) 

(4.60) 

(4.61) 
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We may refer to (A,/3) as the nondimensional drag and this depends upon the eccentricity of 
the oblate spheroid, the micropolarity parameter A and an additional material constant 
(2~ + k)c21y. 

The only nonvanishing shear stress components are t(,, and t,,,. These two are no longer 
equal in view of the polar nature of the fluid and the shear stress difference has the expression 

where 

t 
51, 

_t 
nt 

=_(211.+k)A*U m - (4.62) 
C 

ZO C2”+m”+l(~, wi!xA t) 

(4.63) 

(vi) Couple stress. The couple stress tensor mij is given by the eqn (1.6) and we see that the 
only nonvanishing components of this tensor are 

We find that 

I 
m ?d = - I 

ptB 
CV((T2 + t2)) V((l - t2)) 

+ yd(( I - P))Jg] 

1 
m 

& = - q//((? + P)) I 
Pau - twg + &tyt2))] 

1 
mC4 = cd/((?+ P)) 

The couple vector is mHeb and on the boundary it reduces to 

( 7d/((T2 + 1)) aB 
! 11 
- 

cd((T2 t t2)) a7 Toeb. 

(4.64) 

(4.65) 

It is seen that the resultant couple vector due to the couple stresses on the spheroid is 

c2d/((d + 1)) 1-1 d/((d + t2N ( _f2’ (m&e+ d$) dt 
m=o 

and this vanishes since 

(4.66) 

I 

2n 

e, d4 = 0. 
0 

The moment of the stress vector about the centre of the spheroid is 

m = (ze, t re,) X t (4.67) 

and the integral of this over the surface of the spheroid is zero. The scalar moment of the stress 
vector about the axis of symmetry is m * e, and this is zero everywhere. Thus, there is no 
couple exerted on the body in spite of the fluid sustaining a couple stress. 

(vii) Numerical results. To extract numerical information and evaluate the drag on the body 
the system of eqns (4.35) was solved by restricting the system to a 5 by 5 linear system. The 
drag on the body is (see (4.58)) 

4~(2/_~ t k) . 
3 

lA,c3 = 4a(2/.~ t k)Uc$ (4.68) 
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and for the nonpolar fluid the drag has the value[4] 

81r/.AJc 
70 - (7; - 1) cot-’ 70’ 

(4.69) 

The nondimensional drag for the polar fluid is (A,/3) and for the nonpolar case it is 

( ) &I 
3 n 

= [70 - (7; - I) cot-’ To]-‘. (4.70) 

The drag ratio for the oblate spheroid is defined as the ratio of the drag on the spheroid to 
the drag on a sphere of radius equal to the semimajor axis of the meridian ellipse. The drag on 
the sphere of radius cd((~$+ 1)) is[5] 

3&Jc(2/.~ + k)d((~; + I)) 
I- 4 -i. 

I I - A2(A& + 1)) t 1 I 

The drag ratio for the oblate spheroid for polar fluid is 

4 1 & 
2 36((70 + 1)) [ %(A~((+ l))-t 1 I( J 3 
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(4.72) 

(4.7 1) 
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Fig. 20. Variation of polar drag ratio with respect to 1. 

and this ratio for the nonpolar fluid equals 

b 

(4.73) 

The figures giving the drag and the drag ratio for varying values of the parameters h and A2 
show that the drag as well as the drag ratio increase with lo and also with each of the 
parameters At and A. 
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APPENDIX 

The drag on LB axially symmetric body in the Stokes flow of micropolar fluid has been expressed by an elegant formula 
by Ramkissoon and Maj~~~~~]= This can be expressed in the form 

D=4r/2p+k) It 9 
P- 

(Al) 
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where 

p = Q/((r2 + 22)) (A?) 

is the polar radial distance of the point from the origin and 9, PO denote, respectively, the stream function of the flow and 
its asymptotic value. From the solutions presented earlier, it is clear that for both the prolate and oblate spheroids 

qJ-*,=qJ,+*, (A31 

For the prolate spheroid 

and the expressions for Y, and VT2 are given in (3.8) and (3.27), respectively. It is easily seen that 

It !% = 0, 
r2 (AS) 

0-3 

The contribution to the limit of (pY,/?) arises only from the first term r2G,(s)P;(r) in the expansion of Q, and after some 
calculation, we see that. 

It sG,(s) = $% (A@ 
SU 

Thus we have the drag on the prolate spheroid given by 

D = 4-(2r t k)c’A,/3. 

For the oblate spheroid 

t.47) 

and the expressions for 8, and ‘Jr* are given in (4.8) and (4.20), respectively. It is easily seen that the only contribution to 
the limit in (Al) arises from the term ?H,(ir)P;(t) in 1y,. By straight forward calculation it is seen that 

It THi(iT) = ic*A,/3. (A9) 
IQ 

Hence the drag on the oblate spheroid equals 

4?r(2~ t k)c’A,/3. (AlO) 


