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THE RECTILINEAR OSCILLATIONS OF A 
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Department of Mathematics, Regional Engineering College, Warangal-506004, India 

Abstract-The paper examines the oscillatory flow of incompressible micropolar fluid arising from the 
harmonic oscillation of a spheroid rectilinearly along its axis of symmetry under the assumption of small 
amplitude of oscillation. The velocity and microrotation are obtained and the drag experienced by the 
spheroid is determined. The drag parameters K and K’ are numerically evaluated. 

INTRODUCTION 

THE CLASS of micropolar fluids introduced by Eringen [ l] is a subclass of simple microfluids the 
study of which was inaugurated earlier by Eringen himself[2]. These fluids exhibit some 
microscopic effects arising from local structure and micromotions of the fluid elements and they 
can sustain couple stress. The field equations of micropolar fluids are presentable in terms of 
the velocity vector and the microrotation vector. 

In this paper we examine the oscillatory flow of incompressible micropolar fluid arising from 
the harmonic oscilIation of a spheroid rectilinearly along its axis of symmetry. The oscillation 
amplitude is assumed small and omission of second order terms is assumed valid. Analytical 
expressions are obtained in an infinite series form for the velocity, microrotation, surface and 
couple stress components. The drag experienced by the spheroid is determined and is expressed 
in terms of two parameters K and K’ whose variations are noted by numerical computatjon for 
different sets of micropolarity, frequency and the geometric parameters. 

2. BASIC EQUATIONS 

The field equations of incompressible micropolar fluid dynamics are [ ii 

div q = 0 (2.1) 

p~=pt-gradp+kcurlv-(~+k)curlcurlq+(h,+2p+k)graddivq 

.dv 

(2.2) 

~~~=~~-2~~+~curlq-~curicurl~+(~t~+~)graddiv~. (2.3) 

In the above, the scalar quantities p and j are, respectively, the density and gyration 
parameters and are assumed constant. The vectors q, V, f, I are the velocity, microrotation, 
body force per unit mass and body couple per unit mass. The material constants A,, I*, k and a, 
p, y denote the viscosity and gyroviscosity coefficients and these are subject to the inequalities 

kz0; 2F+krO; 3&+2p+krO; 

y”0; ]/3]‘r; 3CY+p+yzo. (2.4 

The stress tensor tij and the couple stress tensor rnii are given by 

tij = (-p + hr div q)6ij + (2 ,U + k)d;j + keiim(+ - v,), (2.5) 

In (2.5) and (2.6), vi and 204 are the components of the microrotation vector and yorticity 
vector, respectively, dij are the components of the rate of strain and a comma denotes covariant 
differentiation. 
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Let (&q, 4) denote an axially symmetric system of coordinates and let e5, e,, e4 be the 
corresponding base vectors. The spheroid oscillates harmonically along its axis of symmetry 
and the speed of oscillation is U exp (jot). The flow generated by this oscillation is axially 
symmetric and all the flow field functions are independent of the coordinate variable 4. We may 
choose the velocity and microrotation of the flow in the form 

g = Q(& 7) eio’ = Mt, q) eg + 46 q) e,l dot (2.7) 

v = (C(& q) e,) eiw’. (2.8) 

Ignoring the body force and body couple terms f, I and retaining only the linear terms in the 
eqns (2.2) and (2.3) the basic equations of the flow can be written in the form 

div q = 0, (2.9) 

Pz=-gradp+kcurlv-(r+k)curlcurlq, (2.10) 

pj $ = 2kv + k curl q - y curl curl v + ((u + /3 + y) grad (div v). (2.11) 

If hi, h2, h3 are the scale factors of the coordinate systems (5, 7, c#J), we may write the velocity 
components in the form 

where q(& T) eio’ is the Stokes’ stream function of the flow. Let 

p = p(5,17) e’“‘. 

From (2.12) w& have 

curl q = [jI-(E2~)eivl]e~ 

in which the Stokes’ stream function operator E2 is given by 

and 

curl curl q = h&X z((h,&E2’l’)ec-(h2-$E2Q)e,,}. 

From (2.8) we see that 

div V = 0, (2.17) 

curl v = La(h3C)e 
hzh3 JV 

(2.18) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.19) 
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where the Laplacian operator V2 is given by 
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“= h,h2h3 a{ h, a[ 
L(“(!&@)+L&L)]. 

From (2.13) it follows that 

gradp = iWt. 

(2.20). 

(2.21) 

The flow eqns (2.9~(2.11) can be recast in the form below in terms of the two scalar functions 
q and C. 

ipu a* lap k a --=---_--_- 
h,h at h2 a,, h,h3 a~(h3C)+~$(E2Y)v 

ipjd=-2kCteE29+y v2-& c. 
( > 

(2.22) 

(2.23) 

(2.24) 

From (2.22) and (2.23) we can eliminate the pressure term and the resulting equation is 

{(p t k)Ed - ipoE’}* - kE2(h3C) = 0. (2.25) 

The eqn (2.24) can be written also in the form 

(2k + ipju)h3C = yE2(h3C) t kE29, (2.26) 

From (2.25) and (2.26) we can eliminate the function C and obtain the following differential 
equation for the stream function q. 

{y(p t k)P - [k(2 p t k) t ipw(y + jp + jk)]E’+ ipw(2k + ipju)E’}q = 0. 

The function C is expressible in terms of 9 in the form 

(2.27) 

k(2k t ipjo)(h3C) = {y(p + k)Ed + (k2 - ipq)E’}q. (2.28) 

The problem thus reduces to the determination of the two scalar functions q(& 7) and 
C(& v) which are governed by the eqns (2.27) and (2.28) subject to the following conditions. 

(i) Far away from the oscillating body there is practically no flow and the functions v, C 
tend to zero. 

(ii) At the boundary of the oscillating body we have the hyperstick or the superadherence 
condition and the velocity of a fluid element on the body equals that of the oscillating body 
while the microrotation of the fluid element is zero. 

The eqn (2.27) for the determination of \v can also be cast into the form 

E2(E2 - a2)(E2 - p2)U = 0 (2.29) 

where a2 and p2 are constants to be determined from the relations 

,2tP2=k(2~+k)+i~(Y+j~+jk) 
Y(P +k) ’ 

(2.30) 

,2g~ = b&k + iph) 
r(cl+-k) . 

(2.31) 
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In view of (2.29) we can build up the solution * by superposition of the solutions of 

E2P = 0, (2.32) 

( E2 - a’)‘4 = 0, (2.33) 

(E2 - p2)P = 0. (2.34) 

3.PROLATESPHEROID 

Let a prolate spheroid (focal distance = 2c) oscillate harmonically along its axis of sym- 
metry and let the velocity of the spheroid be U ei”’ in the above direction. We select ([, 7, 4) to 
represent the prolate spheroidal coordinate system whose scale factors are given by 

where 

h, = h2 = cq/(s2- f2), h3 = q/((s2- I)(1 - t2)) (3.1) 

s = cash 5, t = cos 77. (3.2) 

The Stokesian stream function operator E2 is then given by 

E2= ’ 
c2(s2 - f2) 

((s2-l)-$+(l-f2)-$). (3.3) 

Let q,,, q,, q2 denote, respectively, the solutions of eqns (2.32)-(2.34) which are regular far 
away from the spheroid. We may choose V0 in the form 

where {A,,} is an infinite set of constants and the symbols P,,(l) and Q,“’ represent the 
Associated Legendre functions. The solutions 9, and q2 can similarly be represented in terms 
of the radial spheroidal wave functions R and angular spheroidal wave functions S with 
appropriate parameters. To ensure the regularity of these functions on the axis of symmetry we 
have to restrict the angula; wave functions S to the first kind. Further, to ensure the regularity 
of the solution far from the body, we select the parameters (Y and /3 from the solutions of (2.30) 
and (2.31) so as to have positive real parts and the radial wave functions R to be of the third 
kind[3]. We then have 

‘I’, = h3 “$, B,R{$-ac, s)S\;(icx, t) (3.5) 

P2 = h3 2 C,R\?(ipc, s)S’#(i/?c, t) 
ll=l (3.6) 

where R and S are the prolate spheroidal wave functions. From [3] (pp. 753-756), we have 

Rj),)(iac, s) = { $’ (r + I)(r + 2)d j”(iac))-’ (J &) t$!)“* 
,= ,I 

X c zi ’ ir-"+("*)(r t l)(r t 2)d~(iac)Hl’!312(icucs), 
,= ,I 

and 

S\‘,‘( iac, f) = c - ’ d;“(icrc)P;‘!,(t), 
r= ,I 

where H$(~&~(Ycs) denotes Hankel function of the first kind. 

(3.7) 

(3.8) 
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The Hankel function is expressible in terms of the modified Bessel function of the second 
kind in the form[4] (p. 204) 

2 H$1!c3,2)( iacs) = ; exp (- (r+i)$ K,+o,Z)((YCS) (3.9) 

and hence 

R\?(iac, s) = ( in+2 $’ (r + l)(r + Z)d:“(iac)}-’ (s)“* 
r= ,I 

X F m ’ (r + l)(r+ 2)df”(icuc)K,+,,*~(acs). 
r= ,I 

The stream function for the flow is, therefore, given by 

(3.10) 

and this involves three infinite sets of constants {An}, {B,}, {C,}. The velocity components u 
and v and the solitary microrotation component C are all determined from the above 
expression 9 on using the relations (2.12) and (2.28). We can easily arrive at the following 
expressions for U, v and C 

and 

+ g BJ?j;(iac, s) $ (d/(1- f*)S{~(iac, t)) 
n=l 

+ n$, GN-%iPc, s) $ (V/(1 - t’)St!(iPc, f))], 

C=(ptk)a2-ipw m 
k 

z, B,J?\?(iac, s)St!(iw t) 

+ (p + k)f2 - ipw z, C,R\;(ipc, s)Sl’,‘(ipc, 0. 

(3.12) 

(3.13) 

(3.14) 

The three infinite sets of constants in the above functions u, v and C have to be determined 
by invoking the boundary conditions. Let the oscillating spheroid be given by s = so. In view of 
the hyperstick boundary conditions, the velocity q reduces to 

U e’“(td/(s* - 1) et - sd/(l - t2) e,) 
v/(s* - t2) (3.15) 
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on~=~~andC=Oandthusforl~l~l 

@(so 
I 

f) = uTv- t2) so, m - 6) 

(3.16) 

(3.17) 

as,, t) = 0. (3.18) 

Determination of the constants {A,,}, {B,), {C,} 
From the boundary conditions (3,16)-(3.18) we have the following three equations valid for 

(tf 5 1 

+ 2 B,R$3,‘(iffc, so) -$+(I - t*fSl’,‘(iac, t)) 
It=1 

+ 2 C,,R\?(@c, so)$(V(l - t*)Sl’,(ipc, t))= Ucd(sa- I)& 
n=l (3.19) 

From (3.19) we can isolate the constant A, by first multiplying the equation by P,(t) and 
integrating with respect to t from -1 to 1. The result can be expressed in the form 

From the eqn (3.20) we can similarly deduce the equation 

n=1,2,3 ,.... (3.23) 
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From (3.21) we can express the constant B, in terms of the infinite set {C,) by multiplying it by 
the function Sj’,, (icue, t) and integrating with respect to t from - I to 1. It is known that the 
functions {St’,} are orthogonal over the interval - 1 to 1. Indeed we can check the result ([5], p. 
151) 

(3.24) 

where 

(3.25) 

Further we can verify that 

I 
1 

-I 
S\l,)(icrc, t)#,(ipc, t) dr = M,,,(icrc, i/3c) = 

c 
m ’ 2(rt~~!(~~ *) d~“(iorc)df”(@c). 

I= ,I 
(3.26) 

From the eqn (3.21) we can, therefore, deduce the following relation which expresses each of 
the constants B,,(n = 1,2,. . .) as a linear combination of the constants {C,]. 

+ ((p + k)P2 - ipw> 2 C,,$\?,($~C, s&M,,(iac, ipc) = 0, (3.27) 
ItI=1 

for n=1,2,3 ,,... 

From (3.22) and (3.23) we can eliminate the constant A,, and the result is an equation that 
connects the constants (B,) and (C,}. From this equation we can replace each of the constants 
3, in terms of the constants {C,,,} (using (3.27)) and, thus, we have a nonhomogeneous infinite 
system of linear algebraic equations in which the unknowns are the constants {C,,,}. The 
constants {C,,,} have to be determined from this infinite system. Once this is done, the constants 
(B,] can be determined from (3.27). The constants {A,} can later be determined from (3.22) or 
(3.23). It is also possible to express the constants A, directly as a linear combinations of Cm’s 
apart from the term involving the parameter U. Thus we have a feasible procedure for the 
determination of each of the sets of constants (A,}, {B,}, {Cm). It has not been possible to obtain 
exact analytical expressions for the coefficients A,, B,, C,, though it is seen easily later that 
these constants vanish for even values of n. The details are shown in the appendix, 

Pressure distribution. The eqns (2.22) and (2.23) can be simplified by expressing C in terms 
of ‘I’ from the eqn (2.28). We find that 

(3.29) 

By integrating these two equations we obtain the pressure distribution 
constant is ignored). 

in the form (an additive 

P(s, t) = ipw 2 n(n t l)A,Q,(s)P,(t). 
II=1 

(3.30) 
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Strain rate components. The rate of deformation components are 

t’ik = Eik eio’ 

where 

Eik = !j ( Qi. k + Q/t, j). 

(3.31) 

(3.32) 

We find that 

E,, = 
1 .-CL_ 

c3(? - t*) Vr,,+(&*) 

Eqn = ’ sp’, t(2t2 - 1 - S2) 
c3( $2 - t*) - q’sr + (g - p) + (s* - p)( 1 - p) *s ’ 

1 
EM = c3(s* _ p) 

sq tp, 
e + (1 _ p) 3 

(s*- I)*,, -(I - t2)**l 
Ec7l = E7& = 2c3(? - P)d((?- l)(l - P)) 

sd(s’- l)qS tq\/c 1 - t*)Y, 
- C3(S2 - t*)*q(l - t*) - c3(s2 - t*)*q(s* - 1)’ 

E,, = E, = E,,, = E,, = 0. 
(3.33) 

The non-zero spin component is given by 

1 
Ok = G E*\y. (3.34) 

Stress components. The stress tensor rjk defined in (2.5) can be written in the form 

tjk = qk e’“‘. (3.35) 

We find that 

Tt6 = -P t (2 p t k)E,, 

T,,, = - P t (2 p t k)E,,, 

TM=-P+(2p+k)EM 

T,=(2p+k)E,+k(w,-C) 

T,,, = (2 p t k)E,,, - k(w, - C) 

TN = Tc4 = Ttld = T,, = 0. 

The stress vector (t) on the surface of the spheroid is 

(t) = t, e5 + trq e, + t, eg 

and its component along the axis of the spheroid is 

(t&/(s* - 1) - t&q/(1 - t*))/~(s* - t*). 

(3.36) 

(3.37) 

(3.38) 
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We have 

(3.39) 

th = 
(2 CL + k) 

2c3(s2 _ t2)2.\/((s2_ I)(1 _ t2)) KS2 - t*m* - wss - (1 - t*wtA 

-Zs(s*-l)ly,-2r(l-f*)lY,]+k(g-C)]eiY’. (3.40) 

On the boundary we have the adherence condition, (3.16)-(3.18), and this can also be expressed 
in the following way 

\Ir, = - UC2S(l - P), 

*, = Uc2t(s2 - l), 

! 

on s = so. 

c = 0. 

(3.41) 

From these it follows that on the boundary we can write 

T, = - P(so, 0, (3.42) 

and 

(3.43) 

It is known that on the boundary C(so, t) = 0 and hence from (3.21) 

(p + k)E*‘I’ = ipw(‘P, + ‘I’*) (3.44) 

and the component of the stress vector along the axis of the spheroid is, therefore, given by 

_ CM - lVP(so, Q + ipwsov, + ~2hJ e;o, 

ClNd - t*m; - 1)) 
(3.45) 

The radial component of the stress vector is 

and the resultant of this force over the entire body is seen to be zero on integration. Thus the 
body experiences a drag only in the direction of the axis of symmetry. The drag on the spheroid 
is obtained from (3.45) by integration. 

If the drag is denoted by 

D=Doe”’ (3.46) 

we have 

D0=2~c*~(~~-1) 
I 

’ (t~/(s*-l)T**-s~/(l-t*)T~~),dt 
-1 

= 27rc*q/(s; - 1)(1, - I*), (3.47) 
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1, = 
I 
I, (MS’ - l)&), dr, 

and 

Iz = 
I 
J, (s~'(l - t*)&,)% dt. 

Using (3.30) and (3.42) in (3.48) we find that 

II = -; A,ipw~/(s:- l)Q,(s,,). 

(3.48) 

(3.49) 

(3.50) 

From (3.43), (3.44) and (3.49) we see that 

I2 = ipwsO: [ n$, B,R$3,‘(icuc, sO)d~(iac) + $, CJ?\3,‘(@c, sdd:“(@c)] (3.51) 

and this simplifies to 

-i ipwsod(s~ - 1) [i UC + Q;(s,JA,] 

on using the eqn (3.22). We have, therefore 

Do= 3 8~~wc2i [!+;_ 1)-A,] 

and the drag on the spheroid is Doe’“‘. 
We can write the drag in the form 

= MlJo eiwf(- K’ - iK) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

where M is the mass of the fluid displaced by the spheroid and 

2A1 
ucs&; - 1) I 

(3.56) 

The drag parameters K and K’ depend on the imposed frequency of oscillations, the eccen- 
tricity of the spheroid as well as the micropolarity of the fluid. 

Couple stress. The couple stress tensor “ii is defined in (2.6) and its only nonvanishing 
components are 

(m,+, m+,, mt.+, m,) = (M,,, &,, MN, &) e’“‘. (3.57) 

It is seen that 

1 
MV+ = c-\/((s’ - P)( 1 - t*)) 

(w+ yu- t?$), 

1 
M‘PT = - 4(($2 _ f2)( 1 _ t2)) ( 

dC 
P(1 - t*) at + ytc 

> 
, 

(3.58) 

(3.59) 
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M,,=- 
1 

cd((s2 - P)(? - 1)) 
(-p,c+ y(s2- I)$), 

M,= 
1 

c~((s* - t*)(~* - 1)) 

The couple vector is rn&$ and on the spheroid s = so this reduces to 

( - Y~(s* - 1) ac - 
c.\/(s*- t*) as > 

(eio')Z+ 
s=so 

171 

(360) 

(3.61) 

(3.62) 

The resultant couple vector due to the couple stress on the spheroid is seen to be zero on 
integrating the expression in (3.62) over the surface of the spheroid. 

The moment of the stress vector t about the centre of the spheroid is 

&)=pxI (3.63) 

where p is the radius vector and the integral of fro over the surface of the spheroid is seen to be 
zero. Scalar product of Rio with the unit axial vector (along the axis of symmetry) is seen to be 
zero. Thus, there is no exertion of couple on the body even though the fluid sustains couple 
stress. 

Numerical results 
The drag on the spheroid given in (3.46) involves only the single constant A,, cf. (3.53), and 

the drag parameters K and K’ are defined in (3.56) in terms of the constant A,. These are 
numerically evaluated for several parameter combination involving the size of the spheroid, 
imposed frequency o and micropolarity constants by computing the values of the constants C, 
from eqn (Al.7) in the Appendix Al, by truncating it to a 5 by 5 system. This choice of the 
order of truncation is motivated by the extent to which the coefficients needed for the 
evaluation of the constants dy(icuc), dY(@c) are available in the published literature[3]. The 
parameters relevant for the problem are eccentricity (= l/so) of the spheroid, the frequency 
parameter 

The Tables 1 and 2 and the Figs. l-6 show the variation of the drag parameters K, K’ in the 
polar case. 

Nonpolar case 
The rectilinear oscillations of a spheroid in classical viscous fluid governed by the Navier- 

Stokes equations of motion have earlier been analyzed by Kanwal[S]. The solution in this case 
consists of a sum of two infinite series for the stream function and this analysis is identifiable 

Table I. Variation of K and K’ (polar case) 
PL=2.0, PI=O.S, PT=0.4, (r2=2.5 

SO 

I.5 0.19158607(3) 
I.8 0.13766592(2) 
2.0 0.26427353(2) 
2.4 0.63503551(O) 
2.8 0.37272177(l) 
3.5 0.35189238(l) 
4.0 0.32340479(l) 
4.5 0.32116308(l) 

K K 

0.22544936(3) 
0.1517215q2) 
0.288782%(2) 
0.21737045(O) 
0.37468023(I) 
0.34906301(1) 
0.31557665(l) 
0.31228218(l) 
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Table 2 
&J= 1.8, PL = 2.0, PJ = 1.5, n2=4.0 

PT K K’ 

0.4 0.25392199(l) 0.15264654(l) 
0.8 0.632063%(l) 0.94602752(O) 
1.0 O.S8~S~9(l) 0.3%13285(l) 
1.2 0.59381361(l) 0.~71~(0) 
1.6 0.3893417qz) 0.43797~2(2) 

with that in the polar case described above by passage to the limit in the following sense 

k-+0, k+O, $0, t-O, ipw 

p+k 
a2+-. 

CL 

The expression for the drag is furmalfy the same as in the polar case given above in (3.46) and 
(3.53) and the parameters K and K’ can be defined as in (3.56). Numerical evaluation of these 
parameters has been included for the sake of completeness. The Figs. 7-10 show the variations 
of K and I(’ in the nonpolar case. 

4. OBLATE SPHERlOD 

An oblate spheroid (focal distance = 2~) oscillates harmonically along its axis of symmetry 
and its velocity in the above direction equals U e”‘. We select the coordinates (& r], 4) from 
the oblate spheroidal system with the scale factors 

hf = h2 = cvf(T2+ P), h3 = cv’((?+ I)(1 -P)), (4.1) 

where 

r = sinh 5, t = cos q, 

-12- 

Y 

:-16- 

a" 

-2 0 - 

-2 L - 

-28 - 

-32 - 

-3E- 

PL PJ PT I+ 

@) 3.0 0.5 1.0 1.5 

Q 2.0 0.5 1.2 1,5 

Fig. I(a). 

(4.2) 
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1 6 

26 q 

2L- 

PC PJ PT A2 
0 2.0 0.5 0.4 2.5 

@ 1.5 1.0 1.6 2.5 

6- 

6- 

Fig. I(b). 

Fig. I. Variation of polar K with respect to sO. 

0 2.0 0.5 0.1 2.5 

a 1.5 1.0 1.6 2.5 

8- 

-8 - 

-x 
%-IS- , 
z 
n , 

-2&- 

PL PJ PT A2 

0 3.0 0.5 1.0 1.5 

0 2.0 0.5 1.2 1.5 

-32 - 

-LO- 

-48 t 

SO 

(a) 
Fig. 2. Variation of polar K’ with respect to sO. 

(b) 



174 S. K. LAKSHMANA RAO and T. K. V. IYENGAR 

36- 
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l- 

0 2.5 I.6 4.0 3.5 

0 1.0 2.0 4.0 2.8 6_ 

0 1.5 o-5 2.5 4.0 

0. I ’ ’ 0.4 0.8 1f2 11.6 2- pT 0: 0!8 

(0) cpb: 

1!2 I!6 

Fig. 3. Variation of polar K with respect to PT. 
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Fig. 4. Variation of polar K’ with respect to PT. 



The rectilinear oscillations of a spheroid in a micropolar fluid I75 

Q 1.6 0.5 2.5 L.0 

I I I I 
LO 1.5 2.0 2.5 3 

PL 

@ 1.2 2.0 1.5 2.8 

@ 1.6 0.5 2.5 L-5 

PL 

Fig. 6. Variation of polar K’ with respect to PL. 
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The Stokes’s stream function operator E2 is then given by 

,32= * 
c2( T2 + t2) [(T2+1)-$+(1-t2)-g]. 

6 

(4.3) 

Let YJo, ‘I’,, ‘P2 be solutions of the eqns (2.32X2.34), respectively, that are regular far away 
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from the spheroid. We can take 

(4.4) 

where {A,] is an infinite set of constants and Q’,” and Pi” denote the Associated Legendre 
functions. The functions V, and ‘PIT2 can similarly be expressed in infinite series form involving 
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Fig. IO. Variation of nonpolar K’ with respect to PT. 

radial and angular spheroidal wave functions ([3], pp. 753-756) with the appropriate parameters. 
To ensure the regularity of these functions on the axis of symmetry, we have to restrict the 
angular wave functions to the first kind. To ensure further the regularity of the solution far 
away from the body we select the parameters (Y, p from the roots of the eqns (2.30) and (2.31) 
so as to have positive real parts and the radial wave functions to be of the third kind. Thus P, is 
a linear combination of the functions 

{hjRfj’(iac, T)Sljl(hC, t,} (4.5) 

and q2 is a combination of such functions with the parameter (Y in (4.5) replaced by p. In (4.5) 
above the functions R\?(iac, 7) and Sj’j(iac, t) denote the oblate spheroidal radial and angular 
wave functions, respectively. These can be expressed as prolate spheroidal functions by 
changing (iac, i/3c) to (ac, PC) and 7 to h. Thus, we may write 

V, = h3 2 B,R\Z(cuc, h)Slln(ac, t) (4.6) 
n=I 

q2 = h3 2 C,Rf/(/?c, h)SMpc, t) (4.7) 
n=l 

where {B,} and {C,} are infinite sets of constants. The prolate spheroidal wave functions 
R\:(A, i7) and #!(A, t) are given by ([3], pp. 751-756) 

(r + l)(r + 2)dl”(h) 

X c = ’ (r + l)(r + Wf”WC+~m~(W 
r= ,I 

(4.8) 

LIES Vol. 19. No. 2-B 
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(4.9) 

The stream function of the flow is 

and the velocity and microrotation components are 

U(T, f) = 
1 

i 
2 A~~~)(i~) $ (-\i( 1 - ~*)~~)(f)) 

et/f?+ fZ) n=[ 

+ 2 B,Rj?(cxc, i7) $ (V(1 - t*)S\‘,‘(ac, t)) 
II=1 

(4.11) 

and 

By the hyperstick boundary condition we have on r = 7. 

(4.13) 

(4.14) 

(4.15) 

Determination of the constants {A,}, {B,}, {C,} 
From the boundary conditions (4,14)-(4.16), we can obtain the following equations involving 

the three sets of constants, on the same lines as in Section 3. 

+ C,,Rf!,(Pc, i~oMfim@c) 
m=l 

= -; &V/(7;+ l)&,. (4.17) 
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(4.18) 

((p t k)a2 - ipw)BJ7~~(ac, i7dNnn(ac) 

t((j.6 + k)P2-ipo) mz, C,H!@c, hTg)K&c,Pc) =O. (4.19) 

n=1,2,3 ,.... 

In the above the quantities N,,,(W) and M,,(crc, PC) are defined by 

N”,(~C) = I_‘, S\l,‘(ac, t)]’ dt = ,$; 2(r ;ff;+ 2, [dt”((~c)l~, (4.20) 

ac, t)S\!&?c, t) dt = ,=$; “(r ‘,,‘fr,’ 2, dl”(ac)d;“‘(/%). (4.21) 

From the above three sets of equations, the constants {A,}, {II?,} and {C,} can be determined 
(Appendix A2). 

Pressure distribution. From the eqns (2.22) and (2.23) we can see that the pressure ~(7, t) 
has the form 

P(T, t) = ipw $ n(n + 1M,Q,WP,(O. (4.22) 

Evaluation of the drug. The rate of deformation components are 

E,, = ’ 
C3(T2 t t2) 

J&z ’ (a+%), 

C3(T2+ t2) T2+ 1 1 - t2 

( T2 t l)qm - (1 - t’)T,, 

E” = E” = k3(T2 t t2)-\/((T2 t I)(1 - t2)) 

tq/c 1 - PpP, Td(T2 + l)q, 

’ C3(T2 t t2)2.\/(T2 t 1) - C3(T2 t t2)2d(1 - t2) 

E,,, = E,, = E,, = Eti = 0. 

and the non-zero spin component is 

w+ = $ E2’l’. 

The component of the stress vector ? along the axis of the spheroid is 

td/(T2 t l)tcc - TV/( 1 - t2)th, 

d(T2 t t2) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

As seen in Section 3, we have here again 

T, = - PtTo, t) 
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(p + k)E2q = ipo(Y, t 9,). 

The body experiences only a drag in the direction of the axis of symmetry, given by 

D = D,, eio’ 

and 

This can be simplified into the form 

1 
and the drag on the spheroid is 

MUw e’“‘(- K’ - iK) 

where M is the mass of the fluid displaced by the spheroid and 

The couple vector on the spheroid T = 7. is 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

and its contribution to the resultant couple vector is zero. There is no contribution to the 
resultant couple vector from the stress vector t either. Thus there is no exertion of a couple on 
the body. 

Table 3. Variation of K and K’ (polar case) 
PL=2.0, PI=O.S, PT=0.4, (r2=2.5 

70 -K - K’ 

0.5 0.12820135(2) 0.24863510(2) 
1.0 0.15152625(3) 0.25839087(3) 
1.5 0.12091938(4) 0.20167324(4) 
1.8 0.33008845(4) 0.54283516(4) 
2.0 0.36076282(4) 0.58620898(4) 
2.5 0.33715552(3) O&424365(3) 
3.0 0.42273 145(3) 0.47940234(3) 
3.5 0.44393018(2) 0.64816064(3) 
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The drag on the spheroid given in (4.31) involves only the single constant A, and the drag 
parameters K and K’ are defined in (4.32). These are numerically evaluated for several 
parameter combinations involving the size of the spheroid, the imposed frequency w and 
micropolarity constants. Tables 1 and 2 and the Figs. 11-16 show the variations of the drag 
parameters K, K’ in the polar case. The Figs. 17-20 show the variations of K and K’ in the 
nonpolar case. 

Table 4 
70=1.0, PL=2.5, PJ=l.O, a2=4.0 

PT -K -K' 

0.4 0.61928784(3) 
0.8 0.16669482(3) 
1.0 0.12248933(3) 
1.2 0.12143762(3) 
1.6 0.55913055(2) 

0.71018237(3) 
0.57144836(2) 
0.11553275(3) 
0.86516220(3) 
0.871562%(2) 
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Fig. 17. Variation of nonpolar K with respect to 70. 

Fig. 18. Variation of nonpolar K’ with respect to T@,. 
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Fig. 19. Variation of nonpolar K with respect to PT. 

r 

Fig. 20. Variation of nonpolar K’ with respect to PT. 
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APPENDIX Al 

Determination of the constants {A”}, {B,}, {C,) 
The infinite sets of constants {A,}, {B.}, {C,} that occur in the expression (3.1 I) for the stream function and in the 

expression (3.14) for the microrotation component are determined from the three eqns (3.22) (3.23) and (3.27). From the 
eqns (3.22) and (3.23) we can eliminate the quantity A. and the result is 

= 
c E,,,d!,‘!!,(icrc) n(n t l)Q.(s,JR\~(iac, s,,) 

In=, ( 

- Q’.“(s,) [ $ (d( s2- l)R$%(iac, s)) 
31 sa 

+ $, C,d~‘?(iSc) (n(n f l)Q.(s0)RlU3c. so) 

- Q!!‘(G) [g (d(s’- l)R?,!,(i@, s))] 
xl 

From the eqn (3.27) we see that 

E 

m 

Q 

c C,R$Wc, sdM,,(icrc, ipc) 

1 
D=I 

N,,,,(iac)R{~(iac, sO) . 

(Al.l) 

(Al.2) 

The quantities B,,, can be eliminated between (Al.l) and (A1.2) and the result is an infinite system of linear algebraic 
equations for the unknown C,. If we define 

62=poc2 
PLfk 

(Al.3) 

we see that the system can be written in the form 

x 

c Y&P = UC& I 

p=l cs:- I)3’2Q;h) 
(Al.4) 

and 

(Al.5) 

for n, p = 1,2,3,. . . . 
The constants (A,) are also directly expressible in terms of the constants {C,,,} apart from a term involving the 

parameter CJ. From eqns (3.19) and (3.21) it is possible to eliminate the entire block of terms involving E,‘s and we see that 

I (p + k)(02 - P2) 
A.Q:‘(sd = - j &($I - 1)“2& I - cF + ,+2 _ iw 

x c [C,d:‘YI(iPc)R’Z,(if3c, sdl 
m 

(A1.6) 

(n=l,2,3 ,.... ). 
The parameters d!,‘!,(iclc), dlP_,(ific) which appear in the coefficients ymp of the above linear system may be deemed to 

be zero when ((m - n)/(p - n)) take odd integral values. The system (Al.4) can be split into two subsystems corresponding 
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to even and odd values of n. The subsystem with n = 2,4,6, etc. is a homogeneous system and we may take the solution 
C,, C,, C,, of this infinite system to be trivial. The quantities M&UC, ipc) defined in (3.26) can also be deemed to be 
zero whenever n + m is an odd positive integer. From the eqn (3.27) and the above observation concerning M,,(icrc, ific), 
it follows that the coefficients B. are zero for all even integral values of n in view of the similar result concerning the 
coefficients C.. From (3.22) or (3.23) we can now see that the coefficients A, are also zero for even positive integral values 
of n. 

Thus the stream function involves only the three infinite sets of constants {A z~+IJ. (&.+J, IG.+J. ‘he constants 
{C,.,,) are determined from the system 

(Al.7) 

n=O,l,2,3 ,.... 
The constants [&+i} are then determined from (3.27) and {AIn+,) are determined thereafter from (3.22). 

APPENDIX A2 

Determination of the constants {A”), {B,), (C,} 
The infinite sets of constants {A,), {B,), {C,) that occur in the expression (4.10) for the stream function and in the 

expression (4.13) for thk microrotation component C are determined from the three eqns (4.17H4.19). As in the Appendix 
Al we can derive the following system of equations for the constants {C.}. 

(A2. I) 

where 

(A2.2) 

n,p=l,2,3 ,.... 
We can also see that 

I 
AnQ(n)(i7,J = - 2 UC~/(T~ t I)&, - (cl t k)b2 - P2) 

(P + k)W) - iw 

x 2 C,CdBc)Rl?Mc, id. 
m 

(A2.3) 

The constants {A*“). {II,,}, {f&)are zero as in the case of the prolate spheroid and the stream function involves the three sets of 
constants {AIn+,), {B2.+,), {CT,+,). The constants (Cz.,,) are determined from the system 

(A2.4) 

n=O,l,2 ,.... 
The constants {B,.,,) are then determined from (4.19) and {Az~+J from (4.17). 


