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THE RECTILINEAR OSCILLATIONS OF A
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Abstract—The paper examines the oscillatory flow of incompressible micropolar fluid arising from the
harmonic oscillation of a spheroid rectilinearly along its axis of symmetry under the assumption of small
amplitude of oscillation. The velocity and microrotation are obtained and the drag experienced by the
spheroid is determined. The drag parameters K and K' are numerically evaluated.

INTRODUCTION
THE cLASs of micropolar fluids introduced by Eringen[1] is a subclass of simple microfluids the
study of which was inaugurated earlier by Eringen himself[2]. These fluids exhibit some
microscopic effects arising from local structure and micromotions of the fluid elements and they
can sustain couple stress. The field equations of micropolar fluids are presentable in terms of
the velocity vector and the microrotation vector.

In this paper we examine the oscillatory flow of incompressible micropolar fluid arising from
the harmonic oscillation of a spheroid rectilinearly along its axis of symmetry. The oscillation
amplitude is assumed small and omission of second order terms is assumed valid. Analytical
expressions are obtained in an infinite series form for the velocity, microrotation, surface and
couple stress components. The drag experienced by the spheroid is determined and is expressed
in terms of two parameters K and K’ whose variations are noted by numerical computation for
different sets of micropolarity, frequency and the geometric parameters.

2. BASIC EQUATIONS
The field equations of incompressible micropolar fluid dynamics are[1]

divg=10 2.1)
pg% = pf—grad p + k curl v — (u + k) curl curl g+ (A, +2 p + k) grad div q (2.2)
pjg—:’ =pt—-2kv+kcurlgq—ycurlcurlw + (a + B+ y) grad div ». 2.3)

In the above, the scalar quantities p and j are, respectively, the density and gyration
parameters and are assumed constant. The vectors q, », f, ¢ are the velocity, microrotation,
body force per unit mass and body couple per unit mass. The material constants A,, u, k and «,
B, v denote the viscosity and gyroviscosity coefficients and these are subject to the inequalities

k=0; 2u+k=0; 30 +2u+k=0;
y20; |Bl<y; 3a+B+y=0. (2.4)
The stress tensor #; and the couple stress tensor m;; are given by
Li=(=p+A divq)8; + (2 u + k)d; + kejm(wnm —~ ), (2.5
my = aldiv »)8; + By;; + vy, {2.6)
In (2.5) and (2.6), »; and 2w; are the components of the microrotation vector and yorticity

vector, respectively, d; are the components of the rate of strain and a comma denotes covariant
differentiation,
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Let (£ », ) denote an axially symmetric system of coordinates and let e, e,, e, be the
corresponding base vectors. The spheroid oscillates harmonically along its axis of symmetry
and the speed of oscillation is U exp (iwt). The flow generated by this oscillation is axially
symmetric and all the flow field functions are independent of the coordinate variable ¢. We may
choose the velocity and microrotation of the flow in the form

g=Q& n) e ={u(¢, ne +v(gn)e, e 2.7)
and
v=(C(§n)e,)e™. (2.8)

Ignoring the body force and body couple terms f, ¢ and retaining only the linear terms in the
eqns (2.2) and (2.3) the basic equations of the flow can be written in the form

divq=0, 29
—q =—grad p + k curl v — (u + k) curl curl q, (2.10)
oi %—’t' = 2ke + k curl q - y curl curl » + (@ + B + ) grad (div v). @.11)

If hy, hy, h; are the scale factors of the coordinate systems (&, 1, ¢), we may write the velocity
components in the form

oy oV
hzh;ll = _%, h3h|l) = a—§ (212)
where W(¢ n) e™" is the Stokes’ stream function of the flow. Let
p=p(&n)e™. (2.13)
From (2.12) wg have
curlq = {711— (E*¥) ei“"} € (2.19)
3
in which the Stokes’ stream function operator E* is given by
2. hs {_ (ﬁ_ﬁ_) (Jtu_i)}
and
uuf
2. 2
curlcurlq = I, h i {(hl E‘I’) (h2a§E ‘I') } 2.16)
From (2.8) we see that
divy =0, .17
— iwt
curl v = { o 9 (hsC)e, - i h i 3 (hC)e, } (2.18)
. 21 ot
curl curl 5 = - {(V -h—) C} e e, (2.19
3
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where the Laplacian operator V? is given by

vi= hllzhs{af <h121}:3 ag)+ <h;3:' 617)}' | (2.20).

From (2.13) it follows that

1 9P 1 3P )e“‘". 2.21)

gradp = (h G o

The flow eqns (2.9)-(2.11) can be recast in the form below in terms of the two scalar functions
¥ and C.

_dpw 0¥ _ 19P k 4 (w+k) 3
hohy on -y 9 T ks 9n O " ok, oy B V) (2.22)
Jpw ¥ __10P_ k 9 (w+k) 3
hahy 36 = hyam iy 3 MO o, s EY (2.23)
lp]wC = —2kC+Fk‘ Ez\l’-f' Y (VZ —%) C (224)
3 3

From (2.22) and (2.23) we can eliminate the pressure term and the resulting equation is
{(u+ k) E* - ip0E*}¥ — kEXh;,C) =0, 2.25)
The eqn (2.24) can be written also in the form
(2k + ipjw)h;C = yE (h;C) + kE*V, (2.26)

From (2.25) and (2.26) we can eliminate the function C and obtain the following differential
equation for the stream function V.

{y(u + k)E®—[kQ2 u + k) + ipw(y + ju + jK)IE* + ipw(2k + ipjw) E}¥ = 0. (2.27)

The function C is expressible in terms of ¥ in the form
k(2k + ipjo)(h;C) = {y(n + k) E* + (K? - ipwy) E}}V. (2.28)

The problem thus reduces to the determination of the two scalar functions (& %) and
C(¢, n) which are governed by the eqns (2.27) and (2.28) subject to the following conditions.

(i) Far away from the oscillating body there is practically no flow and the functions ¥, C
tend to zero.

(i) At the boundary of the oscillating body we have the hyperstick or the superadherence
condition and the velocity of a fluid element on the body equals that of the oscillating body
while the microrotation of the fluid element is zero.

The eqn (2.27) for the determination of ¥ can also be cast into the form

EXE*—o)E*-B8)¥ =0 (2.29)
where a? and 8% are constants to be determined from the relations

kQu+k)+ipo(y + ju +]k)

wre Y+ k) 230
2B = ipw(2k + igiw)_ 2.31)

y(p +k)
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In view of (2.29) we can build up the solution ¥ by superposition of the solutions of

B =0, (232)
(E?- a®)¥ =0, (2.33)
(E?- B)¥ = 0. (2.34)

3. PROLATE SPHEROID

Let a prolate spheroid (focal distance =2c¢) oscillate harmonically along its axis of sym-
metry and let the velocity of the spheroid be U ™ in the above direction. We select (£, , ¢) to
represent the prolate spheroidal coordinate system whose scale factors are given by

hy=hy=c\/(s* =17, hy=cV/(s*—1)(1-17) (3.1
where

s=cosh¢ t=cosn. 3.2)

The Stokesian stream function operator E? is then given by

] (92 52
B = = (- 3 (1= 07} 69

Let ¥,, ¥y, ¥, denote, respectively, the solutions of eqns (2.32)—(2.34) which are regular far
away from the spheroid. We may choose ¥, in the form

Vo= s 3 AQL(IPD (3.4

where {A,} is an infinite set of constants and the symbols P, and Q," represent the
Associated Legendre functions. The solutions ¥, and ¥, can similarly be represented in terms
of the radial spheroidal wave functions R and angular spheroidal wave functions S with
appropriate parameters. To ensure the regularity of these functions on the axis of symmetry we
have to restrict the angular wave functions S to the first kind. Further, to ensure the regularity
of the solution far from the body, we select the parameters a and 8 from the solutions of (2.30)
and (2.31) so as to have positive real parts and the radial wave functions R to be of the third
kind[3]. We then have

¥, = hy >, B,Riac, s)S{Niac, t) 3.5)

¥, =hy S, C,ROiBe, 5)S{iBe, 1) (3.6)

where R and S are the prolate spheroidal wave functions. From [3] (pp. 753-756), we have

Rfiac, s) = { %j] (r+ l)(r+2)d',"(iac)}_l (\/-2{;) (5%}—1)”2

xS . im0 1 1)(r + 2)d (i) H Dyplicecs), 3.7)

r=u,

and

SWiac, 1) = ?:1 d'"(iac) PO (1), (3.8)

where H{)sp)(iacs) denotes Hankel function of the first kind.
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The Hankel function is expressible in terms of the modified Bessel function of the second
kind in the form[4] (p. 204)

H‘,',Z(g/z,(iacs) = % exXp <— (I‘ + %) %) K,+(3/2,(acs) (39)

and hence

2(32 _ 1))!/2

racs’

R§iac, 5) = {i"+2 %‘,] (r+ 1)(r+ 2)d}"(iac)}_1 (
x Z,] (r+ 1)(r + Dd!™(iac)K, ,aplacs). (3.10)
The stream function for the flow is, therefore, given by
¥=hs| 3 A,QUEPVO+ 3 BRiac, )Siac, 1+ 3 CROiBe, )S1iBe, 1)

(.11

and this involves three infinite sets of constants {A,}, {B,}, {C,}. The velocity components u
and v and the solitary microrotation component C are all determined from the above
expression ¥ on using the relations (2.12) and (2.28). We can easily arrive at the following
expressions for u, v and C

w= o] 2 A Ewa-mpYay

+ 2 B.Riac, 5) (% V(1= )SWiac, 1))

+ 3 CARENiBe,5) gy (V{1 - PStHige, ), 6.1

0= | 2 A (VT DOR)PD
+ 3 By 4 (V= DRYiac, )T iac, 1
+ 3 G g (VST DRRiBe, )18, 1)), 6.1
and
¢~ AR08 $ b RNiac, 1iac,
Lt k)IL:2

— ipw 2 C.RBc, 5)STAiBe, 1). (3.14)

The three infinite sets of constants in the above functions u, v and C have to be determined
by invoking the boundary conditions. Let the oscillating spheroid be given by s = s,. In view of
the hyperstick boundary conditions, the velocity q reduces to

Ue™(ty/(s = 1) e = sv/(1 - 1
S\/(s)ff,z)s\/( £)en) (3.15)
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on s = spand C =0 and thus for [t| <1

2
u(s, t) =Q\%g°:—ﬁ;-) t, (3.16)

2
olon, ) = A=, @17

Clsp, 1)=0. 3.18)
Determination of the constants {A,}, {B,), {C.}

From the boundary conditions (3.16)~(3.18) we have the following three equations valid for
[tl=1

— S n(n+ DAQP(s)Palt)

n=1

2 R{iac, so) —{\/ (1= )S{iac, 1))

+ 3 CLRRiBe, ) 5; (V{1 = PS1iBe, 1) = Ue(sh- Dy, (319

S n(n+ DAQUP ()

+ 3 B, |4 (s - DRRUiac, )] Sthiac, 1
n=1 s

So

* 2 G [z?; (V(s*~ DR§Xige, s»] S{iBe, 1)

S

=— Uesp/(1- 13, (3.20)
((u + k)a? — ipw) i B.Riac, s0) SN iac, 1)
n=1

+((u+ DB ipw) 3, CRENIBG, s)STiBC, =0, (.21)

From (3.19) we can isolate the constant A, by first multiplying the equation by P,(t) and
integrating with respect to f from —1 to 1. The result can be expressed in the form

AQP(s0) + 2 B.R{(iac, so)d ™ (iac)

+ 3 CaROMBe, 59l (iB) = =5 Uen/(s3 = Dy
1
n=123,.. .. 3.22)

From the eqn (3.20) we can similarly deduce the equation

M1+ DAQ0+ 3 Badii(iac) |- (s~ DRPMiac,5) |

0
+ Z Crdi™(iBc) [ V(s - DR(iBc, s))} = Ucsedn
n=1273.... (3.23)
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From (3.21) we can express the constant B, in terms of the infinite set {C,} by multiplying it by
the function S§ (iac, t) and integrating with respect to ¢ from —1 to 1. It is known that the
functions {S{,} are orthogonal over the interval — 1 to 1. Indeed we can check the result ([5], p.
151

[ Stiiac, 05t iac, ) dt = Ny Giac)oun (.24
-1
where
e+l .
e (3.25)

Further we can verify that

1 2
f_ Stiiae, 018 ) dt = Myn(iac, i) = 3 W d"(iac)d!™(iBc).  (3.26)

From the eqn (3.21) we can, therefore, deduce the following relation which expresses each of
the constants B,(n =1,2,...) as a linear combination of the constants {C,,}.

(1 + k)~ ip)Nyicc) B,RSMic, 50)
+ (0B~ ipw) S, CuRTAIBC, 59Myn(iec, iBc) =0, (3.27)
for n=1,2,3,....

From (3.22) and (3.23) we can eliminate the constant A, and the result is an equation that
connects the constants {B,} and {C,}. From this equation we can replace each of the constants
B, in terms of the constants {C,} (using (3.27)) and, thus, we have a nonhomogeneous infinite
system of linear algebraic equations in which the unknowns are the constants {C,}. The
constants {C,,} have to be determined from this infinite system. Once this is done, the constants
{B,} can be determined from (3.27). The constants {4,} can later be determined from (3.22) or
(3.23). It is also possible to express the constants A, directly as a linear combinations of C,,’s
apart from the term involving the parameter U. Thus we have a feasible procedure for the
determination of each of the sets of constants {4,}, {B,}, {C,}. It has not been possible to obtain
exact analytical expressions for the coefficients A,, B,, C, though it is seen easily later that
these constants vanish for even values of n. The details are shown in the appendix.

Pressure distribution. The eqns (2.22) and (2.23) can be simplified by expressing C in terms
of ¥ from the eqn (2.28). We find that

= io0 3 nln+ DAQUP), (3.28)
P . & ,
= =i 2‘ n(n+ 1A, Q,(s)Pt). (3.29)

By integrating these two equations we obtain the pressure distribution in the form (an additive
constant is ignored).

P(s, )= ipw 2 n(n + DA,Q.(5)P,(1). (3.30)
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Strain rate components. The rate of deformation components are
e = Ey e™' (3.31)
where
1
Ey = 3 (Qix+ Qi j)- (3.32)
We find that
t\l' s(2s*—1-13) }
Eff S(S _t2){ 2) (S tz)(S I)q,t s
s‘I’ t(2t2— 1-5%) }
t2) { \Psr + 2) (S 2)(1 — t2) ‘Ps »
1 sV, v, }
Bos =52 —m{ -
E =E = (s —])\I’ss—(l_tz)\l’tl
T2~ V(8P - (1 - 1)
LY A AV S ) 7
C3(s2 _ t2)2\/(1 _ t2) CS(SZ _ t2)2\/(s2 _ 1
E E¢§ E"ld’ E¢.,, = 0
(3.33)
The non-zero spin component is given by
wy = ﬁ; E*Y. (3.34)

Stress components. The stress tensor t; defined in (2.5) can be written in the form

ty = Ty e™. (3.35)
We find that
T,,=-P+Qu+kE,
Tyo=—P+Qu+k)Ey
T =Qu+k)Eg, + k(wg — C)
T =Qu+k)E,;—kiws - C)
T¢f = T§¢ = Tﬂ¢ = Td,.,, =0. (336)
The stress vector (t) on the surface of the spheroid is
(t) = tfé eg + tg.,, e,, + t§¢ e¢ (337)
and its component along the axis of the spheroid is
(3.38)

(tet V(8T = D) = teos V(1 = )NV/(s* - 12
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We have

_[ Qu+k) v, sQ2s2-£-1)
tff - { P+ CJ(SZ_ 12) [‘I’st + 2 t2 (s2_ tZ)(s 1) ‘I, ]} (3.39)

_ Qu+k) ~ B o
t“'{ZC’(sz—tz)Z\/((sZ-l)(l—tz))[(sz £)(s* = Dy = (1= )¥,)

—2s(s— ), —2t(1—t2)\P]+k(2h3 C)} (3.40)

On the boundary we have the adherence condition, (3.16)—(3.18), and this can also be expressed
in the following way

Y, =-Ucs(l1 -1},
¥, = Uc(s*- 1), on § = sg. (341
C=0.

From these it follows that on the boundary we can write
Tff == P(S(), t), (3.42)
and

,u.+k

T, == E,_,. 3.43)

It is known that on the boundary C(sy, t) =0 and hence from (3.21)
(e + K)E*Y = ipo(¥, +¥,) (3.44)
and the component of the stress vector along the axis of the spheroid is, therefore, given by

_c(sd = )tP(so, 1) + ipwso( ¥ + ¥a)s, it
cV((s§— 1) (si—1)

(3.45)

The radial component of the stress vector is

sV = )t + V(s> = Dt,,
V(ss— 1)

and the resultant of this force over the entire body is seen to be zero on integration. Thus the
body experiences a drag only in the direction of the axis of symmetry. The drag on the spheroid
is obtained from (3.45) by integration.
If the drag is denoted by
D= Dye™ (3.46)

we have

1
Do =2mc*/(s3— 1) L V(2= DT~ s7/(1 - ) T,,),, dt

=2mc\/(s§— 1)1, - L), (3.47)
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where
1
h=[ v =Tt (3.48)
-1
and
t
L= f (s\V(1 = )T,,),, dt. (3.49)
-
Using (3.30) and (3.42) in (3.48) we find that

=3 Avipw/(s3 - QU5 (3.50)
From (3.43), (3.44) and (3.49) we see that
L= t]owa"o4 B.Rfiac, soydi™(iac) + D, C.RENiBc, so)dy"(iBc) (3.51)
3 n=1 n=1
and this simplifies to
4 . 2 ] )
-3 ipwsoV/(s5= 1) 5 Uc + Qils0)A, (3.52)

on using the eqn (3.22). We have, therefore

2-
D0=87Tp;0(: i [U;‘So (s2— 1)—A|J (3.53)

and the drag on the spheroid is Dye™".
We can write the drag in the form

8—375 pUc’w exp (i (wt +12r_>) B so(s3— 1)——3—5] (3.54)

= MUw e™(- K' - iK) (3.55)

where M is the mass of the fluid displaced by the spheroid and

K —iK=i ___%_1_]
K zK—t[l et =T ) (3.56)

The drag parameters K and K’ depend on the imposed frequency of oscillations, the eccen-
tricity of the spheroid as well as the micropolarity of the fluid.

Couple stress. The couple stress tensor my; is defined in (2.6) and its only nonvanishing
components are

(Mpgy Mgny Mg, Mag)=(Mygy My, My, Myg)e™. (3.57)
It is seen that
_ 1 2 C
Mn¢ = C\/((sz — tz)(l — t2)) (Btc+ 7(1 t) ) ), (3.58)
_ 1 _ 2 9C
M‘t'n - c\/«sz_ 12)(1 — tz)) (B(l 1) at + ')'tC>, (3.59)
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i
T eV((sT-)(s*- 1)

My, = (— BsC +y(s2- 1) %) (3.60)

- 1 _ni_
MM - c\/((sz_ t2)(s2__ 1)) (B(sz ]) 75 ‘YSC>. (361)

The couple vector is m.4é, and on the spheroid s = s, this reduces to

(52— 1 .
(————Tcz/\(/s(f_ : )) %) (™), (3.62)

The resultant couple vector due to the couple stress on the spheroid is seen to be zero on
integrating the expression in (3.62) over the surface of the spheroid.
The moment of the stress vector ¢ about the centre of the spheroid is

ig=pX 1t (3.63)

where j is the radius vector and the integral of i, over the surface of the spheroid is seen to be
zero. Scalar product of i, with the unit axial vector (along the axis of symmetry) is seen to be
zero. Thus, there is no exertion of couple on the body even though the fluid sustains couple
stress.

Numerical results

The drag on the spheroid given in (3.46) involves only the single constant A, cf. (3.53), and
the drag parameters K and K' are defined in (3.56) in terms of the constant A,. These are
numerically evaluated for several parameter combination involving the size of the spheroid,
imposed frequency « and micropolarity constants by computing the values of the constants C,
from eqn (A1.7) in the Appendix Al, by truncating it to a 5 by 5 system. This choice of the
order of truncation is motivated by the extent to which the coefficients needed for the
evaluation of the constants d™ (iac), d7™(iBc) are available in the published literature{3]. The
parameters relevant for the problem are eccentricity (= 1/so) of the spheroid, the frequency
parameter

2 KQu+k) A+ k)
pt+k y(u +k) ¢ and =i Y

The Tables 1 and 2 and the Figs. 1-6 show the variation of the drag parameters K, K' in the
polar case.

Nonpolar case

The rectilinear oscillations of a spheroid in classical viscous fluid governed by the Navier-
Stokes equations of motion have earlier been analyzed by Kanwal[5]. The solution in this case
consists of a sum of two infinite series for the stream function and this analysis is identifiable

Table 1. Variation of K and K’ (polar case)
PL=20, PJ=05, PT=04, a?=25

So K K'

1.5 0.19158607(3) 0.22544936(3)
18 0.13766592(2) 0.15172150(2)
2.0 0.26427353(2) 0.28878296(2)
24 0.63503551(0) 0.21737045(0)
28 0.37272177(1) 0.37468023(1)
35 0.35189238(1) 0.34906301(1)
40 0.32340479(1) 0.31557665(1)

45 0.32116308(1) 0.31228218(1)
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Table 2
ss=18, PL=20, PI=15, o'=40
PT K K’
0.4 0.25392199(1) 0.15264654(1)
0.8 0.63206396(1) 0.94602752(0)
1.0 0.58885489(1) 0.39613285(1)
1.2 0.59381361(1) 0.48087186(0)
1.6 0.38934174(2) 0.43797302(2)

£

with that in the polar case described above by passage to the limit in the foliowing sense

k-0, ——k——e{), KQO, i—)O, azei‘)—w.
Y Y

wtk

The expression for the drag is formally the same as in the polar case given above in (3.46) and
(3.53) and the parameters K and K’ can be defined as in (3.56). Numerical evaluation of these
parameters has been included for the sake of completeness. The Figs. 7-10 show the variations
of K and K’ in the nonpolar case.

4. OBLATE SPHERIOD
An oblate spheroid (focal distance = 2¢) oscillates harmonically along its axis of symmetry
and its velocity in the above direction equals U e™'. We select the coordinates (& 1, ¢) from
the oblate spheroidal system with the scale factors

hy=hy=cV/(T+1), hy=cV({(7+1)(1-1), 4.1
where
T=sinhé t=cosn. 4.2)
st
L..-
]
o i { + § P94)
TST VI8 715 30 35 40 4%
SO
—4
_8..
120
4
S -8} Pl p1 PT A
o ® 30 05 10 15
201 @ 20 05 12 15
24}
284
32}
36}
~40

Fig. I(a).
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The Stokes's stream function operator E? is then given by
1 [ 9? 9? ]
2 2 2
= ey ——e +)—=S+(1-t)—=|. 4.
E At + 1) (r"+1) ar? ( )6t2 @3)

Let ¥, ¥,, ¥, be solutions of the eqns (2.32)-(2.34), respectively, that are regular far away
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from the spheroid. We can take

Vo=hy S AQWirPO(1)
=1

4.4)

where {A,} is an infinite set of constants and Q" and P denote the Associated Legendre
functions. The functions ¥, and ¥, can similarly be expressed in infinite series form involving
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radial and angular spheroidal wave functions ([3], pp. 753-756) with the appropriate parameters.
To ensure the regularity of these functions on the axis of symmetry, we have to restrict the
angular wave functions to the first kind. To ensure further the regularity of the solution far
away from the body we select the parameters @, 8 from the roots of the eqns (2.30) and (2.31)
so as to have positive real parts and the radial wave functions to be of the third kind. Thus ¥, is
a linear combination of the functions

{hsRNiac, 7)S{Niac, 1)} (4.5)
and ¥, is a combination of such functions with the parameter « in (4.5) replaced by 8. In (4.5)
above the functions Rf)(iac, 7) and S{(iac, t) denote the oblate spheroidal radial and angular

wave functions, respectively. These can be expressed as prolate spheroidal functions by
changing (iac, iBc) to (ac, Bc) and 7 to ir. Thus, we may write

W, = hy 2' B,Rf)ac, ir)STac, t) (4.6)

¥2=hs 3 CRONBC, inSHBe, 1 )

where {B,} and {C,} are infinite sets of constants. The prolate spheroidal wave functions
RPAA, ir) and S§(A, t) are given by ([3), pp. 751-756)

2+ 1))”2

mAT

RP(A, ir) = { in*? ; (r+ 1)(r +2)d™(A )}_' (

X r;]’ (r + 1)(’ + 2)d:-n(A)K,+(3/2)(AT) (48)

DJES Vol. 19, No. 2—B
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and

S n= 2'1 dIMRVP (D). 49
The stream function of the flow is

y= ha{ S A QM) PO(1) + 2 B.RRac, inSiac, )+ 3, CREBe, inSiBe, 1)
n=1 n=

(4.10)
and the velocity and microrotation components are
= | 3, 40N 5 (V1= APY()
+ 3 BLREac,in) 5 (v(1 - ) Rac, 1)
+ 3 CROBe, in g (V- DSBS 1), (@.11)
V0= s | 3 A g (VI + DRI
=T 2N E nUn)Py
+ 3 By - (Vi + RO ac, i)Siac,
+3 0 e+ DRYABe im)stee, ), @)
n=|
and
1 =
c= (—“i—’f)-g—ﬂ S B.R®(ac, ir)S{ac, 1)
n=1
2_ »
+(—"-i-’-‘)‘,’f—“’8 3. C.REXBe, in)St(Be, 0. 4.13)
By the hyperstick boundary condition we have on r = 7,
_UvVI(r§+ Dt
u(ry, l)—W 4.14)
__Uv(-t)r
o(r, )= RV IR 4.15)
Clro, 1) =0. (4.16)

Determination of the constants {A,}, {B,}, {C.}
From the boundary conditions (4.14)-(4.16), we can obtain the following equations involving
the three sets of constants, on the same lines as in Section 3.

A, QW(ire)+ 2 B, R ac, itg)d '™ (ac)
+ 2 C.REMBe, in)d M Be)

=3 UC\/(7§+ Dén:. 4.17)
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0+ DA+ 3, Badiac) [ (07 + DRRAac in)

0

+ 3 Gl (g [ (Vi + DRE B, i) | == Uerep, @

i
(4 + k)a® — ipw) B,RENac, ito) N,y (ac)
+((p + kB - ipw) "21 CnRO(Bc, it Mym(ac, Bc) = 0. (4.19
n=123,....
In the above the quantities N,.(ac) and M,,.(ac, Bc) are defined by

2Ar+1)r+2)

1 %
Nutae)= [ Stitac,npar= AN giaoyp, (@20

2Ar+ D(r+2)

Mym(ac, BC)=£l S{ac, ST (Be, 1) dt=,§1 2r+3 d;"(ac)d;™(Be). (4.21)

From the above three sets of equations, the constants {A,}, {B,} and {C,} can be determined
(Appendix A2).

Pressure distribution. From the eqns (2.22) and (2.23) we can see that the pressure p(r,¢)
has the form

P(r,t) = ipw 5: n(n + 1A, Q.(iT)P,(¢). 422

n=}

Evaluation of the drag. The rate of deformation components are

T [ QPPN t\lf,]
I ) e G O TCa S R SR o |

_ 1 _ (1-72-2t%t ™V, ]
En =0+ [ Yt ma-m e

_ 1 v, ¥, >
Eos = A+ 1) <72+ 17 1-7)

B —p. o (D=,
7 N (G ) ()

(1 - 1), (P + )Y,

S PN A+ (-1 “.23)
End> =E4 = E§¢ = E¢€ =0.
and the non-zero spin component is
-1
W5 =g E*¥. (4.24)
The component of the stress vector ¢ along the axis of the spheroid is
V(T + Dt — /(1= )8,

As seen in Section 3, we have here again

Ty =—P(7o, 1) (4.26)
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and

The body experiences only a drag in the direction of the axis of symmetry, given by

and

8 7rpwc
3

8 7rpwc
3

DO =

+ 3 CROBe, im)di(Bo) |

Ty ==—F—

m

(u+k)EXY =

D =D, e

Aqi(r5+ DQ(iro)

This can be simplified into the form

D() =

and the drag on the spheroid is

3

,u,+k

\I,a

ipw(¥,+¥,).

ino\V/(rd+ 1) [ 2 B, R ac, irg)dd(ac)

2
§ﬂy&iF¥mh%4HAJ

MUe e“ (- K' - iK)

where M tis the mass of the fluid displaced by the spheroid and

K-k =i(1+

The couple vector on the spheroid 7= 74 is

(

yV(r§+1)
V(7 + 1)

w),)e

2A, )
UC T()(’To + l)

iwt 5

¢

4.27)

(4.28)

4.29)

(4.30)

4.31)

(4.32)

(4.33)

(4.34)

and its contribution to the resultant couple vector is zero. There is no contribution to the
resultant couple vector from the stress vector ¢ either. Thus there is no exertion of a couple on

the body.

Table 3. Variation of K and K’ (polar case)
PL=20, PI=05 PT=04, o*=25

To ~-K -K
0.5 0.12820135(2) 0.24863510(2)
1.0 0.15152625(3) 0.25839087(3)
1.5 0.12091938(4) 0.20167324(4)
1.8 0.33008845(4) 0.54283516(4)
20 0.36076282(4) 0.58620898(4)
25 0.33715552(3) 0.44424365(3)
3.0 0.42273145(3) 0.47940234(3)
35 0.44393018(2) 0.64816064(3)
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Numerical results

The drag on the spheroid given in (4.31) involves only the single constant A, and the drag
parameters K and K’ are defined in (4.32). These are numerically evaluated for several
parameter combinations involving the size of the spheroid, the imposed frequency » and
micropolarity constants. Tables 1 and 2 and the Figs. 11-16 show the variations of the drag

parameters K, K' in the polar case. The Figs. 17-20 show the variations of K and K’ in the
nonpolar case.

Table 4
=10, PL=25, P/=10, a’=40
PT -K -K'
0.4 0.61928784(3) 0.71018237(3)
08 0.16669482(3) 0.57144836(2)
1.0 0.12248933(3) 0.11553275(3)
1.2 0.12143762(3) 0.86516220(3)
1.6 0.55913055(2) 0.87156296(2)
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Fig. 11. Variation of polar K with respect to 7,.



182

3. K. LAKSHMANA RAO and T. K. V. IYENGAR

80k

g5 PL PIPT A
® 20 05 04 25
@ 25 05 1.0 15
@ 20 10 16 4.0
@ 25 05 1.6 15

S0k

4S5

LOF

)18

5r

30

- (Polar K'

254

204

i i i i 1
05 1.0 15 20 2.5 30 35
To

Fig. 12. Variation of polar K’ with respect to 7.

Fig. 13, Variation of polar K with respect to PT.

0.7} AN
0.6} V2 PL PI A To
o v D25 05 25 2.0
S osl 2 ok 30 2.0 15 2.5
x <
504 S o8}
o <
o o
T T
0.3 0.6
0.2 0.4+
01 0.2k
i i | 1 I i @
0.4 0.8 1.2 1.6 0 0-4 08 1.2 1.6
PT PT
{a) {b)



=2

U

~{Polar K)-10

The rectilinear oscillations of a spheroid in a micropolar fluid

3.6
PL PI A To
O 25 104010 32
® 1.0 204025
N 28k PL P] A To
® 20 0525 2.0

@ 30 2015 25

1
~
~

T

~
o
- ~< 2.0k
b
o
°
= o 16
]

T
-
~N

T

T
©
o

i

i 1 i 1 i 1 i i

0 0.4 0.8 1.2 16 0 0.4 0.8 1.2 1.6

PT PT
Fig. 14. Variation of polar X' with respect to PT,

AR N

©
@
t

[=
o
T

PT P1 A To
@ 08 10 25 10
@ 18 05 40 15

g
3

~-{Polar K)-153
o e o
&~ o &

b
o

02

0.}

1
1.0 15 2.0 28 3.0
PL

Fig. 15(a).

183



S. K. LAKSHMANA RAO and T. K. V. IYENGAR
08

0.5

o
>

-{Polar K )-15‘

2
[

0.2

I H |

L . g
0 15 L 20 25 8

Fig. 15(b}.

Fig. 15. Variation of polar K with respect to PL.

11
PT P A T PT PRI A To
@ 08 10 25 10 ® 1o 15 L0 20
160 Q 16 05 40 15 1o D16 05 40 15
A 0.9
1.2 Q 08
~
[
0 -3
= 1oF o 0.7 @
* -
5 x
= 08 ~ 080
bt 3
T &
06} 1 0S5k
0.4 0.4
(6)]
o2t o o3k
! 1 i 0.2 H 1 1 H }
.0 15 20 25 3.0 10 15 2.0 25 3.0
‘P)L PL
a

Fig. 16. Variation of polar K' with respect to PL.



The rectilinear osciltations of a spheroid in a micropolar fluid 185

5
FAR
3+
X
S
22t
c
(=4
z
1|
0
05 10 18 20 25 \30 35
To
-1
Fig. 17. Variation of nonpolar K with respect to 7.
IS ey
3k
2
"%
s
a
s
z
(-
0
~1

Fig. 18. Variation of nonpolar K’ with respect to 7,



186

S. K. LAKSHMANA RAO and T. K. V. IYENGAR

x
S
5
Q
s
Z
0 i | 1 L
0.4 08 12 1.6 20 214 28
PT
1
2k
-3
Fig. 19. Variation of nonpolar K with respect to PT.
QD To=10
@ To=18
@ To=35
3—
2|
x
g
2
s 1L
2
o
20 .
0 04\ O 2 R ] 32
Q
1

Fig. 20. Variation of nonpolar K’ with respect to PT.




The rectilinear oscillations of a spheroid in a micropolar fluid 187

REFERENCES

{1] A. C. ERINGEN, J. Math. Mech. 16, 1 (1966).

{2} A. C. ERINGEN, Int. J. Engng Sci. 2, 205 (1964).

[3} M. ABRAMOVITZ and I. A. STEGUN, Handbook of Mathematical Functions with Formulas, Graphs and Mathema-
tical Tables. Dover, New York (1965).

4] N. W. McLACHLAN, Bessel Functions for Engineers. Clarendon Press, Oxford (1961).

[5S] R. P. KANWAL, Q. J. Mech. Appl. Math. XHI1, 146 (1955).

(Received 7 May 1980)

APPENDIX Al

Determination of the constants {A,}, {B,}, {C.}

The infinite sets of constants {A,}, {B,}, {C,} that occur in the expression (3.11) for the stream function and in the
expression (3.14) for the microrotation component are determined from the three eqns (3.22), (3.23) and (3.27). From the
eqns (3.22) and (3.23) we can eliminate the quantity A, and the result is

3, Budimfiac) {n(n + DQ.(s9Rhtiac, )
m=1

- 050 [ £ (vis- DRSYiac, 53 | |

S0

+ 3 Cadiniioe) [nin+ nusoR R ige, 9

- Qo) [ (vist- DREBe ) | = -—YE s, (AL
ds s Vis§-1)

From the eqn (3.27) we see that
C,RiBc, so)M,,,{iac, iBc)

B - ((;L+k)Bz-ip<u)p 1
" (n+ k)a® ~ ipew Noum(iac)R T (iacc, so)

(Al2)

The quantities B,, can be eliminated between (A1.1) and (A1.2) and the result is an infinite system of linear algebraic
equations for the unknown C,,. If we define

6= l’:“fz (AL3)
we see that the system can be written in the form
and
d RiBc, 5)
$ s n(n+1)Q.(s)

Yop = REiBe, 50) 1422 1(iBc)

RBGe, ) -1 (5= 1QUS) |
_OB-if & (d:p_](i%(iac, iBC)>

c2a?-if? =, Nom(iac)

4 porg;

Nas B0 s oy ALS
RGac,s) -1 (s-DQW9)| (A1)

forn,p=1,23,.....
The constants {A,} are also directly expressible in terms of the constants {C,,} apart from a term involving the
parameter U. From eqns (3.19) and (3.21) it is possible to eliminate the entire block of terms involving B,’s and we see that

2.2
A =3 Ust= 7, - gl

X 3 [Cadlm (iBE)REiBe, 50)] (AL6)
(n=1273...).

The parameters d,™(iac), d}7,(iBc) which appear in the coefficients y,, of the above linear system may be deemed to
be zero when ((m — n)/(p — n)) take odd integral values. The system (A1.4) can be split into two subsystems corresponding
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to even and odd values of n. The subsystem with n =2,4,6, etc. is a homogeneous system and we may take the solution
Gy, Cy, G, . . ... of this infinite system to be trivial. The quantities M,,,(iac, iBc) defined in (3.26) can also be deemed to be
zero whenever n + m is an odd positive integer. From the eqn (3.27) and the above observation concerning M, (iac, ic),
it follows that the coefficients B, are zero for all even integral values of # in view of the similar result concerning the
coefficients C,. From (3.22) or (3.23) we can now see that the coefficients A, are also zero for even positive integral values
of n.

Thus the stream function involves only the three infinite sets of constants {A,,..}, {Bassi}, {Consi). The constants
{C>, .1} are determined from the system

N UCdy, 4.1,
;::0 72n+|.2p+|C2p+1:(S%_l)gzol;zso) (ALT)

n=0,1,2,3,....
The constants {B,, .} are then determined from (3.27) and {A,,.,} are determined thereafter from (3.22).

APPENDIX A2
Determination of the constants {A,}, {Bn}, {Co}
The infinite sets of constants {4,}, {B,}, {C,} that occur in the expression (4.10) for the stream function and in the
expression (4.13) for thé microrotation component C are determined from the three eqns (4.17)~(4.19). As in the Appendix
Al we can derive the following system of equations for the constants {C,}.

i Lﬁ"' (A2.1)
o=t (3 +1)3/2[ Q,(ir)]
T ]
where
R [ i”}
= RYNBc, img)4 d'¥.,(Bc) g b _7'240']— RO (Be. im0 0
oL o] 7 PiBe. i
T ki
B8 - ih? i d,',’f.(zxc)MM(ac, Bc) n(n+ DQ,(irg)
2 2_ 92
KR Nam(a€) \ (734 1)[ Qn(w)]
d .
1o _wﬂ"_ﬂ]ﬂ (A22)
3+1 R®P(ac, i)
np=123,....
We can also see that
2_p2
A, Qi) = ‘% UeV(r§+ 18, —H:z)_—ﬂ)
X 2 Cnd™ (Bc)RE(Be, ito). (A2.3)

The constants {A,,},{B1.},{Cs,} are zero as in the case of the prolate spheroid and the stream function involves the three sets of
constants {Asn+1}, {Bans1}, {Cons1). The constants {C,,,,} are determined from the system

UCbyy 114

(A2.4)
(r3+ 12 [ Q (l‘r)]

=
2 72n+l‘2p+lc2p+l =
p=0

n=0,1,2,....
The constants {B,,,} are then determined from (4.19) and {A,.} from (4.17).



