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Summary 
In this note, we study the pulsating flow superposed on the steady laminar 

motion of a second order viscous liquid between two parallel plates. The 
principal flow characters such as the mean velocity, skin friction, mean rate 
of work done by the internal friction, the coefficient of excess of work have 
been examined. The results have been obtained in terms of a non-dimensional 
non-Newtonian parameter e. The flow for large frequencies has a boundary 
layer character. The results for the flow with a single Fourier component 
are illustrated and discussed in detail. 

§ 1. Introduction. The theory of pulsating flow through tubes is 
mainly employed in examining the problems such as the super- 
charging system of reciprocating engines, the surging phenomena 
in power plants and the flow of blood through arteries. Further, in 
the stability consideration of the laminar motions and propogation 
of sound waves, the theory is treated by the principle of pertur- 
bations. Richardson 1), in an experiment on sound waves in reso- 
nators, and later Richardson and Tyler2), on the reciprocating 
motion of a piston, noticed an annular effect: the mean square of 
the velocity attains maximum close to the pipe wall rather than at 
its axis. This problem is also of theoretical interest as it provides 
an exact solution to the equations of hydrodynamics of viscous 
incompressible fluids. The annular effect noticed in 1) and 2), has 
been explained by a theoretical analysis by Sexl a) for the classical 
viscous liquid through a straight circular tube and by Khamrui 4) 
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for the flow through an elliptic tube. Recently, Pipkin ~) examined 
the same problem for visco-elastic liquids of the Rivlin-Ericksen 
type in a circular tube and the present author discussed such a 
flow through tubes of various cross-sections: equilateral triangle, 
ellipse and circular annulus (to be published). The main object in 
all these investigations is a pure periodic motion without any mean 
transmission of the fluid mass across the cross-section of the tube. 

Allowing for the mean transmission of the fluid in the flow 
direction, Uchida 6) discussed a general pulsating viscous fluid- 
flow through a straight circular tube. The principal characteristics 
of the flow such as the mean mass flow across the cross-section, the 
wall friction, the coefficient of excess of work have been determined 
and their variations with the frequency of excitation, illustrated. 
Recently, Fan and Chao 7) examined a similar problem when the 
cross-section of the tube is a rectangle. The present investigation 
aims at the discussion of a general fluctuating flow of a second 
order liquid through: two parallel plates. We obtain an exact so- 
lution and the effects on the principal flow characters mentioned 
above in terms of a non-dimensional non-Newtonian parameter e. 

§ 2. Fundamental equations. Assuming that  the stress is more 
sensitive to recent deformation than to that  at distant past, Coleman 
and Noll s) proved that  u p t o  the second order of a certain retar- 
dation parameter, the theory of simple fluids, yields the following 
constitutive relation for a class of second order incompressible fluids : 

S = - -PI  + ¢IA(1) + ¢2A(2) + ¢3A (1)~ (1) 
with 

A(1) U l , / +  U~,, and A~ ) = Ai j + A~,i + 2Um, iUm,~. (2) 

In these equations, S is the stress tensor, Ui and At are the ve- 
locity and acceleration components in the direction of the i-th co- 
ordinate Xi, P is the hydrostatic mean pressure, and ¢1, ¢2, Ca are 
material constants. These constants ¢1, ¢2, 63 may be named as 
the coefficients of viscosity, visco-elasticity and cross-viscosity re- 
spectively. I t  has been reported that  high polymer solutions such 
as poly-isobutyline in cetane behave as second order fluids. 

We choose a system of rectangular Cartesian coordinates (x, y, z) 
with the z-axis midway between the two plates separated by a 
distance 2h and the y-axis perpendicular to them. With this choice 
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of the axes of reference, the two plates can be represented by  

y = J:h. (3) 

We further assume that the plates are infinite and all the physical 
quantities are independent of the x coordinate. The rectilinear flow 
between parallel plates is now characterized by  the velocity (0, 0, w). 
From the equation of continuity, we notice that  w is independent 
of z and a function of y and t only. This indicates that  the velocity 
is a constant ill planes parallel to the plates which is acceptable 
for the fully developed laminar flows. 

The components of the stress-tensor at the instant of time t can 
be obtained as 

Sxx = --P, 

Syy = - -P  -}- O(2fl + re) \ @ / 

(OW~ 2, (4) 
Szz = - -P  + pvC k gy / 

Sxy = O, 

@ '  

and 
Sxz = 0 

where 

p being the density of the liquid. 

and ¢3 = Vep, (5) 

Using these stresses, the momentum equations for tile fluid flow 
can be written as 

1 8P 
~ . . . .  

p 8x 

l ~P 8 ~--.[Sw'~ 2, 
o . . . . .  ÷ (2fl  + 

p 8y ~ y  \ 8y / 
and 

8w 1 8 P  ( 8 ) 8 2 w  
at -- p az + ~ + fl-g[ ay2 

with the boundary conditions: 

(6) 

(7) 

(8) 

w ( ± h ,  t) = o. 
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Since P is independent of x and is hydrostatically distributed in 
the y direction, the pressure gradient _p-1 aP/Oz must be spatially 
uniform but could be a function of time t. This can also be noticed 
as the integrability condition of the equations (6)-(8). Taking 

1 OP 
p az - - / ( t ) ,  (I0) 

we obtain the pressure distribution: 

P ( x ,  y ,  z, t) = Po(t)  - p/(t) z + p(2~ + ~e) \ ~y / 

where Po(t) is a constant of integration. The velocity field can now 
be determined from the equation 

~w ( O )  ~2w (12) 

with condition of no slip on the boundaries: 

w ( ~ h ,  t) = 0. (13) 

§ 3. Flow under the influence o] a periodic pressure gradient. If 
the period of excitation is 2~/a, we can express the pressure gra- 
dient in form of a Fourier series, 

I ~ P  oo 
- - / ( t )  = ao + Y, (acn cos nat + as,~ sin nat) (14a) 

p ~z ~=1 
o o  

= a0 + Re • a~ e inGt (14b) 
n = l  

where 
an = a c n  - -  i a s n .  (15) 

The coefficients no, acn, ash are the Fourier coefficients of the 
function ](t) when expanded in its fundamental period. Also, tile 
coefficients aen and asn may be regarded as constants representing 
the amplitudes of the elemental vibrations of a pulsating pressure 
gradient superposed upon the constant pressure gradient a0. 

The solution of (I 2) can be obtained in the form: 
oo 

w(y, t) -= wo(y) + • [Wen(y) cos nat + Wsn(Y) sin n~tJ (16a) 
~ = 1  

oo 

= wo(y) + Re Y~ Wn(y) e ~*~t, (16b) 
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where 
wn(y)  = w, , , (y)  - -  iw ,n (y ) .  (17) 

The differential equations for the functions w~(y) are 

,, i ja  aj 
wj (y )  v q- i i f la wj(y)  q- ~ Jr- i]fla -- 0 (18) 

where i = a / - -1  and ~ = O, 1, 2, 3 . . . . .  with the conditions 

w j ( ~ h )  = O. (19) 

The solution of these equations can be obtained as 

- (20)  o(y) = 

and 

where 

I cosh m n y _ l  ia,  - 1  + .  (21) 
w~(y)  = n ~  cosh m~h J '  

2 (22) N / ~ n  - -  

+ in/3 ) 

and n --= 1, 2, 3 . . . . .  
For  the fur ther  analysis of the problem, we introduce the follow- 

ing non-dimensional quanti t ies:  

k = ha/a/v and ~ = y/h (23) 

to denote the measures of the (non-dimensional) frequency of exci- 
ta t ion and the distance from the axis respectively. Also, let 

en = t a n - l ( n f l a / v )  and h m n  = kn(rn  + isn) (24) 
with 

kn = a/,~ k. (25) 
Then 

rn a/cos en cos(l~ -- len) and sn @cos en s i n ( ~  -- ~en). (26) 

The constant  sn m a y  be considered as the non-Newtonian para- 
meter  in the n-th mode of excitation. For  Newtonian liquids and 
for the visco-inelastic liquids of the Reiner-Rivlin type,  fl = 0 i.e., 
e~ = 0 for all n. 

In terms of these non-dimensional constants,  we rewrite the 
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velocity field: 

aoh 2 
w ( y , t ) =  2--~--(1 --~2) + 

h 2 oo aen 
+ ~ E {hn(~) cos nat - -  [gn(~:) - -  1] sin nat} + 

v k  n= 1 n 

h 2 ~ ash 
+ ~ W, {[gn(~) --  1] cos nat + hn(~) sin nat}, (27) 

n=l n 

where 

cosh[knrn(l  + ~)J'cos[knsn(1 - -  ~)] + 

+ cosh[knrn(1 - -  ~)]'cos[knsn(1 -t- ~)] 
gn( ) = (28) 

cosh(2knrn) + cos(2knsn) 

and 

sinhEknrn(1 + ~)]'sinEk~,sn(1 - -  ~)] + 

+ sinhEknrn(1 - -  ~)J "sinEknsn(1 + ~)] 
hn( ) = (29) 

cosh(2knrn) + cos(2knsn) 

The mean velocity over one period across the cross-section of 
the channel is 

2#/a It 

, fd[lf aoh  (30) U =  2z~ ~ -  w(y,t) d y - -  3v 

0 --h 

and the mean pressure gradient over a period is 

2~la 

G ---- - -  --  dt = ao. (31) 
2z~ 8z 

0 

This shows that  the mean velocity in the pulsating motion under  
the influence of a periodic pressure gradient (14) ma y  thus be 
identified with the s teady state flow subject  to the same amount  
of the pressure gradient as tha t  in the pulsating flow. Also, the  
mean velocity in the  second order fluid-flow is the same as tha t  
for the Newtonian  liquids. 

Taking U as the s tandard  velocity, the non-dimensional ex- 
pression for the veloci ty can be wri t ten  as 
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w*(~, t) = w(y, t)/U = ~-(1 -- ~2) + 

3 oo acn 
+ ~-~L_-'I ~ a o  {hn(~) cos nat --  [gn(~) -- 11 sin nat} + 

3 oo ash 
+ - 1] cos  + sin  at) 

and the corresponding non-dimensional pressure gradient  

p ~z p ~z 

24 1 -1- ~ acn 
- -  " cos nat + F, ash_ sin nat , 

Re ao n = l  n = l  ~0 

(32) 

(33) 

where Re denotes the characteristic flow Reynolds '  number:  

2hU 2aoh 3 
Re --  --  (34) 

v 3v  2 

and (aen/ao), (asn/ao) are the ratios of the ampli tude of the periodic 
pressure gradient  to tha t  of the average pressure gradient.  

S e c t i o n a l  m e a n  v e l o c i t y .  The instantaneous mass flow across 
a section of the channel can be derived from the sectional mean ve- 
locity, which in the non-dimensional form is given by  

h 

, t f w(y,t)  
W~Iv(t) -- 2h ~ dy (35) 

- h  
3 oo acn 

= 1 + ~ -  Z [Cn cos nat + (1 -- Dn) sin nat I + 
n= 1 g a O  

3 oo a s n  
+ ~ E [Cn sin nat --  (1 -- Dn) cos nat], (36) 

n =  1 TtaO 

where 
1 

C~ = f hn(~) d~ e = 

o 

and 
1 

Dn = f gn(~) d~ : 

o 

Sn sinh(2knrn) -- rn sin(2kns.) 

k .  cos en[cosh(2knr.) + cos(2k.sn)] 

rn sinh(2knrn) + sn sin(2knsn) 

kn cos en[cosh(2knrn) + cos(2knsn)] 

(37) 

(38) 
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If 

and 

3 
A~vn = ~ -  [C~ + (1 -- D~)2] ½ (39) 

ks 

OMvn = tan -1[(1 -- Dn)/CnJ (40) 

denote the amplitude coefficient and phase lag of the sectional 
mean velocity from the wave of the pressure gradient, we have 

co 

WMv(t ) -~  1 + ~ acn A M w c o s ( n a t - - O M v n ) +  
n = l  d 0  

oo 

+ Z as--2-n A~vn  sin(nat -- OMvn). (41) 
~ = 1  a 0  

S k i n  f r i c t i o n .  The skin friction = --Svz on the wall is 

3oUr [ co acn 
S - -  h L I + W, - {Dn cos nat + Cn sin nat} + 

n = l  a 0  

+ y, ash {Dn sin nat -- Cn cos nat (42) 
n = l  d 0  

which in the non-dimensional form can be given as 

S * =  S/(½pU 2) = 

12 1 +  ~ ac~ As~'n COS(nat -- OsFn) + 
Re n = l  d 0  

+ N as n_n AsFnsin(nat-- OsFn , (43) 
n = l  d 0  

where AsFn and OsFn denote the amplitude coefficient and the 
phase lag of the skin friction from the wave of the pressure gradient 
and are given by  

AsF  = + (44) 
and 

OsFn = tan -1 Cn/Dn. (45) 

M e a n  r a t e  of t h e  t o t a l  w o r k  done .  The energy dissipation 
function due to internal friction of the fluid is given by 

= SyzA(vl)= 

_ 9pvU~ [~ _ A(~, t) ~ + B(~, t)J, (46) 
h 2 
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where 
co ~ e ~  

A (S, t) = E C - ~  {cos nat[2h;~(~) - -  g;/~)tan e~] --  
n ~  1 g0J~n 

-- sin nat[2g;,(~) + ,h£(~)tan an]} + 

oo ~ 8 n  

+ E ---72- {cos nat[2g~(~) + h~(~)tan an] -t- 
n ~  1 a0/~n 

' t q- sin nat[2h~(~) - -  gn(~) an an]} (47) 
and 

c~ ~ c ~ a c  l 

l , n = l  ¢t0tCnt~ l 

- -  Sill nat[g~(~) 

x {h~(~) cos lat 

oo Cgsn61sl 

"@ E _2 7.2 1.2 
l ,n= l ttOt~ni~ l 

+ sin nat[h~(~) 

x {g;(~) cos zat 

l , n = l  ~O~n[Vl 

- -  sin n~tEg;($) 
x {g;(~) cos lat 

- -  I(cos natEh~(~) - -  g;,(~)tan a~z] - -  

+ h~(~)]tan an} × 

- -  g[($) sin fat} + 

- -  [{cos natIg~($ ) + h~(~)tan an] + 

- -  g~(~)tan Sn]} X 

+ ~(~) sin lot} + 

- -  [{cos nat[h~(~) - -  ng~'d~)tan a] - -  

+ h~(f)tan an]} X 

+ h}(~:) sin lot} + 

+ {cos lat[g[(~) + h~(~)tan el] + 

+ sin lat[h[(~) - -  gi(f)]tan el) x 
~t t × {/, n(~) cos nat  - -  g~(~) sin nat) .  (48) 

The rate  of dissipation across the section is 
h 1 

W , =  f ~ b d y = 2 h f C d ~ ,  
--h 0 

from which we obtain the total  mean  rate  of change of dissipation 
of energy due to internal  friction across the  cross-section: 

We - a ( We dt 
2~ d 

0 

a cn G / 7  - -  6pU2~ 1 + + (49) 
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The rate of increase of the total kinetic energy of the fluid in a 
unit length of the channel is 

h 

W k = ½ p  - - w  2dy. 
St 

- h  

From this, we notice that  the total mean rate of change of the 
kinetic energy across the cross section is 

/ t  
ff 

j Wk dt = 0. (50) W k -  2~ 
o 

Further, the rate of the total work done by the external forces 
(i.e., the exciting pressure gradient) is 

We = 2hUWMv -- 

With this, we get the total mean rate of the external force 

2~/a 

- -  a f We dt = W e -  2~ 
0 

- -  6Pvg2h9 ' l + ~ n ~ . ~ l  ~ l ~ ]  "21-\ ggO / J_l" (51) 

The results (49)-(51) show that the pressure gradient does work 
equal to the energy loss due the dissipation of energy after full 
cycle of motions. Also the kinetic energy changes instantaneously 
but  as a total, there is no loss in that  energy after a complete cycle. 
Energy loss is thus caused by  dissipation as shown in (49) and is 
increased by  the existence of the components of the fluctuating 
motion. In this respect, it will not be advantageous to send mass 
of fluid by  pulsating motions. 

If the coefficient of excess of work is defined as the extra energy 
dissipated due to the pulsation of amplitude equal to the constant 

2 term in (14), i.e., when ~/ac~ + as~ = ao, we have in the n-th mode, 
the coefficient of excess of work given by 

(C.E.W.)n = 3C,/2k~. (52) 
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§ 4. F low/or  large/requencies. W h e n  k ( =  h~/a-~) is suf f ic ien t ly  

large,  we h a v e  
cosh 

[knr~(1 " ~)] ~ "  ½ e k ' r ' (~e) .  (53) 
s inh 

If  Vl = 1 - -  ~ and  V2 = 1 + ~ are  the  (non-dimensional )  d is tances  
m e a s u r e d  f rom the  two  walls, we now ob t a in  the  ve loc i ty"  

w*(~, t) = ~(1 - -  ~2) + 

- -  - -  cos n~t -[- 
+ ~ - = 1  nao ha0 

3 oo F acn {e_k~r~n~ sin(knsn~l - -  nat) + 
+ k~- ~]~=1 L nao 

+ e -k~r~ sin(knsn~2 --  nat)}] - /  

3 oo F ass {e_k~r~n~ + ~ E cos(k~s~l -- nat) + 
n =  1 I_. n a  0 

+ e - k ~  cos(k~s~v2 -n~t)} 1" 

This,  in the  n e i g h b o u r h o o d  of t he  wall,  becomes  

(54) 

w*(~, t) ----- ~(1 - -  ~2) _¢_ 

n =  1 n a o  

+ -kY X a~ 
n = l  n~tO 

- -  sin nat - -  
1 a s h  

cos nat~ + 
~ta  0 J 

e -k~r~n sin(k~sn~7 --  nat) + 

-1 a s h  
@ - -  e -k~r~n  c o s ( k n S n ~ 7  - -  n a t ) ]  , (55) 

nCto _1 

where  ~ is t he  d i s tance  f rom the  f luid e l emen t  to  the  nea re r  wall. 
Also, a t  large  d is tances  f rom the  walls, i.e., in a core  r o u n d  the  axis  
for  which  

1 

> > ~ - -  inf.(knrn) ' (56) 

t h e  exponen t i a l  t e rms  in (54) d a m p  out  and  the  ve loc i ty  app roaches  

a c n  

n=  1 n a O  

-I 
a s h  

- -  s i n n a t  --  c o s n a t ] .  (57) 
r t a o  2 
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This shows that the flow has a boundary layer character: the un- 
steady effects of the viscosity and visco-elasticity coefficients on 
the steady laminar motion are predominent in a certain neighbour- 
hood of the walls. The expression for ~ given in (56) may be taken 
as the thickness of this boundary layer beyond which we have a 
pulsating inviscid flow superposed on a steady classical viscous flow. 

Also, for large k, 

V C O S  8 n 
_~ ( 5 8 a )  

C~ 2k~ c o s ( ~  - ½~) 

and 

We then have 

and 

VCOS 8rt 

D n  _ 2k~, sin(l~ --  ~e~) (58b) 

A ~v,a ' ~  3/k~ ---> O, (59a) 

~'~ -*~ (59b) O M v n  - -  2 ' 

A s ~ n  ~ 1 / ( k n V ~ s n )  --~ O, (59c) 

(C.E.W.)n --> O. (59e) 

§ 5. F l o w / o r  smal l  ]requencies.  When k is small, we obtain 

gn(~) --  1 - -  ~nk2(1 - -  ~2) sin 2~ ,  (60) 

and 
hn(~) --  ½nk2(1 - -  ~2) cos 2 s~. 

We then have the velocity distribution: 

w * ( ~ , t ) - 9 ( 1  ~ )  1 +  Z ao~ - cos s~ cos(n~t - e~) + 
n = l  ~aO 

q- y, a s ~  cos en sin(n~t -- en) , (61) 
n =  1 ~ a 0  

which is parabolic as in tile case of a steady viscous flow while 
the magnitude varies periodically with the pressure gradient with 
a phase lag of e~ and the amplitude reduced in the ratio cos en in 
the n-th mode of the pulsation. 

Also, we have 
Cn ---> ½nk 2 cos 2 en (62a) 
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a n d  

W e  t h e n  ge t  

a n d  

Dn -+ 1 --  {nk  ~ sin 2sn. (62b) 

A ~ I w  -+ cos s~z, (63a) 

OMvn --> sn, (63b) 

AsFn -> 1 --  {nk  ~' sin 2en - -  1, (63c) 

0sFn -+ t a n - l ( ½ n k  2 cos 2 en) -- 0 (63d) 

(C.E.W.)~ -+ ½ cos2 s~. (63e) 

§ 6. Flow under harmonic pressure gradient. W h e n  the  f low is 
i n f luenced  b y  a p r e s su re  g r a d i e n t  w i t h  a s ingle  h a r m o n i c  c o m p o n e n t ,  
we  t a k e  

1 8P 

p 8z 
- -  a 0 -{- g e l  COS 0"~ 

= a0(1 + a cos ~t). (64) 

I n  th i s  case,  acn/ao = a, a s n =  0, n = 1 in (14). F o r  s impl ic i ty ,  we  
d r o p  t h e  suf f ix  n a n d  a d o p t  t h e  s a m e  n o t a t i o n  as t h a t  used  above ,  
i.e., 

m = r  + is, s =  tan-l f ia/v,  

r = g c T s  ~ c o s ( l ~  - ~ ) ,  s = ~ ~), i s  ~ /cos  s in(~z  - -  (65) 

cosh kr(1 q-g) cos ks(1 --g) q- cosh kr(1 --~) cos ks(1 q-g) 
g(g) = , (66) 

cosh 2 k r + c o s  2ks 

s inh  kr(1 -}- ~) sin ks(1 - -  ~) + s inh kr( 1 - -  ~) sin ks( 1 + ~) 

h(g) ---- cosh  2kr q- cos 2ks , (67) 

a n d  

s s inh 2kr --  r sin 2ks 
C = (68) 

k cos e(cosh 2kr + cos 2ks) 

r s inh 2kr + s sin 2ks 
D = (69) 

k cos e(cosh 2kr q- cos 2ks) 

T h e  f low is c h a r a c t e r i z e d  b y  the  v e l o c i t y  f ield:  

3a  {h(~) cos at + [1 - -  g(~)] sin at} w*(~, t) = a(1 - -  ~2) + ~ _  (70) 
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and by the pressure field: 

1 
- -  {P(~,  z, t) - -  P0(t)}  - -  
P 

- -3vU 2 
h (1 + a c o s a t )  z +  

+ 2fl + ve --3~ + {h'(~)cos at -- g'(~)sin at} (71) 
h2 

The sectional mean velocity is now given by 

W~v(t ) = 1 + aAMv cos(at -- 0My), (72) 

and the skin friction by 

12 
S*(t) ---- ~ E1 + aAsF cos(at -- 0sF)]. (73) 

Also the coefficient of excess of work is given by 

C . E . W .  ---- 3C/2k2 (74) 

and the boundary layer thickness (~ is 

---- 1/Fk cos(i~ -- ½s)" 1/cos ~], (75) 

the value of which in the Newtonian case (s = 0) is 

= V 2 1 k .  (76) 

The variations of the principal coefficients of the flow: 

AMy, 0My,  Asr, QsF,  C.E.W. and ~/81~ 

versus k have been illustrated in figs. 1 to 6 respectively, with 
s = --60 °, --30 °, 0 °, +30  °, +60  °. The numerical data for these 
are obtained with the help of an I.B.M. 1620 computer. 

§ 7. Discussion o/the results. (i) When the pulsation frequency is 
extremely low, the coefficient of the amplitude of the mean velocity 
(AMy is cos s and for extremely rapid pulsations, it is 3/k~ ~ 0 
(fig. 1). 

When e < 0, AMy increases first for small frequencies before 
dying out to zero at large frequencies. The frequency at which 
A~v attains its maximum increases, while the maximum value of 
A~v itself reduces but rather slowly with decrease of s. The rate 
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of decay of A~v  at large frequencies is greater than that  for a 
Newtonian liquid. 

When e >~ 0, A~iv decreases steadily as the frequency of pul- 
sation increases. Also the rate of this decay decreases as e increases 
and is much less than that in Newtonian case. 

(if) The coefficient of the phase lag of the mean velocity ( =  0My) 
increases from e at small frequencies to ~/2 at large frequencies 
(fig. 2). The rate of change of 0zv decreases as e increases. Further, 
the phase lag is less or greater than that for a Newtonian liquid 
according to whether e is negative or positive. 

(iii) The coefficient of amplitude of skin friction (AsF) decreases 
from 1 to 0 as the frequency of the pulsation increases from ex- 
tremely small values to large values (fig. 3). 

For ~ < 0, As~ increases first (as in the case of A~v) for small 
frequencies before reducing to zero at large frequencies. The maxi- 
mum of AsF increases very rapidly as e decreases. The frequency 
at which this is maximum also increases but  very slowly with the 
decrease of e. The rate of decay of AsF for large frequencies is 
much greater than that in the Newtonian case. 

For e ~> 0, AsF decreases steadily with the increasing frequency. 
(iv) The phase lag of the skin friction (0sF) changes from 0 to 

(1~ _ ½e) as the frequency of the pulsation increases (fig. 4). 
At small frequencies, the rate of variation of 0SF for e < 0 is 

much less and for e > 0, this variation is greater than that  for a 
Newtonian liquid. Further, the phase of the sectional mean ve- 
locity is much delayed from the pulsating pressure gradient while 
that  of the shearing stress is less delayed from it. This delay be- 
comes more as e increases. 

(v) The coefficient of excess of work (C.E.W.) decreases from 
½ cosec at extremely slow pulsations to the value zero for rapid 
pulsations (fig. 5). 

When e < 0, C.E.W. increases first at small frequencies and 
later decreases rapidly to zero. The frequency at which the maxi- 
mum of C.E.W. is noticed, increases as e decreases, whereas the 
maximum of C.E.W. itself decreases at a lower rate. 

For e > 0, this coefficient dies out to zero with a rate decreasing 
as e becomes large. 

(iv) The boundary layer thickness coefficient ( =  ~/d~) attains 
maximum for e = 30 ° . Also ~ < dN in the range 0 < e < 57o4 ' . 
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yrs. the non-Newtonian parameter  (e). 
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Outside this range, the effect of s is to increase the boundary layer 
thickness (fig. 6). 

Received 26th November,  1965. 
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