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Summary

In this note, we study the pulsating flow superposed on the steady laminar
motion of a second order viscous liquid between two parallel plates. The
principal flow characters such as the mean velocity, skin friction, mean rate
of work done by the internal friction, the coefficient of excess of work have
been examined. The results have been obtained in terms of a non-dimensional
non-Newtonian parameter ¢. The flow for large frequencies has a boundary
layer character. The results for the flow with a single Fourier component
are illustrated and discussed in detail.

§ 1. Imtroduction. The theory of pulsating flow through tubes is
mainly employed in examining the problems such as the super-
charging system of reciprocating engines, the surging phenomena
in power plants and the flow of blood through arteries. Further, in
the stability consideration of the laminar motions and propogation
of sound waves, the theory is treated by the principle of pertur-
bations. Richardson?), in an experiment on sound waves in reso-
nators, and later Richardson and Tyler2), on the reciprocating
motion of a piston, noticed an annular effect: the mean square of
the velocity attains maximum close to the pipe wall rather than at
its axis. This problem is also of theoretical interest as it provides
an exact solution to the equations of hydrodynamics of viscous
incompressible fluids. The annular effect noticed in 1) and 2), has
been explained by a theoretical analysis by Sex13) for the classical
viscous liquid through a straight circular tube and by Khamrui4)
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for the flow through an elliptic tube. Recently, Pipkin®) examined
the same problem for visco-elastic liquids of the Rivlin-Ericksen
type in a circular tube and the present author discussed such a
flow through tubes of various cross-sections: equilateral triangle,
ellipse and circular annulus (to be published). The main object in
all these investigations is a pure periodic motion without any mean
transmission of the fluid mass across the cross-section of the tube.

Allowing for the mean transmission of the fluid in the flow
direction, Uchida$) discussed a general pulsating viscous fluid-
flow through a straight circular tube. The principal characteristics
of the flow such as the mean mass flow across the cross-section, the
wall friction, the coefficient of excess of work have been determined
and their variations with the frequency of excitation, illustrated.
Recently, Fan and Chao7) examined a similar problem when the
cross-section of the tube is a rectangle. The present investigation
aims at the discussion of a general fluctuating flow of a second
order liguid through:two parallel plates. We obtain an exact so-
lution and the effects on the principal flow characters mentioned
above in terms of a non-dimensional non-Newtonian parameter e.

§ 2. Fundamental equations. Assuming that the stress is more
sensitive to recent deformation than to that at distant past, Coleman
and Noll8) proved that up to the second order of a certain retar-
dation parameter, the theory of simple fluids, yields the following
constitutive relation for a class of second order incompressible fluids:

S= —PI + 1AM L $oA® | $3gAL” (1)
with
AP = Us;+ Ui and A = Aij+ Aj0 + 2Um,iUn,g. (2)

In these equations, S is the stress tensor, U; and A; are the ve-
locity and acceleration components in the direction of the s-th co-
ordinate X;, P is the hydrostatic mean pressure, and ¢1, ¢, ¢3 are
material constants. These constants ¢1, ¢g, $3 may be named as
the coefficients of viscosity, visco-elasticity and cross-viscosity re-
spectively. It has been reported that high polymer solutions such
as poly-isobutyline in cetane behave as second order fluids.

We choose a system of rectangular Cartesian coordinates (x, y, 2)
with the z-axis midway between the two plates separated by a
distance 2% and the y-axis perpendicular to them. With this choice
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of the axes of reference, the two plates can be represented by
y = £h (3)

We further assume that the plates are infinite and all the physical
quantities are independent of the x coordinate. The rectilinear flow
between parallel plates is now characterized by the velocity (0, 0, w).
From the equation of continuity, we notice that w is independent
of z and a function of ¥ and ¢ only. This indicates that the velocity
is a constant in planes parallel to the plates which is acceptable
for the fully developed laminar flows.

The components of the stress-tensor at the instant of time ¢ can
be obtained as

sz = —P’
Jw \2
Syy = —P 4 p(28 -+ v) <3—> ,
y
Jw \2 4
SzzZ—P—l—Pvc(E); ()
Smy = O,
0\ ow
sl
ve =P\" TP ) %
and
Swz =0
where
$1=1p, ¢2=pPp and ¢3=vep, ()

p being the density of the liquid.
Using these stresses, the momentum equations for the fluid flow
can be written as

o 1P o
p ox
P 2
0= =~ St (), )
and
R Ry = ©)
ot 2 ot ) oy

with the boundary conditions:
w(+4-h, f) = 0.
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Since P is independent of x and is hydrostatically distributed in
the y direction, the pressure gradient —p—! 9P/éz must be spatially
uniform but could be a function of time £ This can also be noticed

as the integrability condition of the equations (6)—(8). Taking
L 2P () 10
- =10, (10)

we obtain the pressure distribution:
ow \2
Pley, 5 ) = Pol) —pl)2-+ 528+ (5) . 01)
where Py(t) is a constant of integration. The velocity field can now

be determined from the equation

ow
ot

o\ 0w
10+ (v+55) o (12

with condition of no slip on the boundaries:
w(£h, t) = 0. (13)
§ 3. Flow under the influence of a periodic pressure gradient. 1f

the period of excitation is 2z/o, we can express the pressure gra-
dient in form of a Fourier series,

1 oP hd .
—— = ) = a0 + Zl (@cn cos not + asy sin not) (14a)
P n=
=a9 -+ Re Y a,e™* (14b)
n=1
where
Ap = dop — sp. (15)

The coefficients ag, dcn, asp are the Fourier coefficients of the
function f(f) when expanded in its fundamental period. Also, the
coefficients @y, and ag, may be regarded as constants representing
the amplitudes of the elemental vibrations of a pulsating pressure
gradient superposed upon the constant pressure gradient aq.

The solution of (12) can be obtained in the form:

w(y, 1) = woly) + E} [@en(V) cOs not 4 wsu(y) sin not] (16a)

n=1

= wo(y) + Re 21 wa(y) €7, (16b)
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where
Wn(y) = Wen(y) — 1Wsn(y). (17)

The differential equations for the functions wj(y) are

1o a;

(y) — ———————w; —— =0 18
S0~ S W) T (18)
where 1 = 4/—1 and § = 0, 1, 2, 3, ..., with the conditions
wj{-£h) = 0. (19)
The solution of these equations can be obtained as
al :
wo(y) = - (h* — y?) (20)
2v
and
1y cosh myy :I
== —1 el 21
waly) no |: T cosh myh 1)
where
9 o
= 22
Wi (v + wnfo) (22)

and n = 1,23, ....
For the further analysis of the problem, we introduce the follow-
ing non-dimensional quantities:

E=7IVoy and &=1y/h (23)

to denote the measures of the (non-dimensional) frequency of exci-
tation and the distance from the axis respectively. Also, let

en = tan"Y(nfofv) and hmy = Ru(re + isy) (24)

with
bn = /1 k. (25)

Then

¥n = V'cos £, cos(tm — Ley) and s, = V'cos ey sin(dm — Jeq). (26)

The constant &, may be considered as the non-Newtonian para-
meter in the #-th mode of excitation. For Newtonian liquids and
for the visco-inelastic liquids of the Reiner-Rivlin type, f = O i.e.,
ey = O for all #.

In terms of these non-dimensional constants, we rewrite the
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velocity field:

aohz
2v

wly, f) =2 (1 — &) +

{hn(&) cos not — [gn(&) — 1] sin not} +

L2 s % {[gn(8) — 1] cos not + hn(£) sin not),  (27)

cosh[ku?n(1 + £)]-cos[kasa(l — &)] +

- + cosh{Zuza(l — &)]-cos[knsn(l + &)]
gnlé) = cosh(2kn7s) + cos(2k4sy) (28)

and

sinh[kura(l + &)]-sinfkgsa(l — )] +

3 + sinh[Eurn(l — &)]-sin[kasa(l + £)]
hn(8) = cosh(2knry) + cos(2kusn) @)

The mean velocity over one period across the cross-section of
the channel is

2nlo h
[ 1 dohz
U=— | df — ) dy = 30
o o e ) dy =~ (30)
0 —h
and the mean pressure gradient over a period is
2nlc
1\ oP
G=-2 (——-)—dt:ao. @1)
2 p/ oz

0

This shows that the mean velocity in the pulsating motion under
the influence of a periodic pressure gradient (14) may thus be
identified with the steady state flow subject to the same amount
of the pressure gradient as that in the pulsating flow. Also, the
mean velocity in the second order fluid-flow is the same as that
for the Newtonian liquids.

Taking U as the standard velocity, the non-dimensional ex-
pression for the velocity can be written as
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w'(é, 8) = w(y, /U = 3(1 — &) +

3 e .
+ 73?751 “nde {hn(8) cos nat — [gu(€) — 1] sin not} +
+ % 5 o {[gn — 1] cos not + hy(£) sin not} (32)
nzl

and the correspondmg non-dimensional pressure gradient
< 1 8P>*_< 1 3P><2h>_
p o2/ \ p a/\iUz/)

24
= |: 1+ E ~—— cos #ot Z —-51n nat:l (33)

" Re n=1 a0 n=1 20
where Re denotes the characteristic flow Reynolds’ number:
2nU 2a0h3
e = = 0 (34)
v 32

and (acn/a0), (asn/ao) are the ratios of the amplitude of the periodic
pressure gradient to that of the average pressure gradient.

Sectional mean velocity. Theinstantaneous mass flow across
a section of the channel can be derived from the sectional mean ve-
locity, which in the non-dimensional form is given by

=1+ ﬁ > fen [Cn cos not + (1 — D) sin not] +
n=1 .

— (1 — Dy) cos not], (36)

where
co J‘h (&) ds — Sp SINh(2Ry7y,) — 74 SIN(2R4S5) @7)

" " By cos enlcosh(2kyry) + cos(2kpsy)]
0
and

7n SINO(2Ry75) + Sp SIN(2%4S0) 8)

0
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If

Axeyn = = [C2 4 (1 — D)2 (39
and
Barvn = tan-1[(1 — Dy)/Ca] (40)

denote the amplitude coefficient and phase lag of the sectional
mean velocity from the wave of the pressure gradient, we have

* o a
wyvlt) =14+ X ;” Ay cos(nat — Oyva) +
n=1 0
£ B frve sin(not — Oyva).  (41)
n=1 @0
Skin friction. The skin friction = —S,, on the wall is
3pU ®
S = poY [1 + 5 fon {Dy cos not + Cy sin not} 4
h n=1 @0
> asn .
+ ¥ {Dy, sin not — Cy cos nat}] (42)
n=1 @0

which in the non-dimensional form can be given as
S* = S/(3pU?) =

12 g
_ I:l + 3 Gon AsEn COS(’I/LO‘Zf — GSFn) +
Re n=1 @0
s f‘;—” Aspn sin(not — eSM)], (43)
n=1 0

where Agpn and fgp, denote the amplitude coefficient and the
phase lag of the skin friction from the wave of the pressure gradient
and are given by

Aspa = [C), + D] (44)
and

es]m == tan~1 Cn/Dn (45)

Mean rate of the total work done. The energy dissipation
function due to internal friction of the fluid is given by
D = Sy AL =
U2

=y [ —AE )i+ BE) (46)
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where

A, 1) =

and

B¢, 1) =

§=] kz {cos n6t[2h,(E) — gr(&)tan ey] —

n=1 On

— sin nat[Zgﬁ(f) + hp(&)tan ]} +

+ 3 58 {cos mot{2gh(é) + hi€)tan eu] +

n—1 Aok,
+ sin not(2h5(€) — gn(f)tan &,]} (47)
% aszc}:z;; ({cos notlhi(E) — gn(é)tan &,] —
L,n=1

— sin not[gh (&) + hp(&)ltan g4} X
X {hi(&) cos lot — gi(&) sin lot} +

E ﬂsnz S; {COS %O'i[gﬁ(f) + hﬁ(f)tal’l en) +
L1 QGRIR]
+ sin not[hn(é) — gn(é)tan ex]} X

X {gi(&) cos lot + hi(&) sin lot} +

[oe]
Aenlsy
+ X

Ln=1 aSka?
— sin not[gn(E) + hh(E)tan e} X
X {gi(&) cos lot 4~ hi(£) sin lot} -
+ {cos lot[gi(&) + hi(é)tan &) +
+- sin lot[hi(E) — gi(£)]tan e} X
X {hi(§) cos not — g (&) sin not}. (48)

({cos not[hy(E) — ngh(é)tan &] —

The rate of dissipation across the section is

I 1
Wi= [ ®dy =2k [ ® dE,
—h 0

from which we obtain the total mean rate of change of dissipation
of energy due to internal friction across the cross-section:

§ =

P gled

i_fWidt:
JT
0

_ 6pU% [ 3 = C, J“?n 1]
R 2k2§nlag+gf‘ 49)
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The rate of increase of the total kinetic energy of the fluid in a
unit length of the channel is

h
0
Wk: %pfa;'w)Zdy.
~h

From this, we notice that the total mean rate of change of the
kinetic energy across the cross section is

2o
— g
Wy =— f Wy dt = 0. :
T o £ (50)
0

Further, the rate of the total work done by the external forces
(i.e., the exciting pressure gradient) is

opP
We = 2hUw}yy <_ T)
Z

With this, we get the total mean rate of the external force

2njc

I/_Ve:ifWedt:
27
0

2% I: 3 & Cyu ]( Aen >2 <asn )2}]
I b+ 2k2 751 n l ag T ag ) (1)

The results (49)-(51) show that the pressure gradient does work
equal to the energy loss due the dissipation of energy after full
cycle of motions. Also the kinetic energy changes instantaneously
but as a total, there is no loss in that energy after a complete cycle.
Energy loss is thus caused by dissipation as shown in (49) and is
increased by the existence of the components of the fluctuating
motion. In this respect, it will not be advantageous to send mass
of fluid by pulsating motions.

If the coefficient of excess of work is defined as the extra energy
dissipated due to the pulsation of amplitude equal to the constant
term in (14), i.e., when vV al, + a2, = ag, we have in the #-th mode,
the coefficient of excess of work given by

(C.EW.)y = 3Cq/2k2. (52)
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§ 4. Flow for large frequencies. When k (= Ve Jv) is sufficiently
large, we have

(Rarn(l &= £)] o § ebnrn1£8), (53)

Ifny = 1 — Eandye = 1 + £ are the (non-dimensional) distances
measured from the two walls, we now obtain the velocity:

w™(§, 1) = 3(1 — &) +

had J . Asn 1
- t — —— t
—+ kz p 11%00 SIN #0 P COS 10! [ -+

3 =T aen PRI
— - fe o gin (ks — not
+k2 nzll:%ﬂo{ (nnﬁl )‘l—

+ e~ Fr e gin(kyspne — mn‘)}:l -+

Asn . _4
— g fontnhh kus — not
-+ 72 nZI ndo { COS( nSn¥1 0') —+

+ ek cos(Rnsane ——%o’i)}:'. (54)
This, in the neighbourhood of the wall, becomes
w (&, 4) = §(1 — &) +

+ 3— - I sin not — fen CoS mrtl -}-
k2 7= 11%610 nag J

3 oo
+ 3 l:ﬂ e~k gin(kysyn — not)

k% n=1 Lonag
+ Qsn o~ knran cos{RuSay — not):| , (55)
nagy

where 7 is the distance from the fluid element to the nearer wall.
Also, at large distances from the walls, i.e., in a core round the axis
for which

1
§om
T i o) (56)

the exponential terms in (54) damp out and the velocity approaches

w (&, ) = $(1 — £2) + — E l:— sin ot —

kznl

fan cosmn‘:l. (57)

nag nagy
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This shows that the flow has a boundary layer character: the un-

steady effects of the viscosity and visco-elasticity coefficients on

the steady laminar motion are predominent in a certain neighbour-

hood of the walls. The expression for é given in (56) may be taken

as the thickness of this boundary layer beyond which we have a

pulsating inviscid flow superposed on a steady classical viscous flow.
Also, for large %,

Vcos ey
Cpe~
" ok cos(b — dem) (58a)
and
Vcos ey
Dy~
" 2ky sin(3e — Ley) (58b)
We then have
AMVn ~ 3/]33L — O, (598.)
Omva =~ ¥, (59D)
Agpn ~ 1/(kgV cos &4) =0, (59¢)
OSFn il %ﬁ — %en, (59d)
and
(C.EW.), — 0. (5%e)
§ 5. Flow for small frequencies. When k is small, we obtain
gn() =1 — nk2(l — £2) sin 2e,, (60)

and
ha(E) = $nk2(1 — £2) cos? &y,

We then have the velocity distribution:

w*(&,8) = 3(1 —&?) [1 + ;] Jem os & COS(n0t -~ &4) +

n=1 Hadg

+ X 5 cos &y, sin(not — En)], (61)
n=1 Na&o
which is parabolic as in the case of a steady viscous flow while
the magnitude varies periodically with the pressure gradient with
a phase lag of e, and the amplitude reduced in the ratio cos &, in
the #-th mode of the pulsation.
Also, we have
Cp — $nk2 cos? g, (62a)
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and
Dy — 1 — {nk?2 sin 2. (62b)
We then get
AMVn ~> COS En, (633.)
Ouve — €, (63b)
Agpp — 1 — Ink?sin 2¢, =1, {63c)
Oswn — tan—1(ink2 cos? e,) = 0 (63d)
and
(C.EW.)y, — 3 cos? ¢,. (63e)

§ 6. Flow under harmonic pressure gradient. When the flow is
influenced by a pressure gradient with a single harmonic component,
we take

1 oP
— — —— == gy + 4,1 COS 0f =
p oz

= ap(l -+ a cos o). (64)

In this case, aenfao = @, asp = 0, n = 1 in (14). For simplicity, we
drop the suffix #» and adopt the same notation as that used above,
ie.,

m=r 415, &= tan~1fo/y,

r = Vcos e cos(}mw — 3e), s = Vicosesin{ln — %), (65)
(&) = cosh k7(1-§)cos ks(1—§&) + cosh kr(1—&) cos ks(1+-£) (66)
ss) = cosh 2k» + cos 2ks ’
sinh k7(1-+£&) sin ks(1 —£& sinh &27(1 —§&) sin ks(1 &
7(E) = (1+£) (1-§) + (1-9§) (+)) (67)
cosh 2kr + cos 2ks
- s sinh 2k — # sin 2ks (68)
~ kcos g(cosh 2kr + cos 2ks)
and
D_ 7 sinh 2kr + s sin 2ks (69)

k cos e(cosh 2kr - cos 2ks)
The flow is characterized by the velocity field:

w(E, 1) = 3(1 — &) + 2 (h(g) cos ot + [1 — g(&)]sinat}  (70)
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and by the pressure field:

1 —3yU2
(P, 2, 1) — Polt)) = Z (1 + acos at) z 4
P
2 3 2
+ —ﬁ—h‘lz—i [—35 + Ta {h'(&)cos ot — g'(&)sin o'zf}] . (7
The sectional mean velocity is now given by
wyv() = 1 + adwmv cos(et — Ouv), (72)
and the skin friction by
. 12
S (f) = E [1 —]— GZASF COS(O‘t _— OSF)]- (73)

Also the coefficient of excess of work is given by
C.EW. = 3C/2k2 (74)
and the boundary layer thickness d is
8 = 1/[k cos(n — Le)-V'cos €], (75)
the value of which in the Newtonian case (¢ = 0) is
ox = v/2/k. (76)
The variations of the principal coefficients of the flow:
Amv, Omv, Asp, Qsp, C.EW. and §/dn

versus & have been illustrated in figs. 1 to 6 respectively, with
e = —60°, —30° 0° --30° --60°, The numerical data for these
are obtained with the help of an I.B.M. 1620 computer.

§ 7. Discussion of the vesults. (i) When the pulsation frequency is
extremely low, the coefficient of the amplitude of the mean velocity
(Amv is cos e and for extremely rapid pulsations, it is 3/A2 ~0
(fig. 1).

When e << 0, Ayy increases first for small frequencies before
dying out to zero at large frequencies. The frequency at which
Ay attains its maximum increases, while the maximum value of
Apry itself reduces but rather slowly with decrease of ¢. The rate
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of decay of Amv at large frequencies is greater than that for a
Newtonian liquid.

When ¢ >0, Ayv decreases steadily as the frequency of pul-
sation increases. Also the rate of this decay decreases as ¢ increases
and is much less than that in Newtonian case.

(ii) The coefficient of the phase lag of the mean velocity (= 6mv)
increases from ¢ at small frequencies to #/2 at large frequencies
(fig. 2). The rate of change of Omv decreases as ¢ increases. Further,
the phase lag is less or greater than that for a Newtonian liquid
according to whether ¢ is negative or positive.

(iii) The coefficient of amplitude of skin friction (Agy) decreases
from 1 to O as the frequency of the pulsation increases from ex-
tremely small values to large values (fig. 3).

For ¢ < 0, Agr increases first (as in the case of Ayy) for small
frequencies before reducing to zero at large frequencies. The maxi-
mum of Agp increases very rapidly as e decreases. The frequency
at which this is maximum also increases but very slowly with the
decrease of ¢. The rate of decay of Agp for large frequencies is
much greater than that in the Newtonian case.

For ¢ > 0, Asy decreases steadily with the increasing frequency.

(iv) The phase lag of the skin friction {fsy) changes from O to
(fn — %) as the frequency of the pulsation increases (fig. 4).

At small frequencies, the rate of variation of Osg for ¢ < 0 is
much less and for ¢ > 0, this variation is greater than that for a
Newtonian liquid. Further, the phase of the sectional mean ve-
locity is much delayed from the pulsating pressure gradient while
that of the shearing stress is less delayed from it. This delay be-
comes more as ¢ increases.

(v) The coefficient of excess of work (C.E.W.) decreases from
1 cos? ¢ at extremely slow pulsations to the value zero for rapid
pulsations (fig. 5).

When ¢ <0, CEW. increases first at small frequencies and
later decreases rapidly to zero. The frequency at which the maxi-
mum of C.E.W. is noticed, increases as & decreases, whereas the
maximum of C.E.W. itself decreases at a lower rate.

For & > O, this coefficient dies out to zero with a rate decreasing
as ¢ becomes large.

(iv) The boundary layer thickness coefficient (= 6/dx) attains
maximum for & = 30°. Also 6 < dx in the range 0 < & < 57°4".
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CEW—

o
tn

Fig. 5. Variation of the coefficient of excess of work (C.E.W.}
vrs. the frequency ().
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Fig. 6. Variation of the coefficient of the boundary layer thickness (6/dx)
vrs. the non-Newtonian parameter (¢).
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Outside this range, the effect of ¢ is to increase the boundary layer
thickness (fig. 6).

Received 26th November, 1965,
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