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STABILITY OF MICROSTRETCH FLUID MOTIONS 

S. K. LAKSHMANA RAO and K. VENKATAPATHI RAJU 

Department of Mathematics, Regional Engineering College. Warangal 5Of3lO4, India 

Ah&act--Criteria of stability of the unsteady motion of incompressible microstretch fluid in an arbitrary 
time-dependent domain are obtained using a general energy method introduced by Serrin. It is shown that 
the original motion is stable in the mean if either of the two sets of numbers (c,. e2, es) or (u,, oz. u3) 
consists of positive numbers only. These numbers are expressible in terms of the various Reynolds 
numbers of the original motion. The theorems giving the stability criteria are universal in the sense that they 
do not depend on the geometry of the domain or the actual distribution of the flow field quantities, The 
decay of energy of the flow in a rigid and fixed container as well as a theorem on the uniqueness of steady 
flows are deduced. 

1. INTRODUCTION 

THE THEORY of simple microfluids introduced by Eringen[l] deals with a class of fluids which 
respond to certain microscopic effects arising from the presence of microstructure and are 
influenced by spin inertia. Besides the usual translatory degrees of freedom reckoned by the 
velocity vector 4, the fluid element has degrees of freedom enabling it to possess intrinsic 
rotary motion and also deformation. The latter are governed by the three gyration vector fields &. A 
simplified model of microfluids also introduced by Eringen [2] is the class of micropolar fluids with 
stretch. In this model (Ariman[3]) the gyration tensor Vkl and the first stress moment tensor AU, 
have the form 

The micromotion here consists of a rotation about the centroid of the fluid element in an 
average sense described by the microrotation vector Y and deformation consisting of a stretch 
due to the axial motions of cylindrical or dumb-bell elements, described by the scalar v. When 
the fluid element has no deformation the gyration tensor is antisymmetric and we have the class 
of micropolar flows without stretch[4]. Both the theories of micropolar and microstretch fluids 
depart from the classical Navier-Stokes theory in two prominent features, viz the sustenance of 
couple stress and the non-symmetry of the stress tensor. 

In this paper we consider the stability of microstretch fluid motions based on the energy 
method introduced earlier by Serrin[Sl for investigation of the stability of viscous fluid motions 
governed by the Navier-Stokes equations. This powerful method was later extended by 
Joseph[6] for the discussion of stability of Boussinesq equations. One of the authors[7] has 
employed Set-tin’s method for the study of the stability of micropolar flows. The stability of 
Cosserat Fluid Motions has also been studied using Serrin’s method by Shahimpoor and 

Ahmadi[8]. 

2. GOVERNING EQUATIONS OF INCOMPRESSIBLE MICROSTRETCH FLUID 

We consider the motion of an incompressible microstretch fluid in an arbitrary time- 
dependent domain R(t). The equations governing the flow are[2,3] 

div 4 = 0 (3) 

2 + (d . grad)j - 2vj = 0 

p $-4xcurlQ+grad 
c 

= of- grad p + A0 grad Y + k curl i; 

- (CL + k) curl curl q + (A, + 2~ + k) grad (div 4) 
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pj 
C 

av 
z + ty . grad); 

7 - 
= pi - XY + k curl @ - y curl curl i; i ia + p + y) grad (div PI (hf 

=~~+cY,,V~V-(~]~-A&.J. (‘3 

In the above system of equations p is the density of the fluid, j denotes the gyration parameter. 
p is an undetermined pressure, f and T are, respe~tiveIy, the body force and body couple per 
unit mass and 1 in eqn (7) is one third of the trace of the first body moment per unit mass. The 
vectors @, i; are. respectively, the velocity and microrotation vectors and the scalar v denotes 
the microstretch of the fluid elements. The viscosity coefficients A,, p. k. Q,, A,, and the 
gyroviscosity coefficients LY, p. y. (Y ,) are constant and are subject to the following 
restrictions [I?]. 

The density p and the gyration parameter j are positive and the former is a constant. 
Boundary conditions. We assume that on the boundary aR(tl the field variables q, C and P 

are prescribed. If X is a point on the boundary, t is the time and 0(-f, t), G(X, t), N&X. t) 
denote, respectively, the velocity, microrotation and microstretch of the element at X and at 
time t. we have 

@X, t) = 0(X, I), 

i&f:, l) = N(i. f). 

4x t) = N&f. t). 
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These conditions reflect a sort of super adherence of the fluid to the solid boundary. 

3. SERRIN ENERGY EQUATION 

We consider an incompressible microstretch fluid motion in the domain R(r) specified by the 
- - 

field quantities (q, v, v) and refer to this as the basic motion. The body force, body couple and 
the body moment trace are omitted. At some instant (f = 0, say) the basic motion is altered to 
the starred motion (G*, C*, v*). The basic as well as the starred motions have the same density 
and gyration parameter j and are subject to the same conditions on the boundary aR(t). In 
view of the hyperstic or super adherence condition, the field variables 4, Y, Y are zero at a rigid 
and fixed wall. To examine whether the starred flow approached the basic flow asymptotically 
and in the mean as t +m or differs radically from it, we employ the Liapunotf function 
representing the kinetic energy of the difference flow which is characterized by the velocity 
Liz@+- 4. the microrotation 8 = V* - - E’ and the microstretch 0 = v* - v. The density p and 
gyration parameter j for the difference motion (a, I?,@) are the same as for the basic and starred 
motions. The kinetic energy of the difference motion is 

1 -_ _ 2 pjtl’ dR. 

The field quantities and the domain R(t) are such that the divergence theorem is valid. In the 
sequel the volume infinitesimal dR in the volume integrals over the domain R(t) will be omitted. 
The eqns (3)-(7) are valid for the basic flow (4, C, v) as well as the starred flow (ii*, V*, v*?._ We 
can easily obtain the following muster of differential equations for the difference flow (6. 9. 8). 
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div ii = 0 (12) 

(U . grad)j - 2fIj = 0 (13) 

p $ t (d* . grad)ti t (ii - grad)g 
I 

= -grad (p* - p) t A0 grad 8 t k curl 3 -(CL t k) curl curl ti 

(14) 

pj 
C 
$ t ((?* . grad)& t (ii * grad)fi 

1 
= - 2k8 t k curl C - y curl curl 8 t (a t p + y) grad (div 3) 

(15) 

i pj 2 t (d* . grad)8 t (ii . grad)v 
1 

= cw0V2t9 -(no-A&B. (16) 

In view of the hyperstick boundary conditions (9) valid for both the basic and starred flows, the 
difference flow (r&&,0) is such that 

c = 0, s=o, e=o on M(t). (17) 

From (IO), (I I) and the Leibnitz rule, we have 

dT,_ I _ aii 
dt- PU'-ji. (18) 

Using (14) we see that (18) can be written also in the form 

dT, dt = 
I 

{- pti . [(d* . grad)C] - pi . [(ti * grad)41 - I * grad(p* - p) 

t hou . (grad 0) t kC . curl 8 - (CL t k)ti * curl curl E}. (19) 

The above equation can be simplified by the use of divergence theorem and noting that 1 is a 
solenoidal vector and that it vanishes on the boundary M(t). We see that time-rate of change of 
the energy functional T, can be expressed in either of the following two ways 

dT, 
dt=- I PC . D . c t k 

I 
8. curl P - (CL t k) (curl fi)*, 

dT, dt= pfi.(gradfi).dtk 
I 

6.curlu-(p+k) (curlU)*. 
I 

(20) 

(21) 

In (20) D denotes the rate of deformation matrix of the basic flow velocity 4 and grad U in (21) 
denotes matrix with components (grad a), = Uj,i. 

From (IO) and (I I) we have 

and with the use of (15) we see that 

dT2_ I Jj -* dt - 2 p ~(8) - pj& . [(cj* . grad)31 - pji? . [(ti * grad)fi] 

- 2k(&)* + ka 9 curl ri - 78 * curl curl I$ t (a t p t ?)I$ . grad (div a). (23) 

A selective use of the divergence theorem leads to the following simplified version of (23) 

dT2 dt = 
I 

{pjv*(&)* - pjC . E . I_? - 2k(&)‘+ ka * curl ti - y(curl 8)’ - (a t p t r)(div I$)*}. (24) 
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In the above, E denotes the matrix gradient of the microrotation vector V of the basic flow 
From (IO) and (11) we get 

dT, 3 _ _ _ 
dr 4 

and this can be brought into the form 

EL3 J-1 t pjy*@ -i pjfI[(U . grad)v] ~- aO(grad @)‘- (no - ho)@ 
dt _ (26) _ 

From (20), (24) and (26) we see that the time-rate of change of the energy functional T is given 

by 

dT 

dt=- j 
pU . D . U - pj U E . 6 + pjv*(6)’ + i pjv*# 

c I 

-i pjO[(U . grad)v] -i 
j 

(curl U - 21?)~ 

(curl 6)’ 

-(a + p + y) 
j 

(div 6)’ - 3a. 
j 

(grad 8)’ - 3(77,,- A,) 
j 

0’. (27) 

Comparison of (20) and (21) shows that the time-rate of change of the energy functional T can 
also be expressed in the alternative form 

dT 
dt= j 

pti + (grad N) . q - 
I 

pjU . E . 8 + 
I 

pjv*( 6)’ + i 
I 

pjv*O’ 

-- ’ j pj@[(fi . grad)u] -i j (curl Is - 28)’ - (l.~ + k k) j (Curl c)* 
2 

- y 
j 

(curl a)‘- (a + /3 t y) 
j 

(div 6)’ - 3cuo 
j 

(grad 0)‘- 3(n,- A”) 
j 

0’. (28) 

The eqns (27) and (28) are basic to the discussion of mean stability and either of them may be 
called the Serrin energy equation. Since the viscosity coefficients k, 2~ t k, q- A0 and the 

gyroviscosity coefficients y, (z + p t y and (Y,, are all positive, we see that the terms in (20), (24) 
and (26) involving the functionals 

I (curl U)‘. j (6)‘. j(curl 8)‘. j(div 6):. j(grad 8)’ and j 8’ (29) 

show tendency to stabilize the basic flow. The functional J 6 . curl U in (20) or (21) and (34) is 
an interaction effect and may inhibit stability. However, this interaction effect gets founded on 
combining the eqns (20) and (24). The rest of the terms in (20). (24) and (26) can be individually 
destabilizing. 

4.CRlTERIA FOR UNIVERSAL STABILITY 

The muster of symbols employed in the sequel is listed below: 
(i) d = diameter of the ball which encloses the bounded volume R(t) 

(ii) - m = lower bound for the eigen values of the strain-rate matrix D of the basic flow 

velocity q 
(iii) n = upper bound for the magnitude of the matrix E: i.e. n = ub. . {tr(EET)}“’ 
(iv) V,, = maximum speed of the basic flow over R(t) 
(v) J = upper bound of j 
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(vi) M = upper bound of the microstretches Iv/, Iv*( 
(vii) p = upper bound of (grad v(. 
In each of the above, the bound is over the domain R(t) and over the time interval (0, t). 

Further we define the following symbols. 
(viii) a = min (a +/I + y, y) 

(ix) ml = 2a/(2j.k + k)d* 
(x) m2 = 2pV,+f/(2~ + k) = R2 

(xi) m3 = M/pd 
(xii) m4 = alao 

. . . 
(xm) m5 = (Q - Ao)d2/ao 
(xiv) m6 = 2pmd2/(2y + k) = R 1 
(xv) m7 = 2pnJdi(2p + k) = Rm 

(xvi) me = 2ppJd/(2p + k) = Rs. (30) 

From the definitions of m, n and p it is readily seen that 

I. De I? - m(i)* (31) 

a.E.~~-nl~l191h-fn(d(67+~) (32) 

B(P.grad)vb-PIBllrilr-~p(ds’t~). (33) 

Employing the bound M defined in (3O(vi)) and the inequalities (31), (32), (33) in (27) we see that 

dT 
dt=’ Pm(u)‘+; 

+~/Pij~(d0’+~)--~k/(curlti-2Bp 

pje* 

-(p+kk)/(curlfi)‘-yI(curl&)‘-(a+p+v)_/(div&)* 

- 3a0 
I 

(grad e)* - 3(7j0 - Ao) 8*. 

Using the functional inequalities [5,9,10] in (34) 

/(curlQ)*=I(gradri)‘r$/(i)* 

we find that 

I {(div IS?)* + (curl I$)? 2 $ [ (I?)* 

1 (grad e)* 2 $ I 8* 

(34) 

(35) 

(36) 

(37) 

nJ 3pj 80(2~+&) 
pd* 

+ pd+2M--- 
( 

12aoa* 4(Q- Ao) 
PJd PJ > 7-3. (38) 

The above inequality can be written in the form 

dT 2m 2ml drs-mas,T,-~ndC1T2-~pd~~T~ (39) 



470 S. K. LAKSHMANA RAO and K. VENKATAPATHI RAJU 

and the numbers cl, e2, l 3 are given by 

__&!?L+-_ m3m8 

2m, m, 
3x2. 

_ ~7 = (1+2mh4m _ mu _ 3Tz 

4ml 

(40) 

From (39) we can deduce the following criterion for universal stability of the microstretch flow. 
Theorem 1. If the numbers l I, l 2, e3 are positive the functional T of the incompressible 

microstretch flow in the bounded domain R(t) tends to zero as t + 03 and the basic flow (4, i;, Y) 
is stable in the mean. 

When the three numbers e,, e?, e3 are all positive and b denotes the minimum of the 
quantities 

b=min 
2mel 2m ,ndcz 4m ,pdc3 
-,---- - 

m6 m7 ’ m4m8 

we see from (39) and (41) that 

dT<_/)* 
dr - 

(41) 

If the flow is valid over the time interval 0 5 t < T, the energy functional T(f) satisfies the 
inequality 

T(t) 5 T(t,) exp [- h(t - tdl (43) 

for any pair of values (k,, t) such that 0 5 to 5 t < T. This shows that the energy functional for 
the difference motion decays faster than the exponential. From (40) and (41) it is clear that 
disturbances in microstretch fluid flows are damped more rapidly than in the corresponding 
micropolar flows without stretch. This is to be expected as there is an additional dissipative 
mechanism here. 

The dimensionless numbers mg, m7, ms defined in (30) may be recognized as the Reynolds 
numbers of the basic flow involving the velocity 4, microrotation 5 and microstretch V, 
respectively. Denoting these by the suggestive symbols Rl, Rm and Rs we can express the 
criterion for the universal stability of the flow (4, V. Y) also in the following form. 

Rm +ZmjRs <6m,rr’ 

Rs < 4miCm5 + 37~‘) 
(1 + 2mdm4 ’ 

Since each of the numbers RI, Rm and Rs is non-negative, it is possible to determine the 
optima1 values of R 1, Rm and Rs in a universally stable, incompressible microstretch fluid 
motion whenever the quantities m ,, m3, m4 and m5 are numerically assigned. 

An alternative criterion for the universal stability of the flow (4, i;, Y) is possible if we start 
with the identity (28). From Schwarz’s inequality and (30, (iv)) we have 

(45) 

Using this inequality to replace the first term in (28) and proceeding as we did earlier to reach 
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(34), we see that 

-i k /(curl zl - 28)2 - y j (curl 8)2 - (a + /3 + y) 1 (div 8)’ 

x 3ao 1 (grad 8)’ - 3(q0 - ho) 1 e2. (46) 

and it is then clear that 

6ar2 
T,+(nd+2M-Jdi 

+ pd+2M-.w- 
( PJd 

2 4(7?0- ho) TJ 
> PJ * (47) 

Let ml, u2, u3, c be the numbers such that 

UI =-(m2)2-m,-;m*+80, a2 = l 2, a3 = e3 

c = min 
( 

q 
2pd u” 

2mrnd ,,4mrp& . 
ml m4m I 

If uI, u2, u3 are all positive, we see that 

dT<_cT 
dt - 

and hence, if the flow is valid over the time interval 0 5 t < 7, 

(48) 

T(t) I T(t,) exp [- c(t - to)] (50) 

for any pair of values (to, t) such that 0 % to 5 t < T; this leads to an alternative criterion for the 
universal stability as seen in Theorem 2. If the numbers ul, u2, u3 are positive the Liapunoff 
function T for the incompressible microstretch flow in the bounded domain R(t) tends to zero 
as t + m and the basic flow (4, 6, V) is stable in the mean. 

The above criterion for universal stability is expressed by the inequalities 

(R2)2+Rm +iRs <80 

Rm + 2m3Rs < /imllr2 (51) 

Rs < 4mdm3 + 3p2) 
(1 + 2m3lm4 

and comparison of (44) and (51) shows that the two criteria differ only in the first of the three 
inequalities. The measures R 1 and R2 employed to signify the Reynolds number of the flow are 
different and the above change is thus understandable. 

5. AN APPLICATION 

If the boundary aR(t) consists of rigid fixed walls, any motion initially present in the domain 
R(t) will presumably die out due to lack of supply of energy. By choosing the basic flow to be 

ES Vol. 17. No. 61 
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trivial so that 4 = 0. F = 6, v = 0 we see from either of the eqns (27), (28) that 

[p +i) 1 (curl U)2 - y 1 (curl 8)‘- (a + p + y) J (div 6)’ 

- 3a. 
I 

(grad 8)’ - 3(77” - A,) _ @. 
J 

iS2) 

In the above U = 4*, i? = V*, 0 = V* specify the flow under consideration. The quantities J and 
M defined in ((30). (v) and (vi)) are such that 

J =maxj. M = max Iv*l. (53) 

Proceeding as before we have 

dT<_ 
dt - 

“(F$ ‘) T, + 2(&f _ !$) T2 + (2M _ 4(no - ‘;;;; ““0”‘) TJ. (S4) 

If we define 

m. = min 
3ux’ 2( no - A”)& + 6ryo7r’ 
PJd?’ pJd’ 

and employ the symbol sgn to specify the sign of the expression in 
that 

the parentheses, it follows 

Oh) 

for the class of incompressible microstretch flows in the domain R(f) for which 

M = max (YJ < m. (‘7) 

We can then deduce the result[lO] 

T(t) 5 T(to) exp [- s(t - ro)l 

where 

s z min 
i 

80(2F + k)* ‘7(m _ M) 

pd2 1 

(58) 

(59) 

and lo has the same significance as in (43) and (50). 

h.UNIQUENESSTHE0REM.S 

(i) Let (4, V, V) and (q*, C*. v*) be two possible steady flows over the domain R(f) and 
subject to the hyperstick boundary condition (9). Let m and V. be defined for the flow (4, C, V) as in 
((30), (ii) and (iv)). The kinetic energy T of the difference motion (ri, 8, e) is then constant. If either 
of the sets of inequalities (44), (51) is satisfied, the law of decay in (43) or (50) is to be valid and it 
follows that T(t) is zero. This implies that the two flows are identical. 

(ii) Let (4, V, u) and (d*, C*, v*) be two possible unsteady flows in the bounded domain R(f) 
such that they have the same field distribution at t = 0 and are subject to the same boundary 
condition on aR(t). Then the difference flow (ii, &8) is controlled by the law of decay in (43) or 
(50) if the conditions (44) or (51) are satisfied. At t = 0 the flow (U, I?, 0) is trivial and hence it 
follows that T(r) = 0 for all t > 0. Thus the two flows are identical. 
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