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STABILITY OF MICROSTRETCH FLUID MOTIONS

S. K. LAKSHMANA RAO and K. VENKATAPATHI RAJU
Department of Mathematics, Regional Engineering College, Warangal 506004, India

Abstract—Criteria of stability of the unsteady motion of incompressible microstretch fluid in an arbitrary
time-dependent domain are obtained using a general energy method introduced by Serrin. It is shown that
the original motion is stable in the mean if either of the two sets of numbers (e, €;, €;) or (0, a3, 73)
consists of positive numbers only. These numbers are expressible in terms of the various Reynolds
numbers of the original motion. The theorems giving the stability criteria are universal in the sense that they
do not depend on the geometry of the domain or the actual distribution of the flow field quantities. The
decay of energy of the flow in a rigid and fixed container as well as a theorem on the uniqueness of steady
flows are deduced.

1. INTRODUCTION

THE THEORY of simple microfluids introduced by Eringen[1] deals with a class of fluids which
respond to certain microscopic effects arising from the presence of microstructure and are
influenced by spin inertia. Besides the usual translatory degrees of freedom reckoned by the
velocity vector g, the fluid element has degrees of freedom enabling it to possess intrinsic
rotary motion and also deformation. The latter are governed by the three gyration vector fields »,. A
simplified model of microfluids also introduced by Eringen[2] is the class of micropolar fluids with
stretch. In this model (Ariman(3]) the gyration tensor v, and the first stress moment tensor Ay,
have the form

Ay = vy + €y, (1

1
Adim = Ay — 2 EomrMir- (2)

The micromotion here consists of a rotation about the centroid of the fluid element in an
average sense described by the microrotation vector # and deformation consisting of a stretch
due to the axial motions of cylindrical or dumb-bell elements, described by the scalar ». When
the fluid element has no deformation the gyration tensor is antisymmetric and we have the class
of micropolar flows without stretch{4]. Both the theories of micropolar and microstretch fluids
depart from the classical Navier-Stokes theory in two prominent features, viz the sustenance of
couple stress and the non-symmetry of the stress tensor.

In this paper we consider the stability of microstretch fluid motions based on the energy
method introduced earlier by Serrin[5] for investigation of the stability of viscous fluid motions
governed by the Navier-Stokes equations. This powerful method was later extended by
Joseph[6] for the discussion of stability of Boussinesq equations. One of the authors[7] has
employed Serrin’s method for the study of the stability of micropolar flows. The stability of

Cosserat Fluid Motions has also been studied using Serrin’s method by Shahimpoor and
Ahmadi[8].

2. GOVERNING EQUATIONS OF INCOMPRESSIBLE MICROSTRETCH FLUID

We consider the motion of an incompressible microstretch fluid in an arbitrary time-
dependent domain R(t). The equations governing the flow are[2, 3]

divg =0 €)

j ., . - . .
a—i+(q -grad)j -2 =0 )
G _ 1, 7 5
p -ﬁ—qxwrlq«#-grad(iq) =pf—gradp + Ao grad v + k curl 5
—(p+k)curlcurl g+ (A +2p + k) grad(divg)  (5)
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fav _ - - - . .
pi [.é{ﬁ+(q ‘grad)vz =pl ~2ki+ kecurl § —yeurlcurl 7+ (a + B+ yygrad (div ©) {6
I Jaov - 3
3P -;?—l—+(q~grad)v = pl + Vv —(no~ Aol tT

In the above system of equations p is the density of the fluid, j denotes the gyration parameter.
p is an undetermined pressure, f and [ are, respectively, the body force and body couple per
unit mass and [ in eqn (7) is one third of the trace of the first body moment per unit mass. The
vectors §, 7 are, respectively, the velocity and microrotation vectors and the scalar v denotes
the microstretch of the fluid elements. The viscosity coefficients A,, o, &

A
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gyroviscosity coefficients «. B. y. a, are constant and are subject to the following
restrictions{2].

3MA2p k20, 2p k=0, k=0
A A
= Ap =0, (Mo~ Ag)3A; +2u +k)274ﬂ (8)
3at+B+y=0, y 24, 1Bl=1v. ay =0,

The density p and the gyration pafameter | are positive and the former is a constant.

Boundary conditions. We assume that on the boundary aR(t) the field variables g, # and »
are prescribed. If X is a point on the boundary, ¢ is the time and U(X, 1), N(X. 1), No(%. t}
denote, respectively, the velocity, microrotation and microstretch of the element at ¥ and at
time ¢, we have

gg. 0y = U 0.
pE 1) = N(X 1), 9
(X, 1)Y= Nglx. 1)

These conditions reflect a sort of super adherence of the fluid to the solid boundary.

3. SERRIN ENERGY EQUATION

We consider an incompressible microstretch fluid motion in the domain R(t) specified by the
field quantities (4, 7, v} and refer to this as the basic motion. The body force, body couple and
the body moment trace are omitted. At some instant (¢ = 0, say) the basic motion is altered to
the starred motion (¢*, #*, v*). The basic as well as the starred motions have the same density
and gyration parameter j and are subject to the same conditions on the boundary dR(¢). In
view of the hyperstic or super adherence condition, the field variables ¢, 7, v are zero at a rigid
and fixed wall. To examine whether the starred flow approached the basic flow asymptotically
and in the mean as t—w or differs radically from it, we employ the Liapunoff function
representing the kinetic energy of the difference flow which is characterized by the velocity
i = G* - §. the microrotation & = #* — 7 and the microstretch = v* — p. The density p and
gyration parameter j for the difference motion (i, 9, 8) are the same as for the basic and starred
motions. The kinetic energy of the difference motion is

T:T1+T2+ T} (]0)
1 —\2 l] e av? 3] a2
e ~ g R +- . I3
2pr(;¢) 4R +3 [ pi(37 dR+3 [ it* 4R ()
The field quantities and the domain R(f) are such that the divergence theorem is valid. In the
sequel the volume infinitesimal dR in the volume integrals over the domain R(f) will be omitted.

The eqns (3)~(7) are valid for the basic flow (4, 7, v) as well as the starred flow (G*, 7*. v*). We
can easily obtain the following muster of differential equations for the difference flow (ii. 9. 8).
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divi=0 (12)
(it - grad)j —26j =0 (13)

p[';—lz+ (g* - grad)i + (it - grad)q] =—grad (p*— p)+ Aograd 0 + k curl 3—(p+k)curlcurl i
(14)

pj[%-i— (G* - grad)d + (i - grad)ﬁ] =—2k& + k curl i — y curl curl § +(a + B + y) grad (div §)
(15)

%pj[%f-+ (@* - grad)d + (& - grad)u] = agV?8 ~ (90— A0)8. (16)

In view of the hyperstick boundary conditions (9) valid for both the basic and starred flows, the
difference flow (i, 3, 8) is such that

i=0, §=0, 6=0 ondR(). (17)
From (10), (11) and the Leibnitz rule, we have

dTl_f Y
—— pu'_—

ar at’ (18)

Using (14) we see that (18) can be written also in the form

dT
- f {- pii - [(g* - grad)it] - pid - [(i - grad)q] — i - grad(p* ~ p)
+ Aol - (grad @) + kiz - curl & —(u + k)i - curl curl a}. (19)
The above equation can be simplified by the use of divergence theorem and noting that i is a

solenoidal vector and that it vanishes on the boundary aR(t). We see that time-rate of change of
the energy functional T, can be expressed in either of the following two ways

dT' fpu D- u+kfa curl 7 - (u+k)f(curlu)2 (20)
%?‘=fpﬁ-(grad 12)‘q+kf1§-curlli—(p.+k)f(curl iy (21)

In (20) D denotes the rate of deformation matrix of the basic flow velocity § and grad i in (21)
denotes matrix with components (grad @); = u;;.
From (10) and (11) we have

dT
Fri 2f 37 UM 22

and with the use of (15) we see that

dTZ f 2° a (0)2 pi¥ - [(3* - grad)d] — pjd - [(i - grad)?)
—2k(8+kd -curl i — y3 - curlcurl § + (a + B+ y)d - grad (div §).  (23)

A selective use of the divergence theorem leads to the following simplified version of (23)

de f {piv¥(8) — pjii - E - & — 2k(8)* + k& - curl i — y(curl §)* - (o + B + y)(div §)%. (24



468 S. K. LAKSHMANA RAO and K. VENKATAPATHI RAJU

In the above, E denotes the matrix gradient of the microrotation vector # of the basic flow.
From (10) and (11) we get

dT 3[ B 2y ,
dfy 5 9 g2 o {25
dr 4 p(ﬁr0+“]0r’n) =

and this can be brought into the form

dT | T B ) 2
—af =3 f {; piv*0° < pjbl(i - grad)v] - aqlgrad 6)" —(no /\0)0‘}. (26)

From (20), (24) and (26) we see that the time-rate of change of the energy functional T is given
by

dT — — .- o . as) 3 . 2
Et—:—fpu~D-u~fp;u-E-0+fp]v*(ﬁ)“+§fp]v*()‘

. pi®l(i - grad)v) ~§f(curl i—29)

2
(43
- ,u+;k)f(curlu) —yf(curlﬂ)
*(G+B+Y)f(dlv 5)2—3a0f(grad 0)2_3(7]0—/\0)f02‘ (27)

Comparison of (20) and (21) shows that the time-rate of change of the energy functional T can
also be expressed in the alternative form

%Tr=fpli'(grad ﬁ)-q—fpja-E- 5+fpjv*(5)2+%jpjv*02
] - - l\ - o 2 l =\2
-3 piél(i -grad)v]~; (curl 4 —28) - (p, +;k) f(curl i)
-y f(curl 3 —(a+ B+ y)J’(div 5)3—3a(,J(grad 9)2‘3(710“)\0)[92- (28)

The eqns (27) and (28) are basic to the discussion of mean stability and either of them may be
called the Serrin energy equation. Since the viscosity coefficients k, 2u + k, ny— Ao and the
gyroviscosity coefficients y, a + 8 + v and «, are all positive, we see that the terms in (20), {24)
and (26) involving the functionals

f(curl iy, J’(g)l, f(curl 3. f(div 9. j(grad 6y  and [02 (29)

show tendency to stabilize the basic flow. The functional f & - curl @ in (20) or (21) and (24) is
an interaction effect and may inhibit stability. However, this interaction effect gets founded on
combining the eqns (20) and (24). The rest of the terms in (20), (24) and (26) can be individually
destabilizing.

4. CRITERIA FOR UNIVERSAL STABILITY

The muster of symbols employed in the sequel is listed below:

(i) d = diameter of the ball which encloses the bounded volume R(¢) .
(i) — m = lower bound for the eigen values of the strain-rate matrix D of the basic flow

velocity g
(iii) n = upper bound for the magnitude of the matrix E:i.e. n=u.b..{tr(EET)}'?
(iv) V, = maximum speed of the basic flow over R(!)
(v) J = upper bound of j
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(vi) M = upper bound of the microstretches |v], [v*|
(vii) p = upper bound of [grad v|.
In each of the above, the bound is over the domain R(¢) and over the time interval (0, t).
Further we define the following symbols.
(viii) a =min(a + 8 +1v,7y)
(ix) my=2a/Qu + k)d?
(X) my=2pVod|u + k)= R2
(xi) my= M/pd
(X]l) my= a/ao
(xii) ms=(no~— /\o)dzlao
(xiv) me=2pmd*/Qu + k)= R1
(xv) m;=2pnJd|2u + k) = Rm
(xvi) mg=2ppJd/Qu + k)= Rs. (30)

From the definitions of m, n and p it is readily seen that

i-D-ia=-m@@)? 31
2

i-E- § 2 nla 19|25 n( a7+ ) (32)

6(d - grad)v = — p|6| || = —% p(d02+(—“}). (33)

Employing the bound M defined in (30(vi)) and the inequalities (31), (32), (33) in (27) we see that
== [ omr+3 [ oin( a7+ EEY M [ picd7+3 M [ i
+%fpjp(doz+(—’7d)—2)—%k f(curl i - 29y
- (w+3k) f(curl @~y [ (curl §P - (o + B+ y)f(div 3y
-3a, f (grad 6)° - 3(no— Ag) f 9. (34)

Using the functional inequalities[5, 9, 10] in (34)

f(curl i) = f(grad ﬂ)zzggf(ﬁ)z (35)
f {(div 8)* + (curl $)3 = f (8 (36)
f (grad 0)22%7; f 6? 37
we find that
dT nJ 3pj 80(2u +k) 6an’
s (meiy ey ST+ (na 2 - )T

_ 12110772 _ 4(710 —Ag)
+<pd+2M i o )T3. (39)

The above inequality can be written in the form

dT 2 2m
_dt—< —m—m'flTl ——ndesz

ms > pde; T, (39)
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and the numbers ¢, €,, €; are given by
— = +_|. 3 8
€)= My ZM7+Z/}13" 0,

m, nsmg
2'n| m;

5

3, (40

_ (L +2m3)mamy 2
-6 = ———————m— 37",
4m,
From (39) we can deduce the following criterion for universal stability of the microstretch flow.

Theorem 1. If the numbers €. €, €; are positive the functional T of the incompressible
microstretch flow in the bounded domain R(t) tends to zero as t — and the basic flow (q, b, v)
is stable in the mean.

When the three numbers ¢, €, €; are all positive and b denotes the minimum of the
quantities

b = min (Zmel , 2m|nd62’4m.pdeg) @1
me ms mamsg
we see from (39) and (41) that
dr

If the flow is valid over the time interval 0=t < 1, the energy functional T(t) satisfies the
inequality

T(t)= T(to) exp [— bt — to)] 43)

for any pair of values (f,. t) such that 0 < t,<t <. This shows that the energy functional for
the difference motion decays faster than the exponential. From (40) and (41) it is clear that
disturbances in microstretch fluid flows are damped more rapidly than in the corresponding
micropolar flows without stretch. This is to be expected as there is an additional dissipative
mechanism here.

The dimensionless numbers me, ms, mg defined in (30) may be recognized as the Reynolds
numbers of the basic flow involving the velocity §, microrotation » and microstretch »,
respectively. Denoting these by the suggestive symbols R1, Rm and Rs we can express the
criterion for the universal stability of the flow (g, #. v) also in the following form.

1
2

Rm +2m;Rs < 6mn’ (44)

Rl+=Rm +%Rs<80

4m |(”l5 + 371' 2)
Rs < U+ 2myme Amym.
Since each of the numbers R1, Rm and Rs is non-negative, it is possible to determine the
optimal values of R1, Rm and Rs in a universally stable, incompressible microstretch fluid
motion whenever the quantities m,, ms, m, and m; are numerically assigned.

An alternative criterion for the universal stability of the flow (g, 7, ») is possible if we start
with the identity (28). From Schwarz’s inequality and (30, (iv)) we have

2 2
pii-(gradt) - g = 2”‘4+ k (grad )’ + 2”# :/-Ok (a)’. (45)

Using this inequality to replace the first term in (28) and proceeding as we did earlier to reach
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(34), we see that

VB[ L[ (e @)
%s—%(2y+k)f(grad W'+ +‘;(J'(u)2+5fp;n(d(0)2+%)
—\2
+Mfpf(5)2+§2-Mfpj02+%fpjp(d02+(—lfi)—)
—%kf(curlﬁ—25)2—yj(curl 5)2—(a+ﬂ+y)f(div )
x3ao [ (@rad 07~ 3ma = 1o [ . 46)

and it is then clear that

dT _(2pVy*  nJ 3LJ_40(2,L+k)) M_6a7rz>T
ES<2#+k a2 & )Dtmd M- )T

2 —_—
+ (pd +2M - ‘i‘;;’,’ - 4("‘;1 Ao ) T (47)

Let oy, 03, 03, ¢ be the numbers such that

0',=—(mz)2—m7—%ms+80, o2 = €, 03= €3
2u+k  2mind  4m\pd “8)
_o[2ut mn mp 0'3}
¢ = min { 2pd2 ay, my [2p2) mamg .
If o, o, o3 are all positive, we see that
dT
T cT (49)
and hence, if the flow is valid over the time interval 0 <t <1,
T(t)= T(to) exp [~ c(t - to)] (50)

for any pair of values (t,, t) such that 0 < t,< t < 7; this leads to an alternative criterion for the
universal stability as seen in Theorem 2. If the numbers oy, o, o3 are positive the Liapunoff
function T for the incompressible microstretch flow in the bounded domain R(t) tends to zero
as ¢~ and the basic flow (g, 7, ») is stable in the mean.

The above criterion for universal stability is expressed by the inequalities

(R2+ Rm +%Rs<80

Rm +2m3Rs < 6m,7? 1))

4m|(m5 + 3772)

RS < (l + 2m3)m4

and comparison of (44) and (51) shows that the two criteria differ only in the first of the three
inequalities. The measures R1 and R2 employed to signify the Reynolds number of the flow are
different and the above change is thus understandable.

5. AN APPLICATION

If the boundary dR(¢) consists of rigid fixed walls, any motion initially present in the domain
R(¢) will presumably die out due to lack of supply of energy. By choosing the basic flow to be

ES Vol. 17, No. 4~
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trivial so that g =0. # = 0, » = 0 we see from either of the eqns (27), (28) that
dr . ~ .k _
HT:J’W . V*(ﬂ)2+%jpjv*0“*§ [(Curl i —28)
k =\2 312 o 932
~ (,LL +5) f(curl W —vy j(curl 3 ~(a+B+7y) I(dlv )
*30{0J’(grad 6)2_3(170“A())J 02. l52)

In the above i = §*, © = i*, 8 = v* specify the flow under consideration. The quantities J and
M defined in ((30). (v) and (vi)) are such that

J=maxj. M =max|v¥. (53)
Proceeding as before we have
g 802 + k) _ 3am’ / Ao Ao)d® + Ragn”
s T,+2(M p]dz)T3+(2M e )Tz. (54)
If we define
o 3(171'2 2(7]0“/\0)d2+6ao172
my mm(pjdz, oI ) {55}

and employ the symbol sgn to specify the sign of the expression in the parentheses, it follows
that

dT
sgn (—5> =1 (56)

for the class of incompressible microstretch flows in the domain R(t) for which

M = max |v| < m. (57)
We can then deduce the result[10]
T(ty= T(to) exp[— st — ty)] (58)
where
$ = min {&%gm.Z(m—M)} (59)

and t, has the same significance as in (43) and (50).

6. UNIQUENESS THEOREMS

(i) Let (g, 7, v) and (G*, #*.v*) be two possible steady flows over the domain R(t) and
subject to the hyperstick boundary condition (9). Let m and V, be defined for the flow (g, 7, ») asin
((30), (ii) and (iv)). The kinetic energy T of the difference motion (4, 9, 8) is then constant. If either
of the sets of inequalities (44), (51) is satisfied, the law of decay in (43) or (50) is to be valid and it
follows that T(t) is zero. This implies that the two flows are identical.

(ii) Let (g, 7, v) and (§*, 7*, v*) be two possible unsteady flows in the bounded domain R(t)
such that they have the same field distribution at r = 0 and are subject to the same boundary
condition on dR(t). Then the difference flow (i, 3, 6) is controlled by the law of decay in (43) or
(50) if the conditions (44) or (51) are satisfied. At t =0 the flow (&, 9, 8) is trivial and hence it
follows that T(t) =0 for all ¢ >0. Thus the two flows are identical.
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