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Summary 

In this paper, we obtain the fiow due to slow steady rotation of a sphere 
in a visco-elastic liquid characterized by the constitutive relation given by 
Rivlin. The non-Newtonian effects are strongly dependent on a non-di- 
mensional parameter K independent of the angular velocity of the sphere. 
If 1 < K < 3, we notice four vortices symme~crieally placed around the 
sphere .  W h e n  K lies ou t s ide  th i s  fange,  t he  d i rec t ion  of t h e  flow p a t t e r n  is 
t he  s ame  as t h a t  in t h e  Newto l l i an  case b u t  d isplaced t o w ard s  t h e  sphere  
as K decreases.  Also t he  express ion  for t h e  couple  on t h e  sphere  has  been  
o b t a i n e d  wh ich  depends  on  K.  

§ I. Introduction. R i v l i n  1) considered a class of isotropic incom- 
pressible fluids, with rheological propert ies  given by  the equat ion of 
state,  expressing S~I the  stress-tensor as a polynomial  in the ki- 
nemat ic  symmetr ic  tensors 

Dij = Ui,j  + Uj, i (la) 

and 
Bij = A~,j + Aj,~ - /2Um, ,Um, i  (lb) 

where U, and A, denote  the  components  of the veloci ty  and acceler- 
a t ion in t h e / - t h  direction. In  our present  investigation,  we consider 
a par t icular  p ro to type  of this class of fluids, character ized by  the 
equat ion of stare 

S = - - P I  + 61D + 92B + ¢3D 2, (2) 

where P is the hydros ta t i c  mean  pressure, I is the unit  tensor  of 
rank  2 and the coefficients ¢1, ¢2, ¢3 are constants.  These coef- 
ficients are, in general, funct ions of the invar iants  of the matr ices  

2 6 8  - -  
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D and B. Visco-inelastic liquids characterized by R e i n e r / )  can 
formally be obtained from (2) when 62 = 0. Further, if 68 also 
vanishes, the liquid is Newtonian. 

In the present paper we discuss the flow of a visco-elastic liquid 
given by (2) due to a sphere rotating steadily in it with a small 
angular velocity about one of its diameters. This problem was 
first studied for a classical (or Newtonian) viscous liquid by 
Stokesa) ,  He conjectured that the sphere would act like a cen- 
trifugal fan receiving the fluid near the poles and throwing it away 
at the equator which was later confirmed by K h a m r u i 4 ) .  Later, 
D a t t a  5) extended this to the class of liquids characterized by 
Reiner2) .  Recently, the present author 6) and T h o m a s  and 
W a l t e r s  7) considered the problem for visco-elastic liquids, whose 
constitutive relations involve relaxation and retardation times as 
suggested by O l d r o y d .  

As in 6), we employ a method of successive approximation sug- 
gested by CollinsS), in which it is assumed that the velocity 
components and the pressure can be expanded in ascending powers 
of a suitable parameter characteristic of the angular velocity of the 
sphere. 

§ 2. Basic equations. Ler a sphere of radius a rotate steadily with 
an angular veloeity ~ about one of its diameters in a liquid, charac- 
terized by (2), extending to infinity in all direetions. Let (U, V, W) 
denote the components of the velocity in the directions of the 
spherical polar eoordinates R (=  ar), 0, 6 respectively, with the 
origin at the centre of the sphere, R = the distance measured from 
the centre, the axis Õ = 0 coinciding with the axis of rotation of 
the sphere and 6 the azimuth. 

We shall also introduce the non-dimensional variables defined 
by the following equations: 

(U, V, W ) =  

P = ~ P ;  

and 

¢1 (u,v,~); (A~, Ao, A , )  - -  ¢~ pa p2a8 (ar, Cto, a¢) ; 

- -  s , j  ; . . . .  d , j ,  B , j  = b , j ,  
P a2 D,j - -  P a2 

¢2 ~- pa2fl, ¢8 = pa2ve 

(3) 
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where p is the densi ty  of the liquid and G is the couple due to 
the liquid friction, on the sphere given by  

rg 

G = -- f2~ER3SR¢~R= ~ sin 2 0 d0. (4) 
0 

The equations of s teady motion and cont inui ty  for the liquid 
flow can now be wri t ten in the dimensionless form 

B 8u v 8u v 2 + w 2 7  1 8 
Re u ~ r  ~ .~ --  (r2Srr) ~ 

r 80 r r2 8r 

1 8 Soo + s¢~ 
+ (sin OSro) 

r sin 0 80 r 
(5) 

8v v 8v uv --  w 2 cot O -] 1 8 
Re u ~ + - - - -  4- J - -  (r2sro) + 

r 80 r r2 8r 

1 8 Sro - -  s o o  c o t  0 
+ (sin Osoo) + 

r sin 0 80 r 
, ( 6 )  

B 8w v 8w u w + v w c o t O - ]  1 8 
Re u ~ +--r --80 - /  r _J --  r 2 8r (r2Sr0) + 

1 8 S¢r@ So0 cot 0 
+ r s i n 0  80 ( s in0s0 , )+  r 

and 

where 

(7) 

1 8 1 8 
r ~ -  8--;- (r2u) + r s inO 80 (v sin 0) = O, (8) 

Re = pa2Q/¢l. (9) 

The equation of cont inui ty  (8) is identically satisfied by intro- 
ducing the s tream function ~ given by 

u - -  r 2 s in0  80 ' v r s i n O  8r (10) 

The boundary  conditions are 

u = O = v ,  w = R e s i n O ,  when r =  1 

and 

u-----v = w = 0 ,  when r = oo. 

(11) 
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To facilitate the investigation of the visco-elastic effects on the 
flow, we assume tha t  the solution of the above equat ions can be 
expressed as a power series expansion in Re: 

X = Re XO) + R~ X(2) q- R3e X(3) + ...,  (12) 

where X m a y  s tand for any one of the physical quanfit ies 

u,  v, w, ~0, d~j, ai,  b~j, s~~, p ,  g . . . .  

The boundary  conditions (11) in the successive approximations 
m a y  be wri t ten as 

U (1) = V(1) = O, 7.0(1) = sin 0 1 
} o n ~ = I ,  (13) 

U ( n + l )  = V(n+ l )  = W (n+ l )  = 0 (n ~> 1) ] 

u( n) = v( n) = w( n) = O, at r = o o  (for alln).  

and p(n) is finite in the region of the flow. 

§ 3. First  approximation. Subst i tut ing (12) in the muster  of (5)- 
(7) and equat ing the coefficients of Re we get the equations for the 
stresses 

s~?= _p(1)õ, + 4? (14) 
and hence the equations of motion 

vp(1) I V 
+ - -  E2~(1) = 0, (15a) 

Vr r 2 sin 0 V0 

and 

where 

vp(i) 1 V 
- -  E 2 F ( I )  ---- 0 (15b)  

VO sin 0 Vr 

E~(w(1)r sin O) = O, 

V 2 s in0 V ( 1 V )  
E 2 _= q- 

Vr 2 r 2 VO sin 0 VO 

(16) 

On eliminating p(1) from (15a) and (15b), we have the equat ion 
for ~0(1) 

Æ4~0(1) = 0 ,  ( l  7) 
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which yields the solution 

~o(1) = constant ,  (18) 

and the pressure 

p(1) = constant .  (19) 

(16) gives 

sin 0 
w(~) . . . .  (20) 

~,2 ' 

which satisfies the appropria te  boundary  conditions. 
F rom (20), we calculate g(1) the moment  

g(1) = - -8m (21) 

The results are the same as those noticed b y  S t o k e s  for a 
Newtonian  liquid 3). 

§ 4. Second approximation. Subst i tu t ing (12) in (5)-(7) and col- 
lecting the coefficients of Re 2, we get the acceleration components  

sin2 0 sin 0 cos 0 
a ( 2 ) _ _ _  . a~2)_ • a ( 2 ) = 0  (22) 

r - -  y5  ' y5  ' 

and the stresses, 
sin 2 0 

s(2) = _p(2)  + d(2) + 9(2fl + vc) r6 

, / (9 )  ~o0¢(2) = --/5(2) + ~oo, 
sin 2 0 (23) 

s(2) _p(e)  + z(2) + 9Vc - - ,  
¢¢ ~--- ~ ¢ ¢  ;v6 

s (2 )  .7(2) 
0¢ ~--- ~ 0 ¢ ,  

S(2) er ~-  d(2r )" 

The equat ions of mot ion can now be reduced to the equat ions 
for ~o(2) and w(2) 

E 6 12K_7 E4~o(ü) = sin 2 0 c o s 0 _ - ~ +  r 7 A (24) 

and 

E2(w(2~r sin 0) = 0, (25) 



ROTATION OF A SPHERE IN A VISCO-ELASTIC LIQUID 273 

where 

K = 12(/~ + vc). (26) 

(24), (25) yie]d the solution 

W ( 2 ) = _ ~ ( 1 1 ) 2 [ 1  - K3 (1 + 2 ) l s i n 2 0 c o s 0  (27) 

and 

w(2) = o. (28) 

We thus  get the ve lod ty  distributions 

' ( , - ~ ) ~ E ,  ~ (1 +.2)](1_ u(2) = _ _  
8r 2 3 

3 cos 2 0), (29a) 

v(2) = - -  1 - -  1 s i n 0 c o s 0 ,  
4r a r 

w(2) -- 0, 

the pressure distribution 

p(2)-- 2r al I(l_ rl_){1 _3_K (1 +--rl +~-1 )} 

and the couple 

(29b) 

(29c) 

sin 2 0 B q- constant  (29d) 

g(2) = 0. (29e) 

§ 5. Third afoproximation. Proceeding exactly in the same rnanner 
and co]lecting the coefficients of R a, we get the nonvanishing com- 
ponent  of the acceleration 

a(¢3)= sin 0 4r 5 4r 7 + K + 12rä 4r 7 + ~ r  s 

+ s i n  a0 - -~Tgrõ+~r  6 + ~ r  v + K  ~ r  5 + 8 r 7  4r s ,(30) 

and the stresses 

s(a) ,{(3) ~J = _p(a)@ + -~J, 
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excepting 

~, - -  -.~r + fl - -  2r--- ~ + ~r  7 + I g  2r 6 2r 9 s i n 0 +  

+ 4r6 4r 7 + ~  -}-K - - - - +  • sin30 + 4r6 2r s 4r 9 

+ r e  -- 2r~ ~ -+  2r 7 r s + K  2r 6 r s ~ - ~  s i n 0 +  

( ~') ( ~  ~' ~)~s~,,~ol [ 9 15 + ~ - r  s + K  -- 1 + 
/ g 6  2r 7 -4~r 6 +  4r s 2r9 

(3la) 

and 

°0¢¢(a) = d~~)+ fl -- 4Bf6 -}- 2r 7 4r s + 

+ K  + + 
4r 6 4r s 2rr"- 

+ r e  - - 4 ~  + 2 r 7  ~ + K  ~ - - r  s - + ~ 6  sin 20cos0.(31b)  

The equat ions for ~o(3) and w(3) in this case are 

E4~o(a = 0 (32) 
and [(' ') 
E 2 [ w ( a r s i n  0~ = 4f 4 4r6 + 

( 1 l 2 3 )  
+ K 12r 4 + 8 r  6 3r 7 }- ~ + 

( 1 3 3 ) ]  
+ K  ~' - - - - +  - sin 2 0 +  

8r 6 4r 8 4r 9 

3 1 1 K 1 +[(-~÷~~-~)÷ (8r4 
(, + K2 

8r 6 

, 3 s )  
4r 6 ~-8r 7 16r8 + 

16r 8 + ~ sin 4 0. (33) 

These equat ions yield the solution 

~o(3) ___= 0 
and 

w(3) -= Fl(r)  sin 0 -}- Fz(r) sin 3 0, 

(34) 

(35) 
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where 

log r 
F l ( r ) -  35r4 

K + - -  
1680r 2 

K~ 
1080r 2 

and 

log r 
F2(r) -- 28r4 

1 ( 1 )  / 74 26)  
+ 1200r~- 1- -  1 - - - - - / r  ~ -  -I- 

( 1 ) (  ~~ ~o 1~ ~~) 
1 -  1 +  + - 

r r 2 r a r 4 

( 1 ) (  1 185 145 
l -  1 +  + + 

r , 2 2 r  2 22Br  a 

1) , ~ ( 1 _ ~ ) ( ~  4, 

14s 175h 
22r 4 11 r 5 / 

K (1 1 ) z  (1 _+_ _~r~ ) _ 
48ra 

:23 / ( 2 ( 1 - 1 ) ( 1  10 10 
2112r 4 23r 23r z 

12) 
+ 2 ~ ß r a  " 

Fig. 1. Flow pattern for/4 = 2. 
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From this, we obtain the couple g(3) 

15 10 14 + ' (36) 

We notice that these results are in agreement with those obtained 
by Co l l i n s  when K -- OS). 

§ 6. Discuss ion  o / the  results. (i) It may be noticed that the flow 
pattern obtained during the motion due to a rotating sphere is 
strongly dependent  on K. The general motion is obtained by  
superposing, on the rotational velocity, the motion given by ~v(2) 
in the meridional plane which indicate the formation of four 
secondary vortices as discussed in (iv). 

\ 

Fig.  2. F l o w  p a t t e r n  for  K = 3. 

(ii) The radial velocity (u) changes sign on the cone C: 0 = 
---- cos -1 1/~/3 and also on the sphere r = r* (-= 2 K / ( 3  - -  K ) ) .  
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We thus  notice tha t  the sphere acts like a centrifugal fan as 
conjectured by  S t o k e s a ) :  " the  mot ion at  a distance from the 
ro ta t ing sphere consists of a flow inwards the poles and outwards  
the equa tor" .  We notice the non-Newtonian effect: the reversal 
of the sign of u when K = 3 and also on the sphere r = r* when 
1 < K < 3 .  For  the r a n g e K  ~< 1 o r K > 3  and also w h e n r  > r *  
for 1 < K < 3, the flow direction would be in accordance with the 
Stokes con ecture. 

O--O 

Fig.  3. T h e  s t r e a m  l ines  ~o(s) = 0.002 for  K = 1, 0, - -1 ,  - -2 ,  - -4 ,  - -6 ,  
(K  = 0 c o r r e s p o n d s  to  t h e  N e w t o n i a n  case).  

(iii) The  poloidal component  v of the veloci ty vanishes along 
the axis of rotat ion,  equatorial  plane of the sphere and also on the 
surface r ~ K ( >  1). The non-Newtonian effect is not iced in the 
region 1 < r < K ,  is negative for 0 < 0 < 9 0  ° and positive for 
90 ° < 0 < 180 ° which is opposite to tha t  in the Newtonian  case. 
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(iv) When 1 < K ~< 3: 
The stream line pattern in the meridional plane consists of 

cireulatory ilow around four vortices placed symmetrically round 
the sphere at the points given by r = K, 0 = cos-1(1/@3) the di- 
rections oi the vortices in the adjacent quandrants being opposite 
and same in the opposite quadrants. The strength of each vortex 
is ~/2 (K2 -- 2K + 2)(1 -- K)/12K 5. The flow patterns for the two 
cases K = 2, K = 3 have been shown in the figures 1 and 2. 

(v) The flow pattern for K _< 1 has been shown in fig. 3. It 
may be mentioned that  the stream lines ~(2) -- constant are dis- 
placed towards the sphere as K decreases. A similar effect may be 
noticed for the fange K > 3. 

(vi) The couple on the sphere due to the liquid is given by 

g-~Re - - S z e +  ~ - -  10 14 + (37) 

which depends on K whose values could be determined from the 
observations of the couple on the sphere for small values of Re. 
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