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Summary

In this paper, we obtain the flow due to slow steady rotation of a sphere
in a visco-elastic liquid characterized by the constitutive relation given by
Rivlin. The non-Newtonian effects are strongly dependent on a non-di-
mensional parameter K independent of the angular velocity of the sphere.
If 1 < K < 3, we notice four vortices symmetrically placed around the
sphere. When K lies outside this range, the direction of the flow pattern is
the same as that in the Newtonian case but displaced towards the sphere
as K decreases. Also the expression for the couple on the sphere has been
obtained which depends on K.

§ 1. Introduction. Rivlinl) considered a class of isotropic incom-
pressible fluids, with rheological properties given by the equation of
state, expressing Sy the stress-tensor as a polynomial in the ki-
nematic symmetric tensors

Dij= Ui,j+ Uj!i (18.)
and
Bij = Ai,; + Aj,i + 2Up,iUmn,; (1b)

where U; and A4; denote the components of the velocity and acceler-
ation in the ¢-th direction. In our present investigation, we consider
a particular prototype of this class of fluids, characterized by the
equation of state

S = —PI + $:1D + $sB + $aD?, )

where P is the hydrostatic mean pressure, [ is the unit tensor of
rank 2 and the coefficients ¢1, ¢a, ¢s are constants. These coef-
ficients are, in general, functions of the invariants of the matrices
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D and B. Visco-inelastic liquids characterized by Reiner2) can
formally be obtained from (2) when ¢3 = O. Further, if ¢3 also
vanishes, the liquid is Newtonian.

In the present paper we discuss the flow of a visco-elastic liquid
given by (2) due to a sphere rotating steadily in it with a small
angular velocity about one of its diameters. This problem was
first studied for a classical (or Newtonian) viscous liquid by
Stokes3). He conjectured that the sphere would act like a cen-
trifugal fan receiving the fluid near the poles and throwing it away
at the equator which was later confirmed by Khamrui4). Later,
Datta®) extended this to the class of liquids characterized by
Reiner?). Recently, the present author6) and Thomas and
Walters?) considered the problem for visco-elastic liquids, whose
constitutive relations involve relaxation and retardation times as
suggested by Oldroyd.

As in 6), we employ a method of successive approximation sug-
gested by Collins8), in which it is assumed that the velocity
components and the pressure can be expanded in ascending powers
of a suitable parameter characteristic of the angular velocity of the
sphere.

§ 2. Basic equations. Let a sphere of radius a rotate steadily with
an angular velocity £ about one of its diameters in a liquid, charac-
terized by (2), extending to infinity in all directions. Let (U, V, W)
denote the components of the velocity in the directions of the
spherical polar coordinates R (= ar), 0, ¢ respectively, with the
origin at the centre of the sphere, R = the distance measured from
the centre, the axis 6§ = 0 coinciding with the axis of rotation of
the sphere and ¢ the azimuth.

We shall also introduce the non-dimensional variables defined
by the following equations:

: 2
(U. V., W)= ﬂ (v, w); (Agr, do, Ag) = f13 (ar, as, ag);
pa pla
é1 ¢? é1 2
P:;ﬂ%?; Sij:f;;Sij; D“:;ﬁdi% Bﬁsz—;bw, (3)
o = pa?B, 3 = pav,
and

G = adiglp,
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where p is the density of the liquid and G is the couple due to
the liquid friction, on the sphere given by

G = — [ 2a[R3Sgg]p_, sin2 6 df. (4)
0

The equations of steady motion and continuity for the liquid
flow can now be written in the dimensionless form

2 2
R{W%+1ﬂ%ziﬂJ:Liww+

or r 06 ¥ 2 or
1 i Se6 + Soo
ysinf o0 (sin B5r0) — 7 ’ ©)
R ov v oV uwy — w? cot 0 1 ¢ )
e A
1 7 Sro — S¢¢ cot @
6 _ (6
ysinf o6 (sin. Gs6a) + 4 (6)
v ow %w—}-vwcot@] 1 0
R oy P T e T e
¢ [% T y &0 ™ ¥ 2 oy 2sra) +
1 0 Ser + See coOt 0
0 _ 7
rsin® 80 (sin Bso0) + ¥ @)
and
Ly % sing =0 ®
— (P21 — (v sin 8) = O,
2 or rsinf o6
where
Re = pa2Q/éy. 9)

The equation of continuity (8) is identically satisfied by intro-
ducing the stream function ¢ given by
1 oy 1 oy

U= Y= — - —_ (10)
2sin 6 a6 ysinf or

The boundary conditions are
u=0=9, w=£R,sinf, when 7 =1

and (11)
#u=9v=1w =0, when 7 = co.
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To facilitate the investigation of the visco-elastic effects on the
flow, we assume that the solution of the above equations can be
expressed as a power series expansion in R,:

X =R, XD + R2X® L R¥X® 4 ., (12)
where X may stand for any one of the physical quantities
w, v, W, P, dij, @, by, Si5, P, g ... .

The boundary conditions (11) in the successive approximations
may be written as

1) = () = 1) = gi ]
" ) 0, w sin 0 } ony—1, (13)
J

u® =9 = =0, at 7= oco (foralln).
and p® is finite in the region of the flow.
§ 3. First approximation. Substituting (12) in the muster of (5)-

(7) and equating the coefficients of R, we get the equations for the
stresses

sip) = —pWdy + dif’ (14)
and hence the equations of motion
oph 1 0
— — EZp) = Q, 15
o - 72sinf &b v (15a)
(e8]
B e S W S (15b)
a0 sin ) or
and
E2(wWy sin §) = 0, (16)
where

E2 =

02 n sinf o < 1 0 >
or2 72 90 \sinf a0/

On eliminating p® from (15a) and (15b), we have the equation
for @

E4® =0, (17)
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which yields the solution

1) = constant, (18)
and the pressure
p»@ = constant. (19)
(16) gives
sin 6
D—=2_""
wl) = 2 (20)

which satisfies the appropriate boundary conditions.
From (20), we calculate g} the moment

¢l = —8x. (21)

The results are the same as those noticed by Stokes for a
Newtonian liquid 3).

§ 4. Second approximation. Substituting (12) in (5)—(7) and col-
lecting the coefficients of R,2, we get the acceleration components

sin2 6 sin 6 cos 8

al® = — af?) = — ; e =0 (22

’

4 75

and the stresses,
= = p a2 92+ ) T
S = —p® + ),
s = —p@ - d@ -+ 9,

2) __ q(2
s@ = 4@

70 2

sin2 6 (23)

y6

2 2
s§9 = dip),

2) __ (2
s = d@.

The equations of motion can now be reduced to the equations
for @ and »®
6 12K ]

E4p®@ = sin? f cos 6 [— — + -
7 7

(24)

and
E2(w®y sin §) = 0, (25)
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where

K = 12( + vo). (26)
(24), (25) yield the solution

1\2 K 2 .
‘/1(2)2—%0—*) |:1-—— 1—}——~:|s1n260050 (27)
¥ 3 7

and

We thus get the velocity distributions

w@ — L <1 — i)z [1 — £<1 + 3):! (1 —3cos2f), (29a)
82 % 3 % ’

1 1 K
2(2) :__<1 ——)(1 ~~—>sin6cos@, {29D)

4 ¥

the pressure distribution

N (N e
.

SRR

and the couple

7\] .
— 2
272> | sin OJ - constant (29d)

g = 0. (29€)

§ 5. Thivd approximation. Proceeding exactly inthe same manner
and collecting the coefficients of R3, we get the nonvanishing com-
ponent of the acceleration

ewl( ) (]
¢ 45 47 12¢5 47 38

1 1 1
in3 o oS
+ sinto [( 8¢5 T 476 - 81'7> +X (81'5 T 877 478>:l » (30)

and the stresses

3 3
s = —p®oy + 4P,
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excepvting
(3) _ (3 [( 8 i) <_1i__1_) .
Sor = or +ﬂ[l< 2¢6 T 277 +K 2¢6 29 sin 0 +
+[<9 15 3> K( 3 3 3)}.30]
Nas a7 T2s) T AT e T T e T
| 3 9 3 1 3 5\ .
+””[1 _WJ“W_TS)J“K ﬁ‘y‘ﬁﬁ)f sin 0+

+ {(_9___1_5_ +_%L> +K<— —3~—i——21*——9~>}sin36:| (31a)

498 207 4y8 498 48 29

9 15 6
rol(~gat g) T

The equations for ¢ and w® in this case are

E4® =0 (32

(_3_ — é + ;9)}:' sin2f cos@. (31b)

498 48

and

E2[w®y sin 0] = [(~1—— — _1__> +

474 46

K( 1+1 2 3)
T T T e T as) T

SR N
8y6 48 449

I:( 3 1 1> K(l 1 n 3 5)
A A v i) R Vo e -~ AT )
1 S 1 .
—J—KZ( — + )] sint §. (33)

8¢6 16#8 4410

These equations yield the solution

p® =0 (34)
and
w® = F1(7) sin 6 4 Far) sin3 6, (35)
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Fig. 1. Flow pattern for K = 2.
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From this, we obtain the couple g®

(3)~n( : K+K2> 36
AT 0 14 9 ) (36)

We notice that these results are in agreement with those obtained
by Collins when K = 08},

§ 6. Discussion of the vesults. (i) It may be noticed that the flow
pattern obtained during the motion due to a rotating sphere is
strongly .dependent on K. The general motion is obtained by
superposing, on the rotational velocity, the motion given by (@
in the meridional plane which indicate the formation of four
secondary vortices as discussed in (iv).

Fig. 2. Flow pattern for K = 3.

(ii) The radial velocity (#) changes sign on the cone C: 0 =
== cos1 1/4/3 and also on the sphere » = v* (= 2K/(3 — K)).
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We thus notice that the sphere acts like a centrifugal fan as
conjectured by Stokes3): “the motion at a distance from the
rotating sphere consists of a flow inwards the poles and outwards
the equator”. We notice the non-Newtonian effect: the reversal
of the sign of # when K = 3 and also on the sphere » = #* when
1 << K < 3. For the range K < | or K > 3 and also when » > 7*
for 1 < K < 3, the flow direction would be in accordance with the
Stokes conjecture.

Fig. 3. The stream lines »(2) = 0.002 for K = 1, 0, —1, —2, —4, —6,
(K = 0 corresponds to the Newtonian case).

(iii) The poloidal component v of the velocity vanishes along
the axis of rotation, equatorial plane of the sphere and also on the
surface 7 == K (> 1). The non-Newtonian effect is noticed in the
region 1 <7 < K, is negative for 0 < 6 < 90° and positive for
90° << 6 << 180° which is opposite to that in the Newtonian case.
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(iv) When 1 < K < 3:

The stream line pattern in the meridional plane consists of
circulatory flow around four vortices placed symmetrically round
the sphere at the points given by » = K, 6 = cos™}(1/4/3) the di-
rections of the vortices in the adjacent quandrants being opposite
and same in the opposite quadrants. The strength of each vortex
is v/2 (K2 — 2K 4 2)(1 — K)/12K5. The flow patterns for the two
cases K = 2, K = 3 have been shown in the figures 1 and 2.

(v} The flow pattern for K < | has been shown in fig. 3. It
may be mentioned that the stream lines y® = constant are dis-
placed towards the sphere as K decreases. A similar effect may be
noticed for the range K > 3.

(vi) The couple on the sphere due to the liquid is given by

*R[ o R35n< 1 K+K2):| -
e A T R TR VR )

which depends on K whose values could be determined from the
observations of the couple on the sphere for small values of R,.
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