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Abstract—The flow of incompressible microstretch fluid is governed by a system of differential equations
involving the velocity vector g, the microprotation vector # and the scalar » representing the microstretch
of the fluid element. Let R = R(t) be a bounded domain in space and let the field (g, #, v) be prescribed at
each point of the boundary aR(t). If the domain R(¢) and the boundary data depend periodically on the time
t, it is shown that under some assumptions on the initial distribution of the flow fields and the material
constants of the fluid, there exists a unique, stable, periodic solution of the microstretch flow equations in
R(t), taking the prescribed values on the boundary dR(t) (Theorem 2 of the paper). The proof rests on some
relations describing the rate of decay of the energy functionals corresponding to the difference of two
microstretch flows in the domain that have the same density and gyration parameters and are subject to the
same boundary conditions.

1. INTRODUCTION

IN THIS paper we employ the energy method to deduce from certain plausible hypotheses the
existence of stable, periodic solutions of the equations of motion of incompressible, micro-
stretch fluids. The theory of microstretch fluids initiated by Eringen{1] is a special case of the
theory of simple microfiuids (Eringen([2]) in which the gyration tensor v; accounting for the
intrinsic rotary motion and deformation of the fluid elements and the first stress moment tensor
A have the special structure (Ariman[3])

vij = v8ij + €, $))
|
Ak = AiBj =3 M- 2)

The micromotion consists of a rotation about the centroid of the fluid element in an average
sense and deformation consisting of a stretch due to the axial motions of cylindrical dumbbell
elements. These are reckoned by the microrotation vector # and the microstretch » which is a
scalar field. When the fluid element has no micro-deformation the microstretch v is zero, the
gyration tensor v; is antisymmetric and we have the theory of micropolar fluids (Eringen[4]).

The discussion concerning the existence of periodic and stable solutions of microstretch
fluid flow equations hinges on some formulae describing the rate of decay of energy functionals
for the difference of two microstretch flows in a spatial domain R(t), both the flows having the
same density p and gyration parameter j. Both the flow fields conform to the hyperstick or
super-adherence condition at the boundary dR(t) of the domain and there is no slip, no spin, no
stretch of the fluid element relative to the boundary. Such relations concerning the time-rate of
change of energy functionals have already been noticed by the authors[5]. However, some
modification is necessary to facilitate further discussion on the existence of periodic solution.
The modified version is reported below in Theorem 1. Criteria for the existence of stable,
periodic solutions are given in Theorem 2. The present study provides an extension to the realm
of micro-stretch fluids of the results seen earlier for micropolar fluids[6] and is inspired by the
analysis of Serrin[7] on Navier-Stokes equations describing the flow of non-polar Newtonian
viscous liquids.

2. ENERGY CRITERION FOR THE STABILITY OF MICROSTRETCH FLOW
The field equations of incompressible microstretch fluid flow are[1, 2]

divg =0, (3)
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g - . .
S+ - grad)j — 20 =0, (4)

o axanqsgad ;)|
p[at q X curl g + grad 54
=—gradp + Aggrad + k curl 7
~(u+k)curlcurl g + (A, +2u + k) grad (div §), (5)

pi [%+ (g grad)ﬁ] =—2ki+kcurl g

~vycurlcurl 7 + (a + B + y) grad (div ), 6)
1 .[a -
3P [a_lt/ +(q - grad)u] = aoV?w — (10— Ao)v. N

In the above muster of equations p is the density of the fluid, j denotes the gyration parameter
and p is an undetermined pressure; the vectors g, v are respectively the velocity and
microrotation and the scalar field v denotes the microstretch of the fluid elements. The terms
representing the body force, body couple and trace of the first body moment are omitted. The
constants (A, u, k, 7o, Ap) are viscosity coefficients and (a, B, v, ap) are gyroviscosity
coefficients. These are controlled by the restrictions[1}

M +2u+k=0, 2u+k=0, k=0,

2
Mo—20)=0, (no—A(A; +2u +k) =20,

3a+B+y=0, y=0, [B]|=<0, ao=0. 8)

The density p and the gyration parameter j are positive and the former is constant.

Consider the motion (g, 7, ») over the spatial domain R(¢) subject to the condition of
super-adherence at the boundary aR(t). If (G*, ¥*, v*) is another flow in the domain satisfying
the super-adherence condition on dR(t) and the two flows have the same density p and the
gyration parameter j, the quantities

i=§*-gq, 9=v*-5 O=v*—y ©)
refer to the difference flow and vanish on the boundary dR(t). Consider the energy functionals
Ti=3 [o@r. T.=3 [pihy
1 2 P ’ 2 2 P] y
3( ..,
T’=Z pié (10)
in which the integrals extend over the volume of the domain R(t). (The conventional volume

infinitesimal is omitted throughout the paper). The vector & is solenoidal in the domain R(t) and
on the boundary dR(t) we have

a=0, §=0, 6=0. (1D

Following the procedure in{S] we can obtain the time—rate of change of the energy functionals
in the form

%zfpﬂ '(gradﬂ)'é+k‘[5~curlﬁ~(u+k)f(curlﬂ)2, (12)

%If = f piia - (grad §) - ¥ + f piv¥(H)
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+zfpjoa . 5—2kf(5)2+kj5-curlu
~'yJ(curl 3 —(a +B+y)f(div5)2, (13)
dT: 3
4L =2 [oita - rad o)1y +3 [piv*e?

+3 f pjr8® - 3ag f (grad 0)*—3(mo— Ag) f 0% (14)
The integrals
for @aair-a,  [oia- @raad) s
J piby - 9, J pilii - (grad 6)]v (15)

that appear in the relations (12)-(14) are majorizable by use of Schwarz's inequality in the form

20 - (grad 1) - § = 22K (grad @ + 22 @F(@, (16)
2i - (grad §) - 522+k(grad 8P+ pk(a)z(i)z, (17
<2u+k 2, pd 5.8
200 - 9) < 0 +2 +k( 3), (18)
and
2 - (grad )]y = <2 (g ad 6)* + ?‘—:I(u)2 2 (19)

In (18) we may choose the constant d equal to the diameter of the ball that encloses the
bounded domain R(t). Using (16)-(19) in the relations (12)-(14) and noting that

f (grad @)’ = f (curl #)* (20)

we obtain the bounds for the time-rate of change of the energy functionals shown below:

L TES T WP [(ariar i[5 -cu ;
I = ) (curl ) +2“+k @Y (gy+k|o- curla, 21

bl 2 +k . e 2 . =2
AL 2K [igrad 97+ 27 [y

dt
yoq . 2mtk *d’ 5
*3)2 4 ~H a2 P P XY
+ foir@r+ 2k i 0 i )

»2kf(5)2+kf5-curlﬂ-—yf(curlﬁ)z
~(a+B+ y)f(div 9, (22)

dT; 3(2p.+k)f. 2 3p® f._zz
ir s—————g j(grad 6) +—————2(2“ 0 jayw
+% fpjv”‘t‘)2 + 3J'ij02 - 3aof(grad 8)*

= 3(no—Ao) f 6. (23)
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Let the positive constants Vy, |7/, M and J be defined in the form

Vo=max |g|, [P =max|7]
M =max (Jv|, [v*))
J = max (j) (24)

the maxima being over the domain R(¢) x (0, 7] for any fixed positive constant 7. The time-rate
of change of the total energy functionals

T:T|+T2+ T3 (25)

is then bounded in the form

ﬂ _2“ +kf _\2 pzvg J‘ —\2
T < ) (curl i7) +2“ K (i)
2[.L+kf a\2 pJﬁO‘zf_z
+ 7 (grad 9) +2“ Tk (i)
+ M [oicB7 + 23K [

21~ 12 _ _
+%L:£,|;jj(ﬂ)2—yf(curl &)
—(a+ﬂ+y)f(div 5)2—§f(cur1a—25)2

3CUAK) (1 orag o+ 2T [y
+ 3 f](grad 0) +2(2“+k)j(u)

+ % f pi6* —3ay J (grad )’ = 3(no— Ag) f 6°. 26)

We may recall the inequalities[8, 9]

[ (curl @) = %‘2 j @2 (28)
—_— 2 —

f (grad §) = %’T f @7, (28)

f(grad 6} = idzg- J()z (29)

in (26) to recast the bound for dT/dt. Further, on introducing the positive constant
a=min(y,a +B+%y) (30)

we see that
yf(curl 3P +(a+B+ y)f(div 3)
> af{(curl &) + (div $)3
= af(grad 3 (31

From (26)—(31) we can deduce that

%Z:sc,f(ﬁ)2+czfj(5)2+c3jj92 32)
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and this can be written in the equivalent form

‘z—f <d\ T, +d,To+ ds T,

the constants d;, d;, d; being given by

_ 20V +2p] |5’ +3pIM? _ 40Q2p +k) .
2u+k pd?

372 Q2u + k) + 2pd*p] 67’a
2pd* 2ut+k  pld®

42u + k) 4 3172(2;1. +k) 127%a, _4no—Ao)
3pd? 2pd? pld* ol
Let us define the dimensionless numbers

Re=P_Vo% Rm:"\/(”"’(’;", Rs:\/(%)p\/(l):M.
k*2 H3 b

d,

>

dr,=2M+

d;=6M +

From (33)-(36) we find that dT/dt is negative whenever we have the conditions

Re’+ Rm?+ Rs? < 80,
pMd® 1 [pd’|5g| \* 2< a _1)
k2l | T \@eor 7)<
L) o)
and
pMd2 4 7 27wy 2(10 — Ao)d?
kot T T Ty T o, 0
[,L+§ ('u+§)l 3(#4‘5)]

For the requirements in (39), (40) it is necessary to have

Qu +k)J —4a <0,
and

2
s o< ()4

959

(33)

(34

(35)

(36)

37

38)

(39

(40

41

(42)

involving the material constants u +k/2, no— Ag,a and ag besides the constants J and d. The
conditions (41), (42) are in response to the demand that the microstretch flow (4, #, v) is
asymptotically stable in the sense that the Liapunoff measure of stability T tends to zero as the

time ¢ tends to infinity.
Let the numbers €, €;, €3 be defined in the form

#+E
€ =(80~R82—Rm2—RS2)W2-,

€2={6772( a 1)_0Md2_1< pd’| 7| )2}2(’”%)

_1 2
Qu+kJ 4 M+§ 2w+ (&2 pd

(43)

(44)
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6( +5)
2rlag | Ano—Agd® pMd* 4 7’ )

€= —_——— (45)
k k k 9 2 pd’
\(“ ) L RS LR
and let
€ = min (E[, €2, 63). (46)
We see then

Theorem 1. If the spatial domain R(t) is enclosable in a ball of diameter d and (g, 7, v) are
the velocity, microrotation and microstretch of an incompressible microstretch fluid in R(f)
which satisfies the hyperstick condition on the boundary aR(t), the energy functional T (i, &, 9)
of the arbitrary difference (i = §*— 4, & = #*— 5, 6 = »* — ») is such that

T(i, 3, 8) = Toexp (— et) 47

whenever the conditions (38)—(40) are satisfied by the primary flow. The constant Ty in (47)
denotes the initial value at t =0 of the energy functional T corresponding to the disturbance
(@, 9, 0) and € has the meaning given in (46).

3. EXISTENCE OF PERIODIC SOLUTIONS

To prove the theorem on the existence of periodic solutions of the microstretch flow
equations we start with the following assumptions.

CI. The field {G(%, t), #(%, t), v(Z, t)} is prescribed at each point of the boundary dR(t) of a
bounded, spatial domain R(t).

C2. The domain R(t) and the assigned boundary values of the field {G(%, t), #(%, t), v(X, t)}
depend periodically on t.

C3. To every continuous initial distribution of the field {g, #, »} and a suitable initial
distribution of the gyration parameter j(X, t) there corresponds a solution of the flow equations,
satisfying the prescribed conditions on the boundary 4R(t) and the flow is valid for all time
t =0,

C4. The conditions in (41) and (42) are satisfied.

C5. There is one solution of the flow equations for which the numbers (¢, €,, €3) introduced
in (43)—~(45) are positive. This solution is equicontinuous in X = (x, y, z) for all .

C6. The gyration parameter j(X,t) is periodic in t with period the same as the boundary
values of the field.

Theorem 2. Under the assumptions C1 to C6 there exists a unique, stable periodic solution
{Gx 1), #(x,t), v(, t)} of the microstretch flow equations in R(t) with its values on JR(t)
coinciding with the assigned values.

It is convenient to write {G(%,t), V())5(%, t), V[(3/2)j] v(% t)} taking the fields (%, t),
V()i(%, t), VG3jl2)v(%, t) in conjunction as a single seven—component vector A(%, t) and refer
to the quantity (Re*+ Rm*+ Rs®)"? = R as the Reynolds number of the flow A(X, ¢).

We may take the period of the assigned boundary values and also of R(¢) equal to one. Let
A(%, 1) be the solution guaranteed by condition CS. The sequence of functions ®(x) = A(X, n)
(n=1,2,3,..) is bounded and equicontinuous in X and hence by Arzela’s theorem ([10], p. 59)
this sequence contains a subsequence which converges uniformly to a continuous vector
function A(X) in the domain R(t). We shall see presently that the entire sequence A(X,n)
converges to A(%). If this is not true, there would be another subsequence converging uniformly
to the continuous vector B(x). Put

A D=AR +t+m—n), t=0 (48)

and let m > n. This vector field is a solution of the microstretch flow equations and satisfies the
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assigned conditions on the boundary dR(t). Let
T = 1 = 2 1 =32 1 ar=\2 3 )

T{AR, 0} =5 | plAG, O =5 | p(@)" +5 | pi(?) + 7 | piv (49)
ir_x which the_domain of integration is R(t). The flow defined by each of the two vector functions
A(%, t) and A'(x, t) satisfies the conditions (38)—(40) since the numbers (e, €;, €3) are positive for
both the flows. Hence by Theorem 1, eqn (47)

T{A'(%, t)— A%, )} < To exp (—et) (50)
where € is defined in (46) and
To = (T{A'(%, t) — A(X, 1)};-o. (51)

Since both the flows A(%, t) and A'(%, t) satisfy the conditions (38)-(40) we can see that

To=z0 [{@- @416 =9 43107 = im0 (52)

where the domain of integration is the spatial region R(0). We have therefore the bound
To=<(p}2V3i+ 2J|wof + 3IM?)(volume R(0))= C (53)

and from (50), (53) we see that

T{A'(X,t)— A, t)}=Ce ™. (54)
Choosing ¢ = n in (54) we have
T{®,(X) - Pp(X)} = Ce™ (55)
and hence we see that
lim T{®,(x)-,(X)}=0. (56)

The domain of integration in (55), (56) is R(n) = R(0). Allowing m and n to infinity through
sequences of integers such that ®,(x) > A(X) and ®,,(¥) > B(x) we see that the result (56) poses
a contradiction to the earlier provision that A(%) and B(Z) are different. We have, therefore, to
conclude that the entire sequence A(%, n) converges uniformly to the continuous vector
function A(%). ‘

From condition C(3) there exists a flow A*(Z, t) such that

A*(%,0) = A(X). (57)
We shall see that the solution A*(%, t) is periodic and stable. To this end, put
A%, t) = A(%, t +n). (58)
From (54) we have

T{A*&, t)— A", 1)} < Tiexp (— et) (59)



962 S. K. LAKSHMANA RAO and K. VENKATAPATHI RAIU

in which e has the same meaning as before and
T = (T{A*(%, 1) = A"(&, Do = T{AGE) — Ba(X)}.
The choice of t =1 in (59} leads to
T{A*x, 1)~ @, (D} < Tie™* < T,
and allowing n to infinity, we get

T{A*(x, 1)— A(X)} =0,

since lim T, = 0. From (62) we can cpnclude that

AME, 1) = A(F) = A(Z,0)

and A*(%, t) is, therefore, periodic with period equal to one.
By Theorem 1 we know that

T{A*(x, 1)— A(X, )} >0 as t >,
Since both A*(%, t) and A(%, t) are equicontinuous, we see that
AME D~ AX, 1)>0as t >

and so
max |A*(%, D] - max |A(%, )] < 0(t).
Since A*(%, t) is periodic, we see that
max |AX(%, t)] = max |A(X, t)].

Hence the Reynolds numbers R for the two flows are such that
RY(A*)=RXA)
and the numbers (¢, €2, €;) defined in (43)-(45) are such that

(AN zg(A). (i=1,2,3).

(60)

(6h

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

Since the set of numbers (&, €3, 63)_ is positive for the flow A(X, 1), it follows from (69) that the
set is positive also for the flow A*(%,t) and hence it is stable. This completes the proof of

Theorem 2.

4. ADDITIONAL REMARKS

(a) The boundary conditions prescribed must be compatible with a flow for which the
restrictiorls (38)-(40) are satisfied. Thus, for sufficiently low valued periodic boundary prescrip-
tion of A(X,t) there exists a periodic flow to which every other flow tends in the mean

eventually.

(b) When the assigned boundary conditions are steady, Theorem 2 assures the existence of a
unique, stable, time-independent solution of the microstretch flow equations, taking the pres-

cribed values on the boundary.
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(c) The condition C(3) is mathematically stringent as the flow is to be valid for all t =0.
However it is enough if this condition holds for those initial data for which the conditions
(38)~(40) hold.

(d) Theorem 2 is not to be deemed as the standard type of mathematical existence theorem.
Conditions C3 and C5 may not hold for certain types of boundary data. The extent of
applicability of the Theorem is not well-defined and this aspect of the preblem needs in-
vestigation.
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