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Abstract-The flow of incompressible microstretch fluid is governed by a system of differential equations 
involving the velocity vector cf. the microprotation vector f and the scalar Y representing the microstretch 
of the fluid element. Let R = R(t) be a bounded domain in space and let the field (Q, 6, v) be prescribed at 
each point of the boundary aR(t). If the domain R(r) and the boundary data depend periodically on the time 
1, it is shown that under some assumptions on the initial distribution of the flow fields and the material 
constants of the fluid, there exists a unique, stable, periodic solution of the microstretch flow equations in 
R(r), taking the prescribed values on the boundary dR(t) (Theorem 2 of the paper). The proof rests on some 
relations describing the rate of decay of the energy functionals corresponding to the difference of two 
microstretch flows in the domain that have the same density and gyration parameters and are subject to the 
same boundary conditions. 

I. INTRODUCTION 

IN THIS paper we employ the energy method to deduce from certain plausible hypotheses the 

existence of stable, periodic solutions of the equations of motion of incompressible, micro- 
stretch fluids. The theory of microstretch fluids initiated by Eringen[l] is a special case of the 
theory of simple microfluids (Eringen[Z]) in which the gyration tensor vii accounting for the 
intrinsic rotary motion and deformation of the fluid elements and the first stress moment tensor 
A, have the special structure (Ariman[3]) 

Aijk = hi6jk - k l jkrmir. (2) 

The micromotion consists of a rotation about the centroid of the fluid element in an average 
sense and deformation consisting of a stretch due to the axial motions of cylindrical dumbbell 
elements. These are reckoned by the microrotation vector F and the microstretch u which is a 
scalar field. When the fluid element has no micro-deformation the microstretch v is zero, the 
gyration tensor v;j is antisymmetric and we have the theory of micropolar fluids (Eringen[4]). 

The discussion concerning the existence of periodic and stable solutions of microstretch 
fluid flow equations hinges on some formulae describing the rate of decay of energy functionals 
for the difference of two microstretch flows in a spatial domain R(t), both the flows having the 
same density p and gyration parameter j. Both the flow fields conform to the hyperstick or 
super-adherence condition at the boundary dR(t) of the domain and there is no slip, no spin, no 
stretch of the fluid element relative to the boundary. Such relations concerning the time-rate of 
change of energy functionals have already been noticed by the authors[S]. However, some 
modification is necessary to facilitate further discussion on the existence of periodic solution. 
The modified version is reported below in Theorem 1. Criteria for the existence of stable, 
periodic solutions are given in Theorem 2. The present study provides an extension to the realm 
of micro-stretch fluids of the results seen earlier for micropolar fluids[6] and is inspired by the 
analysis of Serrin[7] on Navier-Stokes equations describing the flow of non-polar Newtonian 

viscous liquids. 

2. ENERGY CRITERION FOR THE STABILITY OF MICROSTRETCH FLOW 

The field equations of incompressible microstretch fluid flow are [ 1,2] 

div 4 = 0, 

955 

(3) 
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2 + (q . grad)j - 2vj = 0, (4) 

$qxcurlg+grad 

=-gradp+&grad+kcurlfi 

- (p + k) curl curl d + (A I + 2~ + k) grad (div Q), 

pj $+(qgrad)c 
[ 1 =-2ki;+kcurlq 

- y curl curl V + (cy + /3 + y) grad (div G), 

$+(4 .grad)u =cyoV2~-(n0--h~)~. 1 

(3 

(6) 

(7) 

In the above muster of equations p is the density of the fluid, j denotes the gyration parameter 
and p is an undetermined pressure; the vectors cf, fi are respectively the velocity and 
microrotation and the scalar field Y denotes the microstretch of the fluid elements. The terms 
representing the body force, body couple and trace of the first body moment are omitted. The 
constants (A, p, k, qo, Ao) are viscosity coefficients and (ar, p, y. ao) are gyroviscosity 
coefficients. These are controlled by the restrictions [ I] 

3,i,+2p+kkO, 2p+krO, kr0, 

(170-~,,)r0, (qo-Ao)(3*,+2p+k,k$ 

3a+p+yro, yro, Ipl’o, aoro. (8) 

The density p and the gyration parameter j are positive and the former is constant. 
Consider the motion (4, V, u) over the spatial domain R(t) subject to the condition of 

super-adherence at the boundary dR(t). If (4*, c*, v*) is another flow in the domain satisfying 
the super-adherence condition on tlR(t) and the two flows have the same density p and the 
gyration parameter j, the quantities 

fi=q*-q, jj=c*_i;, *=u*_u (9) 

refer to the difference flow and vanish on the boundary dR(t). Consider the energy functionals 

T =; I p(&)2, T2 = i 
I 

pi(a)*, 

T3=i pj02 I (10) 

in which the integrals extend over the volume of the domain R(t). (The conventional volume 
infinitesimal is omitted throughout the paper). The vector ri is solenoidal in the domain R(t) and 
on the boundary aR(t) we have 

c = 0; 8 = 0; 8 = 0. (11) 

Following the procedure in[5] we can obtain the time-rate of change of the energy functionals 
in the form 

2= pa.(gradu).Q+k 6.curlli:--(p+k) (12) 

dT2 
dt = 

I 
pjC. (grad 8) . i; + 

I 
pjv*(aJ2 
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- Y 
I 

(curl 6)’ - (a + p + y) 
I 

(div i?)“, 

T = i 
I 

pj[ti . (grad fI)]v +i 
J 

pjv*02 

+ 31pjvB’ - 3aol(grad 8)2 - 3(170 - Ap)lfI’. 

(13) 

(14) 

pa . (grad U) . (1, 
I 

pjn . (grad 8) . V, 

J-pjOv.8, 1 pj[U . (grad O)]v (15) 

that appear in the relations (12)-(14) are majorizable by use of Schwarz’s inequality in the form 

20 . (grad U) .tj 5 v (grad ti)2 + & (ti)2(4)2, 
CL 

2d . (grad 8 ) * C I y (grad I?)’ + 

and 

2O(V 

2[~ . (grad O)]v 5 y (grad 0)’ + & (U)*v2. 

(16) 

(17) 

(18) 

(19) 

In (18) we may choose the constant d equal to the diameter of the ball that encloses the 
bounded domain R(t). Using (16)-(19) in the relations (12)-(14) and noting that 

/(grad 0)’ = /(curl ti)* (20) 

we obtain the bounds for the time-rate of change of the energy functionals shown below: 

dT1 2p+3k -<_- 
dt- 4 

(curl ii)‘+ & j(ti)2(q)2 + k/6 . curl U, 

- (a + p + y) 
I 

(div I%)~, 

(21) 

(22) 

(23) 
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Let the positive constants Vo, I&(, M and J be defined in the form 

VO = max IQI, li$ = max (171 

M = max ((vi, Iv*[) 

J = max (j) (24) 

the maxima being over the domain R(t) X (0, T] for any fixed positive constant T. The time-rate 
of change of the total energy functionals 

T = T, + T2 + TJ (25) 

is then bounded in the form 

dT<_Wk 
dt- 4 I 

(curl 

+ v j(grad 8)’ + E I(U)2 cL 

2p+k .* 
+M pi(a)‘+7 

I I 
10 

+s/j(;j)*-y](curlB)’ 

- (a + p + y) 
I 

(div 6)’ -i (curl c - 2s)’ 

j(grad 0)’ + $$$ /(a)’ 

(26) 

(28) 

+ y Ipi@ - 3aO](grad 0)’ - 3(70- An)/O*. 

We may recall the inequalities [8,9] 

I (grad I?)* 2 $ ](I?)*, 

(grad 0)’ 2 $ O* 

(28) 

(29) 

in (26) to recast the bound for dT/dt. Further, on introducing the positive constant 

a =min(y,a+P+y) (30) 

we see that 

y (curl I!?)* + (a + /3 + y) (div 3)’ 
I 

2 a 
I 

{(curl a)* + (div s)2} 

= a 
I 

(grad s)2. 

From (26)-(31) we can deduce that 

(31) 

(32) 
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g 5 d,T, + 4*T2 + djT3, (33) 

the constants dl, dz, d, being given by 

d 
I 

= 2pV: + 2pJIti,12 + 3p.M’ _ 40(2~ + k) , 
2p+k pd2 

(34) 

d 
2 

= 2M + 3r2(2p + k) I 2pd2ji;o12 

W2 

67r2a , 
2p+k -pJdz (35) 

d = 6M + 4(2~ + k) + 3~2(2~ + k) 127% 4(no - ho) 
3 

W2 W* -pJd2- PJ . 
(36) 

Let us define the dimensionless numbers 

Re_pVod, Rm=e2dG.l$ Rs= 

P+; ,+k 
2 

From (33~(36) we find that d7’/dt is negative whenever we have the conditions 

Re* + Rm2 + Rs2 < 80, 

and 

For the requirements in (39), (40) it is necessary to have 

(2p+k)J-4a ~0, 
and 

6a2ao+2(qo-ho)d2< (;+F)(p+;)J 

(37) 

(38) 

(39) 

(41) 

(42) 

involving the material constants p + k/2, 7. - Ao,a and (~0 besides the constants J and d. The 
conditions (41), (42) are in response to the demand that the microstretch flow (4, V, v) is 
asymptotically stable in the sense that the Liapunoff measure of stability T tends to zero as the 
time t tends to infinity. 

Let the numbers l l, ~2, EJ be defined in the form 

l l = (80- Re2- Rm2- Rs’)---_i, 
pd 

(43) 

1 
4 ) 
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(45) 

and let 

E = min (e,, l 2, ~3. (46) 

We see then 
Theorem 1. If the spatial domain R(t) is enclosable in a ball of diameter d and (ii, F, V) are 

the velocity, microrotation and microstretch of an incompressible microstretch fluid in R(t) 
which satisfies the hyperstick condition on the boundary M(t), the energy functional T(&, I?, 0) 
of the arbitrary difference (g = 4* - cf, 6 = F* - V, 0 = u* - Y) is such that 

T(C, S, 0) 5 TO exp (- et) (47) 

whenever the conditions (38)-(40) are satisfied by the primary flow. The constant TO in (47) 
denotes the initial value at t = 0 of the energy functional T corresponding to the disturbance 
(a, 8, 0) and E has the meaning given in (46). 

3. EXISTENCE OF PERIODIC SOLUTIONS 

To prove the theorem on the existence of periodic solutions of the microstretch flow 
equations we start with the following assumptions. 

Cl. The field {4(X, t), fi(& t). v(X t)} is prescribed at each point of the boundary aR(t) of a 
bounded, spatial domain R(t). 

C2. The domain R(t) and the assigned boundary values of the field {q(% t), G(a, t), v(& t)} 
depend periodically on t. 

C3. To every continuous initial distribution of the field {4, V, V} and a suitable initial 
distribution of the gyration parameter j(Z, t) there corresponds a solution of the flow equations, 
satisfying the prescribed conditions on the boundary JR(t) and the flow is valid for all time 
t ro. 

C4. The conditions in (41) and (42) are satisfied. 
C5. There is one solution of the flow equations for which the numbers (E,. ~2, ~3) introduced 

in (43)-(45) are positive. This solution is equicontinuous in ff = (x, y, 2) for all t. 
C6. The gyration parameter j(n, t) is periodic in t with period the same as the boundary 

values of the field. 
Theorem 2. Under the assumptions Cl to C6 there exists a unique, stable periodic solution 

{4(&t), F(n, t), v(i t)} of the microstretch flow equations in R(t) with its values on JR(t) 
coinciding with the assigned values. 

It is convenient to write {#, t), d(j)V(X t), d[(3/2)j] Y(%, t)} taking the fields 4(X, t), 
V/O’)ti(X, t), V(3j/2)v(Z, t) in conjunction as a single seven-component vector A(%, t) and refer 

to the quantity (Re’ + Rm2 + Rs*)“~ = R as the Reynolds number of the flow A(.% t). 
We may take the period of the assigned boundary values and also of R(t) equal to one. Let 

A(f, t) be the solution guaranteed by condition C5. The sequence of functions @(a) = &f, n) 
(n = 1,2,3, . .) is bounded and equicontinuous in f and hence by Arzela’s theorem ([IO], p. 59) 
this sequence contains a subsequence which converges uniformly to a continuous vector 
function A(f) in the domain R(t). We shall see presently that the entire sequence A(f, n) 
converges to A(X). If this is not true, there would be another subsequence converging uniformly 
to the continuous vector B(f). Put 

A’(ff,t)=A(x,+t+m-n), t ro (48) 

and let m > n. This vector field is a solution of the microstretch flow equations and satisfies the 
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assigned conditions on the boundary JR(t). Let 
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(49) 

in which the domain of integration is R(t). The flow defined by each of the two vector functions 
A(.% t) and A’(f, t) satisfies the conditions (38)-(40) since the numbers (E,, l 2, ~3) are positive for 
both the flows. Hence by Theorem 1, eqn (47) 

T{A’(f, t) - A(%, t)} 5 To exp (- E?) (50) 

where E is defined in (46) and 

To = (T{A’(i, t) -A(% t)}),=o. (51) 

Since both the flows A(ff, t) and A’(.% t) satisfy the conditions (38)-(40) we can see that 

where the domain of integration is the spatial region R(0). We have therefore the bound 

r, I (p)(2 Vi + 2J(vo(2 + 3JiM2)(volume R(0)) = C (53) 

and from (50), (53) we see that 

T{A’(,t, t) - A(%, t)} 5 C e-“. 

Choosing t = n in (54) we have 

T{Qm (f) - Q.(f)} 5 C e-‘” 

(54) 

(55) 

and hence we see that 

lim T{%(X) - @.(a)} = 0. (56) 
I%““0 

The domain of integration in (55), (56) is R(n) = R(0). Allowing m and n to infinity through 
sequences of integers such that Q,,(x) + A(f) and Q,,,(X) -+ I?(%) we see that the result (56) poses 
a contradiction to the earlier provision that A(X) and B(Z) are different. We have, therefore, to 
conclude that the entire sequence &m, n) converges uniformly to the continuous vector 

function A(f). 
From condition C(3) there exists a flow A*(%, t) such that 

A*(& 0) = A(%). (57) 

We shall see that the solution A*(f, t) is periodic and stable. To this end, put 

A”(Z, t) = A(& I + n). (58) 

From (54) we have 

T{A*(n, t) - A”(& t)} 5 TI exp (- EC) (59) 
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in which E has the same meaning as before and 

T, = (T{A”(rn, C) - A”@, C)}),=* = T{‘&(f) - (D,(T)}. (60) 

The choice of t = I in (59) leads to 

T{A*(K 

and allowing n to infinity, we get 

T{A”(f, 1) -A(X)} = 0, (62) 

since lim Tr = 0. From (62) we can conclude that 
n- 

A”($ If = A(@ = A(& Of 

and A*(??, t) is, therefore, periodic with period equal to one. 
By Theorem 1 we know that 

T(A*(Z, t) - A(f, t)) --$O as I -+ co. 

Since both A*(Y, t) and A($ t) are equicontinuous, we see that 

A*(%r)-A(P,t)+Oas t-+m 

and so 

f63 

(64 

(651 

in;” /A*(% ttl - rn;x i&x, t)J 5 o(f). 

Since A*($, t) is periodic, we see that 

(W 

rm$ /A”(.% t,f 5 rn? /A(% t,J. 

Hence the Reynolds numbers R for the two ffows are such that 

(67) 

RZ(rl:*) 5 P(A) 

and the numbers (E,, EZ, e3) defined in (43 j(45) are such that 

(68) 

ei(A*) =‘Ei(A)* (i= 1,2,3). (69) 

Since the set of numbers (er, EZ, ~3) is positive for the flow &f, t), it follows from (69) that the 
set is positive also for the flow A*($ t) and hence it is stable. This completes the proof of 
Theorem 2. 

4. ADDITIONAL REMARKS 

(a) The boundary conditions prescribed must be compatible with a flow for which the 
restrictions (38~(40) are satisfied. Thus, for sufficiently low valued periodic boundary prescrip- 
tion of A(% t) there exists a periodic flow to which every other flow tends in the mean 
eventually. 

(b) When the assigned boundary conditions are steady, Theorem 2 assures the existence of a 
unique, stable, time-independent solution of the microstretch flow equations, taking the pres- 
cribed values on the boundary. 
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(c) The condition C(3) is mathematically stringent as the flow is to be valid for all t 2 0. 
However it is enough if this condition holds for those initial data for which the conditions 
(38~(40) hold. 

(d) Theorem 2 is not to be deemed as the standard type of mathematical existence theorem. 
Conditions C3 and C5 may not hold for certain types of boundary data. The extent of 
applicability of the Theorem is not well-defined and this aspect of the preblem needs in- 
vestigation. 
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