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FORCED-CONVECTION IN NON-CIRCULAR PIPES
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Summary

The heat transfer problems of forced-convection in non-circular pipes have

many engineering applications. In this a paper a formal solution is given
oo

when the mapping function z = w({) = X an{® which maps conform-
n=0

ally the cross-section of the channel onto the unit circle y in the {-plane is

known. The expressions for the average velocity, average temperature, mixed

mean temperature, heat transfer rate and the Nusselt number have been

expressed in terms of the constants ay.

§ 1. Introduction. The heat transfer problems of forced-con-
vection in channels have been studied by a number of investi-
gators. L. N. Taol) has employed complex variable methods to
solve some forced-convection problems of fully developed laminar
flow in channels with heat sources and linearly varying wall temper-
ature. In this paper complex variable methods developed by N. L.
Muskhelishvili2) have been used. The method is illustrated by
applications to cardioid and ovaloid cross-sections.

§ 2. Basic equations. Consider a steady fully developed laminar
flow with arbitrary heat generation in a pipe of cross-section D
bounded by a closed curve C. Let the axis of the pipe be in the Z-
direction. The basic momentum and energy equations of the
constant property non-dissipative fluid are
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where ¢, = specific heat constant pressure, # = thermal con-
ductivity, u = viscosity, ¢ = density, Q = heat source intensity,
C1=1/u@poZ), Co = [(p/k) cp(0t/eZ)], C3 = Q/k. V2 is the Laplace
operator in two dimensions.

The boundary conditions for the problem are

u =20, (3.1)
b= ty, (3.2)

where # = local velocity, # = local temperature, 7, = wall tempera-
ture. Writing z = 5 + 9y, 2 = x — 1y, T = ({ — #y), (new tempera-
ture variable), T = Ty(u) + To(M) = (T'1 4+ T2), equations (1)
and {2) can be written in the form

4_:%: (Cou — Cs). (5)
From (5) we obtain
%gz_i = caut, (6)

Eliminating #« from (4) and (6) we obtain

04T >
— ) = C1Ce = Cy. 8
6(822622 e )
Now we put
C
01 =Ty — — ()%, (9)
0o = T2+ L[/ M dzds, (10)

and equations (7) and (8) become

0205
020%

=0, (11)
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240
L _ o, (12)
022072
the boundary conditions are
C
b = — 6—: (22)? ] (13.1)
[
820 C
R (13.2)
020%Z 16 on B,
and
fo=1%//Mdzdz, on B. (13.3)
The velocity field is related to 6; by
0264 Cy
= — 2Z. 14
Cou 482854— 7 & (14)

The general solutions of (12) and (11) can be taken in the form
b1 — () + 26() + (&) + p(2), (15)
= 1(2) + b1(2), (16)

where ¢(z), y(z) are functions holomorphic in the region D and
satisfying the boundary conditions (13.1), (13.2) and ¢1(2) is also
a holomorphic function in D satisfying the condition (13.3). From
the equation (15) we have

920,

0202

= $12) + H1(e). (17)

Using the boundary conditions (13.1) and (13.2) in the equations
(15) and (17) we obtain for the determination of the two analytic
functions ¢(2), y(2)

W) + B0 + vl + V) + s @R =0, (19
-, Ca _
#)+ 96 + a0 19)

If the heat generation is uniform we obtain from (16) and (13.3)

h6e) + B = 2 0
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The velocity and temperature fields are given by
Ci
“=— 4 + (8/C2) Re ¢1(2), (21)

T:%?@”JRWWwa+m@MJ§m<m

The average velocity #,, the average temperature Ty, the mixed
mean temperature Ty, the heat transfer rate ¢, the heat transfer
coefficient % and the Nusselt number N based on the mixed mean
temperature are given by

Aty = [u dA, (23)
D
AT = [T dA, (24)
D
umATy = [uT d4, (25)
D
g = (Cottm — C3) B4, (26)
ho= —(q/STu) = (Cs — Cott) kA|ST s, (27)
Nu = hDofk = 4(4/S)2 (Cs — Cottm)/Tar, (28)

where A is the area of the cross-section, D, is the equivalent hy-
draulic diameter (= 44/S), S is the circumferential length of the
cross-section.

§ 3. Conformal transformation. Suppose that the cross-section of
the channel be mapped onto the unit circle in the {-plane by the
mapping function

z = w(p e®) = w(l). (29)

Using (29) in (19), (20), (18) and multiplying by (1/27z)[ds/(c — {)]

we easily find

X(0) 4 fw(o)Wa) do — O, (30)

X+ X0+ 5 [

do, 3r
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— C — 9 ,
)+ PO = — f [w((?iwg)] do —
fuwlo) w(a) (o)}
- 2m J (60 — C do, (32)

where

$lz) = (), (2 = ¥(),
¢'(2) = D' (D)’ (8) = X(), ¢ulz) = Y(D),
D(Z) = S X(£) w'(f) L. (33)
Using Stokes’ theorem we obtain from (29), (23), (24) and (25):

(CoA) upy = 4 Im I:% fwz@z dw - f@ dw:|, (34)

4 14

C C
ATm:Iml:éB_i fw2@3dw-l—2fw@2dw—f—

Y v
1
+3f®@2dw+f(T+Y)@dw], (35)
Y Y
C CiC ,
(umd) Ty = Im [ : 4f 3% 4dw————;g§— w23 dw —
Y Y
T wawz dw 1+ —- wa2w3 dw + — f@ww?’ dw +
2
v Y Y

+%f{?+¥)w@2dw+%fXGOde+
v ZV
2 _ 4 _
t o [xerde L [ e ve e w ] @
2

2
e e

Im denotes the imaginary part and o = e” a point on the unit
circle.
w = w(o), = @(a), Y=Y(), VY=Y (36.1)

X = X(0), 0o =/P()w'(¢) d,
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A_f—dA_-l—ifzdz. (37)
C

§ 4. General solution. let the cross-section of the channel be
mapped conformally onto the unit circle y in the {-plane by the
mapping formula

2 =w() = ;] anl™. (38)

Using (38) in (37), (30), (31), (33), (34), (35), (36) and (32) we
easily find

A== ;: NApdy, (39)
n=1
Cy

X)) =— 16 ( Z bpl® + $bo), (40)

1
Y(E) = - (S baln + 4ho), (41)

1

— Ca [T & _enln? n:| _ n

8Auy = “75(/‘1[4( Y @n+iln + %bo py ”“ndn) —

n=1 n=1

— (bodo E bud—n ~+ badn)], (43)

n=1

Cs = .
ATm_znl:—T_zoo —1b —3—24510 dyf_y -
+ ?:* {4 2 (tr -+ t_r) By — > hyd—y -+ Alody — %hodo} -+
1 1
C 3 e o0
+C WS it o) — S eay],
1 —o0

C o0 - oo
V) = gy 4D (on o+ ) €7 — Shal? o+ g — o), (45)
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CiC hnd
(umd) Tor = — 41 ° s Z brl—+1) + 2bol—1 — E by +

+ 6{(2bGdo + bo E brd—y — Z Spd—r) — (Z brf—(r+1) + $bof-1)}] +

7nC1C
30;24 |:3 _Zoo brL—r+1) — 8( Z brL—r+1) + $boL— 1) —

+
—32 _%:lo bl ey 1) -+ 12{412 (tr + &) Loyeny — lzhrl—(v+l) +
Iy (40 — Bho)} -+ 48{% (Br — boes) H—rrn)} —

— 24{4%: (tr + &) f—r+1) — %o?hrf—(m) + [-1(4t0 — o)} —

— 24{4 X Upd_y — 3, Vyd_y + (bho — 4to) 3 bydoy —
0 0 0

oo

- *b0(4 E (tr —f‘ Zr) d—r - Z hrd—r + 4'ldeO _ %hodo)} +

W,
+ 96 z; (Al — bod )m] (46)

In deducing the above formula the following results have been used.

w— w(o) = 3 ayon, (47)
0

Wi = 3 byo", by = Y aydr, by = b_p, (47.1)

oo v={

” r d—p = Eo Yl p iy, (47.2)
ye

wipdw' = ; bpot, Il = _g Antr+10—r, (47.3)

w23 — _§ Lyo®, L, :_g] Lnyb—y, (47.4)

w3t = § Puon, P, = § L,_b,, (47.5)

—o0 —00
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ww' =Y Apo?, Ay = 3 (r + 1) arr1any, (47.6)
[} y=0
(wZ?_J)Z = Z hnan, hn - Z bn+rl—)—1', (477)
2’ = ¥ Huyo", Hp= 3 dpirirdn, (47.8)
—o0 y=0
Qw = 3 tno", Iy = Y AnsCr, (48.1)
— oo y=0
DT = 3, guo”, gn= 3 (% + 7 4+ 1) entrs1ar, (482)
—oo v=0
v = 2 fa0" fn= X (m 47+ 1) aniriiéy, (48.3)
—o00 y=1
Pw = 3 Ipo”, Ip= Y arepir, (48.4)
—oo v=0
@Z@Zw/ —_ E Hnan, Hn = Z dn+r+1t_—1', (48.5)
B , C4 oo oo oo
wazw = —16“ I: E MnO'n - %b(] Z ZnGn], Mrn - Z ln—'ybr, (486)
—_oo —co =0
_ , C4 co [} oo
Xw2mdw' = ~Te [ X Nuo® —3bo X Lyo?], Np= X Lyp—by, (48.7)
—00 —00 y=0
Cy = o -
Pwivdw = — Té S Quo?, Qn= X lnily, (48.8)
N C3 ) oo ©o
Ywi2w' = e (Y Muo® — b0 X lno™], (48.9)
C2 fore) oo oo
PX = — 2 [ 3 Bpo® — 3by ¥ €q0"], Bp= Y enby, (48.10)
256 0 1} y=0
. CQ co  o©o _ o oo .
X = ——— [ (X BrHys) 0" — 300 T (X erHn—r) 0%], (48.11)
256 —oco y=0 —oo y=0
Ca = W,ontl oo
bo(o) = — : iad Wop= 3 (r -+ 1) arirenr, (48.12)

—1?0 (%‘}‘1)’ y=0
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fX@ d [2 AW §: AW ] (48.13
Pl Rt GA256 -+ 1) 2ol B
Y
_ c? e - o0
X = — —2-[4Y Upo® — 3, Vo + (3ho — 4to) 3 byo” —
1024 5 0 v

04 (tr - B) 07 — 3 buom - (bho — 4t0)}],  (48.14)
0 0

where

o0

Un Z (tr X tr) bn—r; Vn = 2 hrbn—r- (49)
0 0

§ 5. Applications.
Cross-section a cardioid. The mapping function

z=w(l) =R(1+0? R>0, (47)

maps the cross-section of the channel onto the unit circle in the
Z-plane.
Using (50) in (47) to (48.1) we find the non-vanishing constants

ag — R, ay — 2R, a9 — R, bo = 6R2, bl == 4R2,
Z)g = RZ} 1 = 8R3, Cy = IORa, cg = 2R3,
dy = d1 = 6R2, dp =d_j — 2R2, (50.1)

e1 = 6R3, ey = TR3, eg = (10/3) R3, eq = (1/2) R3,
j-1 = 26R4, o= 12R4, [ = (62/3) R3,
f-s = (23/3) R4, f_4 = R4, (50.2)

go = 44R%, g, = 36R3%, g9 = 14R4, g3 = 2R4,
lp =70R%, I} = 42R%, Iy = 14R4, I3 = 2R3,
l_p =42R*% ] 3= 14R*%, Il_4=2R%, [ = 70R4, (50.3)

ho = 70R%, hy = S6RY, hy = 28R4, hs — 8R4,
= R4, {o= 19R%, # = 6R4, iy = (70/3) R4,
fr — (85/6) R4, f3 = (13/3) R4, is = (1/2) R, iy — 6R4,
So = 36R4, S; = 48R4, U, = 228K,
Uy = 328RS, g = 420RS, V; = 616RS, (50.4)
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Lo = 924RS, L_; = 924RS, L _5 = 660R6, L_g= 330RS,
Ly = 660R6, B; = 36R5 By = 66R5 Bjs= 54R5,
By = (70/3) R5, Bs = (16/3) R3, Bg = (1/2) R5,
H_; = 20R3, H_p=20R3, H_3—= 10R3, H_,=2R3. (50.5)
Using (50.1) to (50.5) in the general formulae (39) to (46) we
obtain after simplification
4 = 6nR?, (
X(2) = —(C1/16) R2(3 + 4¢ + £9), (
Y(§) = (Cs/4) R2(3 + 47 + {7), (
D(L) = —(Ca/96) R3(36L + 4202 4 203 4~ 304), (54
(L) = (Caf192) RA(123 + 184 + 86£2 + 2803 + 374), (
Ty = (Ca/144) R4(97 4 1029). (
The velocity and temperature fields are given by

w = (C1/4) R¥[p* + 4% + 4p(p? — 1) cos0 — 5|, (59)
T = (C4/64) R4Do(Do — 166) —
— (C4/96) RA[(84p% + 144p2 — 123) +
~+ 8p(5p% + 30p2 — 14) cos 8 +
+ 202(3p% + 40p2 — 1) cos 20 +
+ 12p3(p2 + 1) cos 30 + 3p? cos 40 —

— 46(3 + 4p cos 0 + p2 cos 20)]. (59)
The mixed mean temperature 1s given by
T = (C4/32640) R4(30503 + 310400), (60)
where
8 = (C3/Cyq) R2, Do = (1 4+ 2p cos 0 + p2). (60.1)

Cross-section a circular profile with two opposite flat
sides (ovaloid form). In this case we use the mapping function

z2=w(l) = a(l + 13 + mL5 + nl7 4 pLO 4 g0tY),  (6])

where a4 > 0, { = .1206, m = —.0363, n = —.0227, p =.0118,
q p— .0107.
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From (61), (38), (47.1) to (47.8) we easily find

ay = a, agz= .1206a, as = —.0363a, ay; = —.0227q,
ay = .0118a, ay; = .0107a, by = 1.016542, by = .774a2,
by = —.0396a2, bg = —.0216a2, bg = .0131a2,

b1o = .0107a2, cg = 0.774a3, ¢4 = .2404a3, cq= —.0644a3,
cg = .0002a3, c19 = .1036a3, c¢12 = .0918483,

c14 = —.0109a3, c16 = —.0073a3, c¢15 = .0024a3,

co0 == .0011a3, f1 = —1203a%, f3 = —.1419a4,

fs = —.043a%, f7 = .0995a%, f9 = .0707a%, i3 = .048%a4,
ta = —.0255a%, i = —.00744%, i3 = .01034%,

tio = .0064a4, ey = .508243, e3 = .3193a3, e5=.029543,
er = —.0186a3, e9 = .0061a3, e13 = .00714a3,

e11 == .008543, e15 = —.000743, e17 = —.0002a3,

€19 == .OOOlﬂ?’, €21 — .0001613, d() = 1.055%2,

do = .1468a2, d4 = —.206242, dg = —.1504a2,

dg = .1204a2, dip = .1177a%, d_5 = —.008a?2,

A—g = —.0478a2, d_g = —.0188a2.

ho = 1.0399a%, hg = .1527a%, hy = —.108a4,

he = .0523a%, hg = —.142544, k9 = .254%9a4,

]le = .0009“4, h14 == —-.0015@4, h16 = —.0003614,

g = .0003a4, koo = .0001a4, to = .545a%4, ty = .3236a%,
tg = .0268a%, 16 = —.0184a%, fg = .0141a4,

tio = .0093a%, {12 = .007a%, 114 = —.0008a4,

f16 = —.0002a4%, t#13 = .0001a%, {9 = .0001a%, etc.

From (39), (43), (40), (42) and (45) we easily obtain
’ A = 1.0555ma2,
wy = —0.1496C 142,
X(0) = —(Ca/16) a2[.5083 -+ .774{2 — .0396L4 — 02166 +
-+ .0131¢8 - .0107210],

®B(2) = —(C4/16) ad[.5082¢ 4 .3193C3 | 029575 — .0186¢7 -

4 0061¢9 4 .0085711 - 0071218 — 0007715 — 0002817 +
4-.0001£19 4 .0001£21],

(66)

(67)
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Y(E) = (Caf64) ad[1.66 + 1.33722 + 113204 — 155506 +
+.240128 — 2121710 4 027212 — 001714 +
— .0005(16 4 .0001£18 - .0001£20], (68)

The expression for the velocity #, average temperature T4, and
the mixed mean temperature 7y can be calculated.

Half-sections. Suppose we have a cross-section for which the
x-axis is an axis of symmetry. This section can be mapped onto the
unit circle in a #-plane by the transformation z = z(f) in such a
manner that the axis of symmetry of the section maps onto the
diameter on the real axis in the #plane. Then the same mapping
formula maps the half-section in the z-plane on the semi-circle in
the #-plane. This semi-circle can be mapped onto the unit circle
in the {-plane by the mapping formula

P — 1\2 — 1 )
=) =) @
P 1
and these two mappings map the half-section in the z-plane on the

unit circle in the {-plane. Hence we can solve the problem for the
half-section.

Received 12th February, 1963.
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