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Abstract— The basic physical quantities of microstretch flow are the velocity vector (g), the microrotation
vector (7) and the microstretch (v), the last quantity being a scalar field signifying the stretch or contraction
experienced by the local fluid element. The kinetic energy T of the flow over a domain has contributions T,
Ty, T; one from each of the above three quantities g, 7, and ». It is shown that Sgn (d7/dt) = —1 and that
T(t) < T(t) exp—o(t—1,)] for 0 < ¢, < t. The (positive) number o depends on the material constants of
the flow and aiso on the geometry of the domain.

INTRODUCTION

THE kinetic energy of a viscous incompressible Navier-Stokes fluid in a domain D with
fixed rigid boundary is known to decay and estimates for the rate of decay are given by
Leray[1] for the case of plane flows and for spatial flows by Kampé de Fériet[2] as well
as Berker[3]. The fact of the decay and estimates for the rate of decay of the kinetic
energy are consequences of employing certain functional inequalities and the thermo-
dynamic restriction on the kinematic viscosity coefficient. The motion as such is restric-
ted only in a general way by the requirement of the validity of the Navier-Stokes
differential equations of motion and enough smoothness of the functions to permit the
use of Gauss’s theorem rendering volume integrals into surface integrals.

Serrin[4] has examined the more general question of the stability of Navier-Stokes
viscous flows and from his analysis it emerges that for the mean stability of flows in a
bounded region of space the Reynolds number (suitably defined) must be less than 5-71.

Some years ago Eringen[5] developed the theory of simple micro-fluids in which the
local effects arising from the local structure and intrinsic motions of the fluid elements
are taken into account. In this theory the fluid element has the usual translatory degrees
of freedom reckoned by the velocity vector 7 and has, in addition, degrees of freedom
enabling the intrinsic rotatory motions as well as stretch of the fluid element. These
latter are reckoned by three gyration vector fields 7. The linear model of this theory
has 22 constants in its constitutive equations and these are subject to inequalities forced
by thermodynamic considerations. Even this linear model is complicated for systematic
theoretical investigations. A special case of the theory of simple microfluids is that of
micropolar fluids [6] where the gyration tensor is presumed antisymmetric and the fiuid
elements can perform only rigid rotations without stretch. The linear model in this
case has only six constants and the fluid motion is representable in terms of two vectors,
viz. the velocity g and the microrotation #. The six constants are subject to inequalities
dictated by thermodynamics. It has been noticed by Lakshmana Rao[7] that the kinetic
energy of an incompressible micropolar fluid occupying a spatial domain bound by
rigid walls decays even as in the classical case of Navier-Stokes fluids and an estimate
of the rate of decay has been determined. It is to be noted that here again, as in the clas-
sical case, these conclusions follow as long as the functions involved (like velocity,
microrotation and fields derived from these) are smooth enough to allow transformation
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of volume integrals to surface integrals. The boundary condition needed for the above
conclusions is the adherence or hyper-stick condition so that § and v vanish on rigid
fixed boundaries. In a forthcoming paper[8] a general criterion has been noticed for the
mean stability of incompressible micropolar fluids in a spatial domain, extending some
of the results of Serrin[4] to the micropolar case.

This paper aims at similar study concerning the kinetic energy of incompressible
microstretch fluids. The theory of microstretch fluids is put forward by Eringen{9] as a
class more general than that of micropolar fluids [6] and here the local fluid elements can
undergo stretch or contraction besides rotation. The basic physical quantities of the
flow here are two vectors and a scalar viz. the velocity (g), the microrotation (7) and the
microstretch (v). The linear model here has ten constants which are subject to inequali-
ties conforming to the principle of entropy. At rigid boundaries, all these field quantities
satisfy the hyper-stick or adherence condition.

The field equations for the flow of incompressible microstretch fluids (cf. ref. [9]) are

divg=0 (1)

Y1 (q. grad)j—2wj=0 2)

P {%i’?“q'x curl g+ grad (%qz)} = pf—gradp+\ograd v+ k curl 7

— (u+k) curl curl g+ (A +2u+k) grad (divg) (3)
) ,
pj {Bl;j—i— (q. grad)ii} = pl—2kv+kcurl g—y curl curl 7 + (a+ B+7v) grad (divp) (4)

1 (o
S0 {;§+ (q.grad>v}=p1+aov2v— (10— Ao)v. (s)

In the above equations p is the (real constant > 0) density of the fluid and j (real, > 0)
denotes the gyration parameter, f and / are respectively the body force and body couple
per unit mass and 3/ is the trace of the first body moment per unit mass. The vectors
G, v are respectively the velocity and microrotation and the scalar v denotes the micro-
stretch of the fluid elements. The viscosity coefficients A, u, k, Ay, 7, and the gyrovis-
cosity coefficients a, 8, ¥, a, are constant and are subject to the following inequalities
(cf. ref.[9)):

AN +2u+k=0,2u+k=0,k=0,

Ne—Ao = 0, (me—No) BA+2u-+k) = N\?4,

3a+B8+y=0,y=0,|8] =v. (6)
We presume the body force fto be an irrotational vector and neglect the quantities / and

lin the equations (4) and (5).
Let D be a spatial domain bounded by the rigid wall and occupied by an incompres-
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sible microstretch fluid and let T,, T,, T; be the contributions to the kinetic energy T of
the fluid from the velocity g, the microrotation # and the microstretch v. We have then

Ti=% [ p(@*T.=4 [ pi(¥)?,

Ty=1 [ pjv? (7,8,9)
and

T=T1+T2+T3. (10)
(All the integrals are over the volume of the domain and the conventional volume
element dr is omitted.) The gyration parameter j is positive throughout the region of
the flow and over the time interval (0, #) while the microstretch can be of either sign in

the flow region.
Let us introduce the quantities

J = max (j), M = max (|»|) (11
over the region and over the time interval (0, #) and let d be the maximum diameter of a
ball in which the domain D is embeddable. We have assumed the hyper-stick boundary
condition, so that on the boundary of D

g=0,p=0,v=0fors > 0. (12)

If f is a continuously differentiable function over the domain D, we have the transport
formula

d
afer=[rd (13)

and in view of the continuity equation (1) and the hyper-stick boundary conditions (12),
we see by an application of the divergence theorem that we may rewrite (13) also in the
form

d _ af ,

-d—,fpf—fpa,- (13%)
From (7) and (13’) we see that

d _ 0G

d_tT1= Pq- 5 (14)

Using the momentum equation (3) and employing Gauss’s divergence theorem select-
ively and invoking the boundary conditions (12) we arrive at the result

d—d1;-1=qu-.curli7*—(;l.+k) [ (curl g2 (15)
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From (8) and (13’) we have

d7, 1 d ..
'gf=§fP5;[J(ﬁ)2]-

Using the equations (2) and (4) and by a selective use of Gauss’s theorem and the boun-
dary conditions (12) we can see that

ng—;=-—2kj (17)2+kf17.curlq—yf (curl p)?

—(a+B+y) [ (dive)*+ [ pjw(2)?. (16)
From (9), (13’) and (5) we can deduce that

d7; 3 4 .
=1 ez

=—3a0j (grady)2—3(7)o—/\0)jv”—%fpjlﬂ. (17)

Adding the equations (15), (16), (17) we see after some simplification on the right hand
side that

—(17=—21(2M+k) f (curl )* 5k f (curl §—29)?
—3(170-—/\0)Jv2—'yj(cur117)2—-(a+,3+'y) f (div p)?

—3a0f (grad V)2+J'pjv(17)2+%fpjl/3. (18)
In view of the inequalities (6) above, we see that the first six terms on the right side of
(18) are negative and the expression made up of these six terms is thus negative
definite. The last two integrals constitute an indefinite expression as the microstretch
may be either an extension or a contraction and thus may not be of constant sign. Using
the quantities J, M defined above in (11) we see easily from (8), (9) and (18) that

dT 1
T <—3@a+h [ (curl gy =3m=r) [ »

—-'yf (curl 5)2— (a+B+7) f (div 7)?
—3a0f (grad »)*+ 2M(T,+Ts).  (19)

The following functional inequalities

[@ra=53 [ @ (20)
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f{(div 5)2+ (curl 7)? = -3%7 )2, (21)

f (gradv)* = 3}; f V2 (22)

which are valid in the present problem (cf. refs. [4] and [10]) will be used below to
majorize the right hand expression in (19). If ¢ = min (y,a+B8+7y) we can easily
deduce from (7-9) and (19~22), the inequality

dT 80(2u+ k) 6m2e
a < —-——p—dz——Tl'i'(ZM—pjdz) T,

+{2M — [4(mo — No) &+ 1272 ) pJ &} T 5. (23)

Let
min {3n2e/pJ a2, [2(my — \o) @+ 6% ) /pJ d?} = m. 24)

We see from (23) and (24) that

dT 80(2u+k
ms_—%——)rﬁzm—m(rﬁ T,). (25)

Hence we have

Sgn (%—{) =-1 (26)

for the class of incompressible microstretch flows in the domain for which
M = max. |v| < m. (27)

Thus the kinetic energy decreases with time in this case. We see that the decay is
indeed faster than the exponential. If

min {80(2u+ k) /pd?,2(m— M)} = o, (28)

we have from (27) and (28) that

%{— < —-oT (29)
and now we can deduce that
T(t) < T(t,) exp[—a(t—1,)] (30)

for0<t, =<1t



1156 S. K. LAKSHMANA RAO

It is worthy of note that the decay constant o depends not only on the geometry of
the flow and the material constants of the fluid but also on the flow field in view of (27),
(28). Whether the field variables g, w, v themselves tend to zero as 1 — « is a question
which needs to be examined.
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Résumé — Les grandeurs physiques fondamentales d’un écoulement 4 micro allongements sont le vecteur
vitesse (), le vecteur de microrotation (7) et le micro allongement (), cette derniére grandeur étant un
champ scalaire représentant I'allongement ou la contraction subi par I'élément local de liquide. L’énergie
cinétique T de I'écoulement sur un domaine a les contributions T, T,, T3 chacune provenant de chacune des
trois grandeurs ci-dessus g, 7 et ». Il est montré que Sgn (d7/dt) =—1letque T(t) < T(t,) exp. [—o(t—1,)]
pour 0 < 1, < t. Le nombre (positif) o dépend les constantes matérielles de 'écoulement et également de la
géométrie du domaine.

Zusammenfassung — Die grundlegenden physikalischen Grossen der Mikrodehnunngesstronung sind der
Geschwindigkeitsvektor (g), der Mikrorotationsvektor (¢) und die Mikrodehnung (»), wobei die letzte
Grosse ein Skalarfeld ist, das die Dehnung oder Zusammenziehung anzeigt, die das ortliche fluide Element
erfirt. Die kinetische Energie 7 der Stromung iiber ein Bereich hat die Beitrige T,, T,, T, einen von jeder
der oben genannten Grossen §, & and v. Es wird gezeigt, dass Sgn (d7/d¢) = ~1 und dass T(r) < T(1,).
[~o(t—1,)] fiir 0 < ¢, < ¢ ausdriickt. Die (positive) Zahl o- hingt von den Materialkonstanten der Strémung
und auch von der Geometrie des Bereiches ab.

Sommario— [ quantitativi fisici fondamentali del flusso di microallungamento sono il vettore di velocita
(), il vettore di microrotazione (7) e il microallungamento (v); I'ultimo quantitativo a un campo scalare che
significa I'allungamento o la contrazione verificatisi dail’elemento fluido locale. L’energia cinetica T del
flusso lungo un campo ha contributi T, T, € T;, uno da ciascuno dei tre quantitativi di cui sopra g, 7 e ». Si
dimostra che Sgn (dT/dt) =—1 e che T(r) < T(4) esp [—o(t—1,)] per 0 < ¢, < ¢. 1l numero (positivo) o
dipende dalle costanti materiali del flusso ed anche dalla geometria del campo.

A6crpakt — 171 OCHOBHBIX (PH3HYECKHX BETMMUH AJIA MHKPOPACTSAXUMOTO IIOTOKA DPHHIEHa MBI HMEEM :
BEKTOp CKOPOCTH ABKieHHA (J), BEKTOP MHKPOBpalIeHHs (F), MHKpopaclIupeHne (v), IpHYeM MOCaeHsAS
BEJHYHHA €CTh CKAIAPHOE MOJIE, KOTOPOE O3HAYAET PACIUMPEHHE MJIM COKpAILEHHE JIOKANBHOIO 31E€MEHTA
suaxocTH. Kunerudeckas suneprug T notoka mo obaacty nosny4aet Bkaanbl Ty, Tz, Ts OT KaXKAOH H3 3THX
- dT

TpeX BEJHYMH, HMEHHO, §, P, v. [Toka3zaHo, yTo Sgn (-aT) = — 1, uuro T(t) < T(to)expl— a(t — to)] npu
0<to <t Ilpu 31OM (MOJNIOKHUTENBHOE) YUCIIO ¢ 3ABHCHT OT MATEPHAIIBHBIX MOCTOAHHBIX [TOTOKa M OT
reoMeTpuy obnacTy.



