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Abstract-The basic physical quantities of microstretch flow are the velocity vector (q), the microrotation 
vector (4 and the microstretch (u). the last quantity being a scalar field signifying the stretch or contraction 
experienced by the local fluid element. The kinetic energy T of the flow over a domain has contributions T,, 
T,, Ts one from each of the above three quantities 4, ir, and v. It is shown that Sgn (dT/dt) = -1 and that 
T(t) s T(tJ exp [-o(t-to)] for 0 c to c t. The (positive) number (+ depends on the material constants of 
the flow and also on the geometry of the domain. 

INTRODUCTION 

THE kinetic energy of a viscous incompressible Navier-Stokes fluid in a domain D with 
fixed rigid boundary is known to decay and estimates for the rate of decay are given by 
Leray [ l] for the case of plane flows and for spatial flows by Kampt de F&et [2] as well 
as Berker[3]. The fact of the decay and estimates for the rate of decay of the kinetic 
energy are consequences of employing certain functional inequalities and the thermo- 
dynamic restriction on the kinematic viscosity coefficient. The motion as such is restric- 
ted only in a general way by the requirement of the validity of the Navier-Stokes 
differential equations of motion and enough smoothness of the functions to permit the 
use of Gauss’s theorem rendering volume integrals into surface integrals. 

Serrin[4] has examined the more general question of the stability of Navier-Stokes 
viscous flows and from his analysis it emerges that for the mean stability of flows in a 
bounded region of space the Reynolds number (suitably defined) must be less than 5.71. 

Some years ago Eringen[5] developed the theory of simple micro-fluids in which the 
local effects arising from the local structure and intrinsic motions of the fluid elements 
are taken into account. In this theory the fluid element has the usual translatory degrees 
of freedom reckoned by the velocity vector 4 and has, in addition, degrees of freedom 
enabling the intrinsic rotatory motions as well as stretch of the fluid element. These 
latter are reckoned by three gyration vector fields P,. The linear model of this theory 
has 22 constants in its constitutive equations and these are subject to inequalities forced 
by thermodynamic considerations. Even this linear model is complicated for systematic 
theoretical investigations. A special case of the theory of simple microfluids is that of 
micropolar fluids [6] where the gyration tensor is presumed antisymmetric and the fluid 
elements can perform only rigid rotations without stretch. The linear model in this 
case has only six constants and the fluid motion is representable in terms of two vectors, 
viz. the velocity 4 and the microrotation F. The six constants are subject to inequalities 
dictated by thermodynamics. It has been noticed by Lakshmana Rao [7] that the kinetic 
energy of an incompressible micropolar fluid occupying a spatial domain bound by 
rigid walls decays even as in the classical case of Navier-Stokes fluids and an estimate 
of the rate of decay has been determined. It is to be noted that here again, as in the clas- 
sical case, these conclusions follow as long as the functions involved (like velocity, 
microrotation and fields derived from these) are smooth enough to allow transformation 
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of volume integrals to surface integrals. The boundary condition needed for the above 
conclusions is the adherence or hyper-stick condition so that 4 and P vanish on rigid 
fixed boundaries. In a forthcoming paper [8] a general criterion has been noticed for the 
mean stability of incompressible micropolar fluids in a spatial domain, extending some 
of the results of Set-tin [4] to the micropolar case. 

This paper aims at similar study concerning the kinetic energy of incompressible 
microstretch fluids. The theory of microstretch fluids is put forward by Eringen [9] as a 
class more general than that of micropolar fluids [6] and here the local fluid elements can 
undergo stretch or contraction besides rotation. The basic physical quantities of the 
flow here are two vectors and a scalar viz. the velocity (q)), the microrotation (D) and the 
microstretch (v). The linear model here has ten constants which are subject to inequali- 
ties conforming to the principle of entropy. At rigid boundaries, all these field quantities 
satisfy the hyper-stick or adherence condition. 

The field equations for the flow of incompressible microstretch fluids (cf. ref. [9]> are 

div 4 = 0 (1) 

$+ (q. grad)j-22vj= 0 (2) 

p $-@curl4-tgrad = of-grady+h,,gradv+kcurlF 

- (p+k) curlcurlq+(h+2p+/?)grad (divq) (3) 

pj g+(q.grad)F =pl-22kp+kcurlcf-ycurlcurlti +(a+P+y)grad(divo) (4) 

(5) 

In the above equations p is the (real constant > 0) density of the fluid and j (real, > 0) 
denotes the gyration parameter,fand 7 are respectively the body force and body couple 
per unit mass and 31 is the trace of the first body moment per unit mass. The vectors 
4, D are respectively the velocity and microrotation and the scalar v denotes the micro- 
stretch of the fluid elements. The viscosity coefficients A, p, K, Ao, q, and the gyrovis- 
cosity coefficients CX, p. y, (Ye are constant and are subject to the following inequalities 
(cf. ref. [9]): 

3A+2p+k a 0,2p+k 2 0, k a 0, 

q0 - ho a 0, (q, - A,) (3A + 2~ + k) 3 Ao2/4, 

3m+fi+y Z= 0,y 3 0, IpI =Z y. (6) 

We presume the body forcefto be an b-rotational vector and neglect the quantities iand 
1 in the equations (4) and (5). 

Let D be a spatial domain bounded by the rigid wall and occupied by an incompres- 
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sible microstretch fluid and let T1, Tt, T3 be the contributions to the kinetic energy T of 
the fluid from the velocity 4, the microrotation c and the microstretch u. We have then 

(7,g, 9) 

and 

T= T1+T2+T,. (10) 

(All the integrals are over the volume of the domain and the conventional volume 
element dT is omitted.) The gyration parameter j is positive throughout the region of 
the flow and over the time interval (0, t) while the microstretch can be of either sign in 
the flow region. 

Let us introduce the quantities 

J=max(j),M=max((vI) (II) 

over the region and over the time interval (0, t) and let d be the maximum diameter of a 
ball in which the domain D is embeddable. We have assumed the hyper-stick boundary 
condition, so that on the boundary of D 

q=O,n=O,v=Ofort > 0. (12) 

If f is a continuously differentiable function over the domain D, we have the transport 
formula 

(13) 

and in view of the continuity equation (1) and the hyper-stick boundary conditions (12), 
we see by an application of the divergence theorem that we may rewrite (13) also in the 
form 

From (7) and (13’) we see that 

(13’) 

(14) 

Using the momentum equation (3) and employing Gauss’s divergence theorem select- 
ively and invoking the boundary conditions (12) we arrive at the result 

dT1 ~=k J 4. curls- (p+k) J (curl#. (15) 
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From (8) and (13 ‘) we have 

dT 1 2=_ 
dt 2 P$ Li(fj>21. 

Using the equations (2) and (4) and by a selective use of Gauss’s theorem and the boun- 
dary conditions (12) we can see that 

- (a+P+r> s (div P)~+ s pjv(~)~. (16) 

From (9), ( 13 ‘) and (5) we can deduce that 

dT,_3 --- 
dt 4 I 

P: (jv? 

=-3% (gradv)2-3((r),-AA,) 
I (17) 

Adding the equations (15), (16), (17) we see after some simplification on the right hand 
side that 

dT -=-_ 
dt 

i (2p+k) _/ (curl &“--kk 1 (curl Q-2o)2 

--(no--Ao) 1 v2-Y 1 (curl n)2- (a+P+-y) 1 (div o)2 

-33ar0 (grad v)2-t pjv(D)2+i 1 pjv3. 
I 

(18) 

In view of the inequalities (6) above, we see that the first six terms on the right side of 
(18) are negative and the expression made up of these six terms is thus negative 
definite. The last two integrals constitute an indefinite expression as the microstretch 
may be either an extension or a contraction and thus may not be of constant sign. Using 
the quantities J, M defined above in (11) we see easily from (8), (9) and (18) that 

d$ s -;(2p+k) J (curl@*-3(no-AAo) 1 v2 

-y / (curl p)‘- (a+fl+r) I (div P)’ 

-3~~0 s (gradv)2+2M(T2+T3). (19) 

The following functional inequalities 

I (curl 4)” 5 - ZJ (4)2, (20) 
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(div v)~+ (curl F)” L - 

3,rr2 
(grad Y)~ a - 

d2 
y2 

(21) 

(22) 

which are valid in the present problem (cf. refs. [4] and [lo]) will be used below to 
majorize the right hand expression in (19). If E = mm (~,a + /3 + y) we can easily 
deduce from (7-9) and (19-22), the inequality 

dT 80(2p.+ k) 
dt+-- pd2 T,+(2M-s)T, 

Let 

(23) 

min {37r%/pJ@, [2(r), - A,)@+ 677%J/pJd2) = m. (24) 

We see from (23) and (24) that 

dT, 
dt -- 80(F2k) T,+2(M-mm) (T,+ T3). 

Hence we have 

for the class of incompressible microstretch flows in the domain for which 

M = max. IV] < m. 

(25) 

(26) 

(27) 

Thus the kinetic energy decreases with time in this case. We see that the decay is 
indeed faster than the exponential. If 

min{80(2~+k)/pd2,2(m-M)} = U, (28) 

we have from (27) and (28) that 

dT 
-p-UT 

and now we can deduce that 

T(r) d T(t,,) exp [-a(~-&,)] 

(29) 

(30) 

for0 < to c t. 
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It is worthy of note that the decay constant CT depends not only on the geometry of 
the flow and the material constants of the fluid but also on the flow field in view of (27). 
(28). Whether the field variables 4, iii, v themselves tend to zero as I + m is a question 
which needs to be examined. 
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RCumC-Les grandeurs physiques fondamentales d’un Ccoulement ?I micro allongements sont le vecteur 

vitesse (q), le vecteur de microrotation (F) et le micro allongement (u), cette demitre grandeur &ant un 

champ scalaire reprksentant I’allongement ou la contraction subi par I’&ment local de Iiquide. L’6nergie 
cindtique T de I’bcoulement sur un domaine a les contributions T1, Tz, T3 chacune provenant de chacune des 
trois grandeurs ci-dessus 4, D et Y. II est montrt que Sgn (dT/dt) = -1 et que T(t) G T(&,) exp. [-u(t - to)] 
pour 0 < r, s t. Le nombre (positin m dCpend les constantes matMelles de I’tcoulement et kgalement de la 
gComttrie du domaine. 

Zusammenfassung- Die grundlegenden physikalischen GrGssen der MikrodehnunngesstrGnung sind der 
Geschwindigkeitsvektor (4). der Mikrorotationsvektor (fi) und die Mikrodehnung (v), wobei die letzte 
Griisse ein Skalarfeld ist, das die Dehnung oder Zusammenziehung anzeigt, die das ijrtliche fluide Element 
erfti. Die kinetische Energie T der Striimung iiber ein Bereich hat die Beitriige T,, Tz, T,, einen von jeder 
der oben genannten Griissen 4, ij and Y. Es wird gezeigt, dass Sgn (dT/dr) = -1 und dass T(t) =s T(t,). 
[-u(t - rO)] fiir 0 < r, s t ausdriickt. Die (positive) Zahl D hlngt von den Materialkonstanten der Strijmung 
und such von der Geometrie des Bereiches ab. 

&~nunarIo-I quantitativi fisici fondamentali del flusso di microallungamento sono il vettore di velocitk 
( 4)) il vettore di microrotazione (P) e il microallungamento (v) ; I’ultimo quantitativo B un camp0 scalare the 
sign&a I’allungamento o la contrazione verificatisi dall’elemento fluid0 locale. L’energia cinetica T de1 
flusso lung0 un campo ha contributi T,, T2 e T3, uno da ciascuno dei tre quantitativi di cui sopra Q, ij e Y. Si 
dimostra the Sgn (dT/dr) = -1 e the T(r) 6 T(&,) esp [-o(r--A,)] per 0 < to c t. II numero (positivo) c 
dipende daIle costanti materiali del flusso ed anche dalla geometria de1 campo. 

A~CT~IKT - &XI OCHOBHblX f&f3WIecK~X BeJIWWH AJta MKKpOpaCTaXCAMOrO IIOTOKa 3pHHWa Mb1 HMeeM: 

BeKTOp CKOpOCTB ABAxeHHR (fj), BeKTOp MEiKpOBpaLWHHa @), MEfKpOpaCIIIIipeHHe (V), npWfeM IIOCJIeAHIIII 

BemiwHa ecTb cKannpHoe none, KoTopoe 03Ha9aeT pacuuipeHwe wnf coKpaqeHHe noKanbuor0 3neMeHTa 

XCU,LIKOCTA. KHHeTWieCKaa 3HeprHa T nOTOKa no o6flacTa nonyYaeT BKJIaIZbI TI, Tz , Ts OT KaxJloti ~3 3TKX 

dT 
TpeX BeJIHwH, HMeHHO, ‘j, fi, Y. nOKa3aH0, YTO Sgn -;i? 

( > 
= - 1, Ii YTO T(t) _( T(t,)eXp[ - U(t - to)] IIpH 

0 <to _< 1. npU 3TOM (nOJIO2KHTenbHOe) ‘YWCJIO 0 3aBWCWT OT MaTepKmbHbIX IIOCTORHHbIX IIOTOKa H OT 

reoMeTpwu o6nacTa. 


