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Abstract— The equations of incompressible micropolar fluid flow are a coupled system of vector differential
equations involving the two basic vectors, viz. the velocity ¢ and the microrotation 7 of the fluid elements.
Let D = D(t) be a bounded region in space, and let a flow velocity and a microrotation be prescribed at each
point of the boundary of D(¢). Assume that D(r) as well as the assigned velocity and microrotation vectors
depend periodically on the time t and that the condition (2u+ k)j—4a < 0 is satisfied (equation (25) in
the text). Further assumptions are that (i) to every continuous initial distribution of the flow fields over D,
there corresponds a solution of the field equations for all time ¢ = 0 satisfying the prescribed boundary
conditions; (ii) there is one solution for which the Reynolds numbers Re, Rm satisfy the condition Re?+ Rm?
< 80 and this solution is equicontinuous in ¥ = (x, y, z) for all +. Then there exists a unique, stable, periodic
solution of the micropolar flow equations in D(z) taking the prescribed values on the boundary. The proof
of the theorem rests on a formula describing the rate of decay of the kinetic energy of the difference of two
micropolar flows in the domain subject to the same boundary conditions.

IN THiIS paper we employ the energy method to deduce from certain plausible hypo-
theses the existence of stable, periodic solutions of the equations of motion of incom-
pressible, micropolar fluids, referred to below as Eringen fluids. The flow of these
fluids is governed by the theory initiated by Eringen et al.[1], [2]. and differs from the
classical or Navier-Stokes theory of fluid flow in two important features, viz. the sus-
tenance of the couple stress and the nonsymmetry of the stress tensor. The constitutive
equations of the linear micropolar flow involve six constants and the field equations
consist of a coupled system of partial differential equations for the basic vectors of
the flow describing the velocity and microrotation of the fluid elements.

The discussion on the existence of periodic and stable solutions hinges on a for-
mula describing the rate of decay of the kinetic energy of the difference of two micro-
polar flows which take place in a domain and subject to the same conditions on the
boundary of the domain. Such a formula has already been noticed[3]. However, it
needs to be modified suitably to facilitate the discussion on the existence of periodic
solutions and this is reported below in Theorem 1. Theorem 2 provides the criteria
concerning the existence of stable, periodic solutions. The present discussion involving
micropolar fluids is inspired by the similar study by James Serrin[4] on- Navier-
Stokes equations describing the flow of non-polar Newtonian fluids.

(1) Energy criterion for stability of micropolar flow
The field equations of micropolar fluid flow are given by{2]

P{g;5+ (. grad)r)} = —grad p+ kcurl v — (u+ k) curl (curl v)

+ (A +2p+k) grad divo), (1)

pj{%?-}- (v. grad)ii} =—=2kv+kcurl v —ycurlcurl v+ (a+ 8+ v) grad (div ») )
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in which the vectors 7, 7 denote respectively the velocity and micrerotation. The
terms representing the body force and body couple are omitted. The density p and the
squared radius of gyration j are constants and the velocity vector v is solenoidal. The
constants A;, 2u—+k, k are the viscosity coefficients while the constants a, 8. y are
the gyroviscosity coefficients. From the entropy production inequality it is seen that

v

3\ +F2ut+k=0, 2u+k=0, k=0 3)

3at+p+y=0, —y<gf=<y. y=0. )

Consider the motion (7,7) of the incompressible Eringen fluid in the region
D = D(z) of space subject to the adherence or hyperstick condition on the boundary.
If (7*,7*) is another flow in the domain satisfying the same boundary conditions as
the unstarred flow and

-7, F=v*—7v (5)

denote the field vectors of the difference of the two ﬁows, the kinetic energy of the
difference flow is given by
T=T,+T, (6)
witht
To=%[p@? To=1[pi(® (7)
Both the vectors i, ¥ vanish on the boundary of the domain and the vector 7 is a

solenoidal field. Following the procedure in [3] we have the formulae giving the
time-rate of change of the energy functionals T, and T, in the form

%:fpg, (grad @) . 5+k [ 3. curla— (u+k) [ (curl@)?, ®)
d - 5o . 5 5
%:fpju, (grad9) .7 +k [ 9. curla—2k [ (9)2—y [ (curl §)?

—(atp+y) [ (divd)> (9

The first term on the right hand side of each of the above equations will be majorized
by the use of Schwarz’s inequality.

Using the inequalities
2a. (grad @) . o < 240K (grag )2 20 ()2 (52 (10)
2p 2u+k ’
2. (grad 9) .7 < LK (grad §)2+ 520 (ay: (o2 i
’ 2p 2u+k (an

1The conventional volume infinitesimal is omitted in the integrals throughout the paper. The integrals
are extended over the volume of the domain D(r).
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to replace the first terms on the right side of (8) and (9), we see that

%s—&—z :kf (gradz‘i)z—i— f(u)z(v)z-!-kfﬂ curl i—(u+k) f (curl @)?,

(12)
%S—Z—%ﬂfj(gradﬁ)2+-z-ﬁ7{ j(ﬁ)z(ﬁ)2+kf5.curla—2kf (3)2
—'yf (cur15)2—~(a+/3+y)f(divﬁ)z. 13

If V, is the maximum speed of the unstarred flow and v, is the maximum microrotation
magnitude in the domain D{t) during the whole time 0 < ¢ < xthe second terms on the
right side of (12) and (13) can be majorized using the first mean value theorem for
definite integrals and thereby we obtain

<2tk [ (gaday+ £25 [ @k [ 8. curta= (uh) [ (uiay, a9

ddi’t“g <_g__f (gradﬂ,)2+%f (a)2+kf5.curlﬁ—2kf (9)2

--'yf (cud{a)z-(awﬂ)f(div?s)Z. (15)

f (grad @)? = j (curl @)? (16)
f (grad §)2 = f {(curl 9)2 + (div'3)?}. a7

Addition of the inequalities in (14), (15) and use of (16) lead to the result

(g ——-&——f (gradu)z———kf (curla— 2&)’4—9—211/24”%},;2@-] (@)?

and

+Ji4~—jj(gradz§)2—'yf (curl 9)2— (a+B+7) f (div 9)2 (18)

If
a=min (y,a+B8+y) =20 (19

we see on using (17), that
y J’ (curl 3)2 + (a+B+7) f (divd) = a f (grad 3)? 20)
and so from (18), (19), (20) we have

L e e T

From [5] we know that

[ @aawr = [ @ 22)
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f (grad 3)? 2%2—2[ (3)? 23)

where d = Lu.b. over 0 < ¢t < = of the diameter of a ball in which the domain D(¢) is
embeddable. To ensure the stability of the unstarred flow, we demand that

Sgn (%) =1 (24)

and then from (21-24) we have the criterion for stability. It is worthy of note that to
meet the requirement (24), we must have

Qu+k)j—4a<0 (25)

apart from any other conditions. The condition (25) involving only the viscosity co-
efficient 2+ &, the gyroviscosity a and the microstructure gyration parameter j is in
response to the insistence of the asymptotic stability of the micropolar flow (7, v) and
is a restriction on the constants besides those in (3) and (4) which are forced by thermo-
dynamics.

Introduce the numbers

e el

representing respectively the Reynolds and the microrotational Reynolds numbers of
the unstarred flow. If

—2utk =37 Q7

from (21-23) and (25-27) we see that

%? < (Re*+ Rm?*—80)pT, +(2M+k”ijg)qT2 (28)

and (24) holds whenever (25) is true and

Reé*+ Rm? < 80. 29
Let

—e=max{(Re2+Rm2—80)p, (2p.+k-—%,q>q}. 30

We have then:

Theorem 1. Let D = D(t) be a bounded region of space which can be included in a
ball of diameter d and let 7, 7 be the velocity and microrotation vectors of an incom-
pressible micropolar flow in D satisfying prescribed boundary values. Then the kinetic
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energy of an arbitrary disturbance (7 = 7* — 7, 3 = ¥* —7) satisfies the inequality
T{i,d} < Toexp (—et) 3

in which T, = (T{a, ¥}) -, denotes the initial energy of the disturbance and € has the
value given by (30).

Theorem 2. (Existence of stable, periodic flow of Eringen fluids.)

(CO) Let the velocity 7= 7(X,t) and microrotation ¥ = (X, t) be prescribed at
each point of the boundary of the domain D(r).

(C1) The domain D(¢) and the assigned velocity and microrotation depend period-
ically on the time .

(C2) Condition (25) is satisfied.

(C3) To every continuous initial distribution of the velocity and microrotation
over D, there corresponds a solution of the micropolar flow equations valid for all
time ¢t = 0 and satisfying the prescribed boundary conditions.

(C4) There is one solution for which the Reynolds numbers Rm, Re satisfy the
condition (29). This solution is equicontinuous in X = (x, y, z) for all ¢.

Then there exists a unique, stable, periodic solution 7(%, t), ¥(%, t) of the micro-
polar flow equations in D(z) which takes the prescribed values on the boundary of
D(1).

For convenience in writing, let us denote the two fields (%, ), \/fﬂ (%, 1) in con-
junction as a single six component vector field A(%, 1) and refer to the quantity (Re?
+ Rm?)V2 = R as the Reynolds number of the flow A (%, t).

Let A(%,1) be the vector field of the flow guaranteed by the condition (C4) above
and let us suppose that the period of the assigned boundary values is one. The sequence
of vector functions &, (%) =A(%,n) (n=1,2,3,...) is bounded and equicontinuous
in x. Hence by Arzela’s theorem (cf. [6], p. 59) this sequence contains a subsequence
which converges uniformly to a continuous vector function 4 (%) in the domain D(¢).
We shall see now that indeed the entire sequence A(%,n) converges to A(%). If this
is not true, there would be another subsequence converging to the continuous vector
function B (x). Put

A (%) =AF t+m—n),t =0 (32)

and let m > n. The vector function A’ (%, t) is a solution of the micropolar flow equa-
tions and satisfies the prescribed boundary conditions.
Let

T{A(£,0} =4 [ pldE. 0P =14 [ p{B(x, 0} +1 [ pifpz.0} (33)
denote the kinetic energy of the flow A(%, ).
From the definitions of A(x,¢), A’ (%,t) and condition (C4), both the above flows
satisfy the condition R? < 80 and by Theorem 1 we see that

T{A'—A} < T,exp (—et) (34)

where T, = (T{A' —A})s-0 and € is given by (30). We note T, is bounded above by
the constant 2pd3(v+ jv) = A and hence by putting t = nin (34) we get
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T{®,— D,} < Aexp (—en). (35)
Letting n — o and passing on to the limit in (35) we see that

,}}E& T{®,—®,} =0. (36)

The domain of integration in (35) and_(36) is D(n) = D(0). Allow m, n to infinity
through sequences of integers such that ®,,(¥) — B(x) and ®,(x) > A(x).
_ In view of (36) we have a contradiction of our earlier supposition that A(x) and
B(x) are different. Hence the assertion that the entire sequence A(%, n) converges to
the continuous function 4 (%). By condition (C3) there exists a flow 4*(x, t) such that

A*(%,0) = A(%). (37)

We shall now see that the solution A* (%, ¢) is periodic and also stable.
Let

A" (%, 1) = A(%, t+n). (38)
By (34) we have
T{A*—A"} < T,exp (—ei) 39)
in which € has the same meaning seen earlier and
T, = (T{A* —A"}) =0 = T{A(X) — Do (%)}. (40)
Setting t = 1 in (39) we get
T{A*(%,1) — @1 (%)} < Tyexp (—€) < T, (41)
and now allowing n to infinity, we get
T{A*(%,1) —A(x)} =0 (42)
since T, has the limit zero when n — «. From (42) we can conclude that
A*(x,1) = A(x) = A*(%,0) 43)

and so A* (%, 1) is periodic.
By Theorem 1 we know that

T{A*(x,1) —A(%,1)} —> Oast > o, (44)
Since both A* (%, t) and A(%, f) are equicontinuous, we see that

A*—A—>0Qast—> » 45)
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and so
n(lmaxA_*(x, t)—m;_ixA—(i, 1) < o(t). (46)
Since A* (%, t) is periodic, we see from the above that
max A*(%,1) < max A(x,1). 47)
Hence the Reynolds numbers R for these two flows are such that
R2(A*) < R*(A). (48)

Since R?(A4) < 80, by Theorem 1 we conclude that the flow A*(%, t) is stable. This
completes the proof of Theorem 2.

REMARKS

(a) The boundary conditions prescribed must be compatible with a flow for which
the restriction R? < 80 holds. Thus for sufficiently low valued (periodic) boundary
prescription of A(X,t), there exists a periodic flow to which every other motion
tends eventually.

(b) When the assigned conditions on the boundary are steady, Theorem 2 assures
the existence of a unique, stable, time-independent solution of the micropolar flow
equations, taking the prescribed values on the boundary.

(¢) The condition (C3) is mathematically stringent as the flow is to be valid for all
t = 0. However, it is enough if this condition holds for those initial data for which
R? < 80.

(d) Theorem 2 is not to be deemed as the standard type of mathematical existence
theorem. The conditions (C3) and (C4) may not hold for certain types of boundary
data. The extent of applicability of the Theorem is not well-defined and this aspect
of the problem needs investigation.
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Résumé — Les équations d’un liquide micropolaire incompressible forment un systéme couplé d’équations
différentielles vectorielles comprenant les deux vecteurs de base, ¢’est a dire la vitesse § et la microrotation
7 des éléments liquides. Soit D = D(¢) un domaine borné dans ’espace, et supposons données une vitesse
de I’écoulement et une microrotation en chaque point de la limite de D (7). Supposons que D (f), de méme
que la vitesse et la microrotation données soient des fonctions périodiques du temps 7 et que la condition
(2p+k)j—4a < 0 soit satisfaite (équation (25) dans le texte). D’autres hypothéses sont: (i) qu’a toute
distribution initiale continue des champs d’écoulement sur D, il corresponde une solution des équations de
champ pour tout temps ¢ = 0, satisfaisant aux conditions données aux limites; (ii) qu’il y ait une solution
pour laquelle les nombres de Reynolds Re, Rm satisfont la condition Re?+ Rm? < 80 et que cette solution
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soit équicontinue dans % = (x,y, z) pour tout ¢. Alors il existe une solution unique, stable et périodique
des équations d’écoulement micropolaire dans D (¢), prenant les valeurs prescrites & la limite. 1.a démonstra-
tion du théoréme s’appuie sur une formule décrivant le taux de décroissance de I'énergie cinétique de la
différence de deux écoulements micropolaires dans le domaine soumix aux mémes conditions aux limites.

Zusammenfassung — Die Gleichungen inkompressibler, mikropolarer Fliissigkeitsstromung sind ein gekop-
peltes System vektorieller Differentialgleichungen, die zwei Grundvektoren einschliessen, das sind die
Geschwindigkeit § und die Mikrorotation 7 der Fliissigkeitselemente. Es soll D = D (¢) ein begrenzter
Bereich im Raum sein und eine Stromungsgeschwindigkeit und eine Mikrorotation sollen an jedem Punkt
der Grenze von D (¢z) vorgeschrieben sein. Es wird angenommen, dass sowohl D (7) als auch die zugeordneten
Geschwindigkeits- und Mikrorotationsvektoren periodisch von der Zeit r abhéingen und dass die Bedingung
(2u+k)j—4a < 0 befriedigt ist (Gleichung (25) im Text). Weitere Annahmen sind dass (i) jeder kontinuier-
lichen Anfangsverteilung der Stromungsfelder tiber D eine Losung der Feldgleichungen fiir die ganze
Zeit t = 0 entspricht, die die vorgeschriebenen Grenzbedingungen befriedigt; (ii) dass es eine Losung gibt
fiir welche die Reynolds-Zahlen Re, Rm die Bedingung Re?+ Rm? < 80 befriedigen und diese Losung
gleich-kontinuierlich in £ = (x,y, z) fiir alle 7 ist. Es existiert dann eine einzigartige, stetige, periodische
Losung der mikropolaren Stromungsgleichungen in D(r), die vorgeschriebenen Werte an der Grenze
nehmend. Der Beweis des Theorems beruht auf einer Formel, die die Rate des Verfalles der kinetischen
Energie der Differenz zweier mikropolarer Stromungen in dem Bereich beschreibt, die den selben Grenz-
bedingungen unterliegen.

Sommario—Le equazioni di unflusso fluido micropolare incomprimibile sono un sistema accoppiato di
equazioni differenziali dei vettori che interessano i due vettori fondamentali e cioe la velocita g e la micro-
rotazione & degli elementi fluidi. Supponiamo che D = D(¢) sia un regione limitata nello spazio e che si
prescrivano una velocita di flusso e una microrotazione a ciascun punto del limite di D (). Presumiamo che
i vettori D(¢) al pari de quelli della velocita prescritta e dell microrotazione dipendano periodicamente dal
tempo ¢ e che si soddisfi la condizione (2u+k)j—4a < 0 (eq. (25) nel testo). Si presuma anche che: (1)
ad ogni distribuzione iniziale continua dei campi di flusso su D corrisponde una soluzione delle equazioni
di campo per tutto il tempo ¢ = 0 che soddisfa le condizioni limite prescritte; (ii) ¢’¢ una soluzione per cui
i numeri di Reynolds Re e Rm soddisfano la condizione Re?+ Rm? < 80 e questa soluzione e equicontinua
in x= (x,y,z) per tutto 7. Esiste allora una soluzione periodica, stabile ¢ unica delle equazioni di flusso
micropolare in D () prendendo i valori prescritti sul limite. La prova del teorema sta in una formula che
descrive il ritmo di decadimento della energia cinetica della differenza di due flussi micropolari nel campo
sottoposto alle stesse condizioni limite.

AGCTpakT — YpaBHeHHsI MOTOKa HECKHMAEMOH MHUKDONOMSAPHOM XHOKOCTH COCTABJIAIOT CBs3aHHas
CHCTEMA BEKTODHbBIX AH(depeHUNaNbHbIX ypaBHEHHH, BK/IIOYaloLWMe B cebe fBa OCHOBHbIC BEKTOpaA, T. €.
CKOpPOCTh [IBHXEHHMS § U MHKPOBpAlLeHHE U AaHHbIX 3JIEMEHTOB KHAKOCTH. [TycTts D = D(t) 6bITh OrpaHu-
yeHHO#H 06/1aCThIO B IIPOCTPAHCTBE, 3aaHbl CKOPOCTh MOTOKA M MHKPOBDALLEHHE B KaXKI0H TOYKE I'PaHHLIb
D(t). Jonyctum, uyro D(f) 3aBHCHT OT BPEMEHH ! NEPHMOAHYECKH, a TAKXKe 3allaHHbie BEKTOPBI CKOPOCTH H
MHKpOBpaleHus. Buimonueno ycnosue (2u +k)j—4a <0 (cM. ypaBHenue (25) B Tekcre). Jpyrue gomy-
menus : (i) Kkaxaoe HelpepbiBHOE HaYalibHOE pacipeac/icHue Nosiei noToka no D HMeeT cOOTBETCTBYOLLEE
pelIeHle YpaBHE M osell Jsi BCETOo BPEMEHH ¢ > 0, yAOBAETBOPSAILEH 3aJaHHBIM TPAHUMHBIM YCIOBHSAM,
(ii) umeeTcs OAHOE peEIUCHUE, MU KOTOoporo uucia PeidHonbaca Re, Rm ynoBJETBOPAT YCIOBHIO
Re? + Rm?* < 80, ¥ peleHHe €CTh PaBHOHENPEPLIBHLIM BHYTPH X = (X, y, z) AN Beex {. Mcnonp3ys 3anau-
Hbi€ 3HAYCHHS HA IpaHHUE, CYLIECTBYET €AMHCTBEHHOE, YCTOHYHMBOE, MEPHOAHYECKOE PELICHHE YpPaBHEHHIt
MMKPOTIO/IAPHOTO MMOTOKA OTHOCHTEAbHO D(f). Jloka3aTensCTBO TeOpeMa OCHOBAHO HAa hOpMYyJie CKOPOCTH
pacnana KMHETHYECKOM SHEprHM Da3HHLBI ABYX MHKDOMNOMAPHBIX MOTOKOB B OOSACTH NpPH OJMHAKOBBIX
TPaHMYHBIX YCITOBUSIX.



