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Abstract-The equations of incompressible micropolar fluid flow are a coupled system of vector differential 
equations involving the two basic vectors, viz. the velocity 4 and the microrotation V of the fluid elements. 
Let D = D(r) be a bounded region in space, and let a flow velocity and a microrotation be prescribed at each 
point of the boundary of D(t). Assume that D(t) as well as the assigned velocity and microrotation vectors 
depend periodically on the time t and that the condition (2p+k)j-4a c 0 is satisfied (equation (25) in 
the text). Further assumptions are that (i) to every continuous initial distribution of the flow fields over D, 
there corresponds a solution of the field equations for all time t P 0 satisfying the prescribed boundary 
conditions; (ii) there is one solution for which the Reynolds numbers Re, Rm satisfy the condition Reg + Rm* 
< 80 and this solution is equicontinuous in x = (x, y, z) for all t. Then there exists a unique, stable. periodic 
solution of the micropolar flow equations in D(r) taking the prescribed values on the boundary. The proof 
of the theorem rests on a formula describing the rate of decay of the kinetic energy of the difference of two 
micropolar flows in the domain subject to the same boundary conditions. 

IN THIS paper we employ the energy method to deduce from certain plausible hypo- 
theses the existence of stable, periodic solutions of the equations of motion of incom- 
pressible, micropolar fluids, referred to below as Eringen fluids. The flow of these 
fluids is governed by the theory initiated by Eringen et aL[l], [2]. and differs from the 
classical or Navier-Stokes theory of fluid flow in two important features, viz. the sus- 
tenance of the couple stress and the nonsymmetry of the stress tensor. The constitutive 
equations of the linear micropolar flow involve six constants and the field equations 
consist of a coupled system of partial differential equations for the basic vectors of 
the flow describing the velocity and microrotation of the fluid elements. 

The discussion on the existence of periodic and stable solutions hinges on a for- 
mula describing the rate of decay of the kinetic energy of the difference of two micro- 
polar flows which take place in a domain and subject to the same conditions on the 
boundary of the domain. Such a formula has already been noticed[3]. However, it 
needs to be modified suitably to facilitate the discussion on the existence of periodic 
solutions and this is reported below in Theorem 1. Theorem 2 provides the criteria 
concerning the existence of stable, periodic solutions. The present discussion involving 
micropolar fluids is inspired by the similar study by James Serrin[4] on Navier- 
Stokes equations describing the flow of non-polar Newtonian fluids. 

(1) Energy criterion for stability of micropolarjlow 
The field equations of micropolar fluid flow are given by [2] 

p 
I 
$B+ (i7. grad)5 

I 
=-gradp++curlP-(p+k) curl(curltT) 

+ (AI+2p+k) grad(div@, (1) 

= -2C+kcurliT-ycurlcurlF+ (cu+P+r) grad(divP) (2) 
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in which the vectors 5, P denote respectively the velocity and microrotation. The 
terms representing the body force and body couple are omitted. The density P and the 
squared radius of gyration j are constants and the velocity vector i? is solenoidal. The 
constants A,, 2~ + k, k are the viscosity coefficients while the constants (Y, p. y are 
the gyroviscosity coefficients. From the entropy production inequality it is seen that 

3A,+2F+k a 0, 2p-bk 3 0, ka0 (3) 

3cx+p+y L 0, -yspcy. y 3 0. (4) 

Consider the motion (E, 5) of the incompressible Eringen fluid in the region 
D = D(t) of space subject to the adherence or hyperstick condition on the boundary. 
If (E*, F*) is another flow in the domain satisfying the same boundary conditions as 
the unstarred flow and 

a= E*-ij, y=ij*-p (3 

denote the field vectors of the difference of the two flows, the kinetic energy of the 
difference flow is given by 

T = T, i- T2 (6) 
with? 

T, = 4 s Pi, T2 = 4 I pj @12. (7) 

Both the vectors a, 9 vanish on the boundary of the domain and the vector ii is a 
solenoidal field. Following the procedure in [3] we have the formulae giving the 
time-rate of change of the energy functionals T, and T2 in the form 

dT --$=Ipti. (gradn).G+k/iY.curln-((/*+k) [ (curlti)2, (8) 

dT2 _ dt - j Pjti . (grad 6) .~+k~6.curl~--2k~ (&)2-yj(cur18)2 

- (c~+p+y) j (div 6)2. (9) 

The first term on the right hand side of each of the above equations will be majorized 
by the use of Schwarz’s inequality. 

Using the inequalities 

2ti. (grada). v s e (grad n)2+ 
2P 

2~. (grad 8) . V c v (grad iY)2+& (a)~(~)2 

(10) 

(11) 

tThe conventional volume infinitesimal is omitted in the integrals throughout the paper. The integrals 
are extended over the volume of the domain D(t) . 
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to replace the first terms on the right side of (8) and (9), we see that 
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dT 
-L s y/ (gradii)z+2P+k / 
dt -ff-- ($2(ti)“-tk 9.curlis-(~+k) (curla)~, 

f (12) 

dT,< 
dt - v/.j(grad&)2+&k 

I 
j(a)2(fi)2+k 

I 
6. curlI;-22k (8)” 

I 

-y 
I 

(cur16)2 - (cu+P+y) 1 (diva)2. (13) 

If V, is the maximum speed of the unstarred flow and z+, is the m~imum microrotation 
ma~itude in the domain D(r) during the whole time 0 G t < 05 the second terms on the 
right side of (12) and (13) can be majorized using the first mean value theorem for 
definite integrals and thereby we obtain 

3 < yf (grad&)2+ 
dt &I fa)“+kJ9.cur!ir-(P+k) 1 (curlii)2, (14) 

dT 2 G y 
dt 

j(grada)z+@$ 3. curia-22k 1 (&)2 

-y/ (curl$)2-(cy+p+y) / (div?Q2. 

and 
f (grad @)2 = I (curl i.i)” 

f (grad 8)2 = s { (curl B)z + (div6J2). 

Addition of the inequalities in (141, (15) and use of (16) lead to the result 

dT 
dt‘ --vl (gradri)2-ik/ (curlri-2d)‘+@(~~~-~2) 1 (ii)” 

If 

+v / j(grad &)2-y 1 (curl &)2- ((~+p+y) 1 (div &J2. 

a=min(y,cu+fi+y) 20 

we see on using (17), that 

y 1 (curla)2+ (cr+@+y) 1 (div&)2 a a 1 (grad 3)” 

and so from ( 18), (191, (20) we have 

From [5] we know that 

I (grad a)2 3 $ j- (ii)” 

(1% 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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where d = 1.u.b. over 0 c t < m of the diameter of a ball in which the domain D(t) is 
embeddabie. To ensure the stability of the unstarred flow, we demand that 

(24) 

and then from (2 l-24) we have the criterion for stability. It is worthy of note that to 
meet the requirement (24), we must have 

(2/~+k)j--4a S 0 (25) 

apart from any other conditions. The condition (25) involving only the viscosity co- 
efficient 2~ + k, the gyroviscosity a and the microstructure gyration parameter j is in 
response to the insistence of the asymptotic stability of the micropolar flow (5, V) and 
is a restriction on the constants besides those in (3) and (4) which are forced by thermo- 
dynamics. 

Introduce the numbers 

Re=B, Rm - 20&d 
2p+k (26) 

representing respectively the Reynolds and the microrotational Reynolds numbers of 
the unstarred flow. If 

pA!ie 33 
2pd2 ’ 4=2pd2 

from (2 l-23) and (25-27) we see that 

$f s (Re2+Rm2-80)pT,+(2p+k-F)qT2 

(27) 

(28) 

and (24) holds whenever (25) is true and 

Let 

Re2 -?- Rm2 < 80. (2% 

We have then: 
Theorem 1. Let D = D(t) be a bounded region of space which can be included in a 

ball of diameter d and let E’, J be the velocity and microrotation vectors of an incom- 
pressible micropolar flow in D satisfying prescribed boundary values. Then the kinetic 
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energy of an arbitrary disturbance (U = b* -E, i$ = ii* - 5) satisfies the inequality 

T{ii,i9} s T,exp (-et) (31) 

in which T, = (T{ii, Z+})+,,) denotes the initial energy of the disturbance and E has the 
value given by (30). 

Theorem 2. (Existence of stable, periodic flow of Eringen fluids.) 
(CO) Let the velocity in= 5(Z, t) and microrotation c= V(Z, t) be prescribed at 

each point of the boundary of the domain D(r). 
(Cl) The domain D(t) and the assigned velocity and microrotation depend period- 

ically on the time t. 
(C2) Condition (25) is satisfied. 
(C3) To every continuous initial distribution of the velocity and microrotation 

over D, there corresponds a solution of the micropolar flow equations valid for all 
time t 2 0 and satisfying the prescribed boundary conditions. 

(C4) There is one solution for which the Reynolds numbers Rm, Re satisfy the 
condition (29). This solution is equicontinuous inn = (x, y, z) for all t. 

Then there exists a unique, stable, periodic solution iS(R, I), 3@, t) of the micro- 
polar flow equations in D(t) which takes the prescribed values on the boundary of 

D(t). 
For convenience in writing, let us denote the two fields 5(x, t), @i?(f, t) in con- 

junction as a single six component vector field j(n, t) and refer to the quantity (Re* 
+ Rm*)“* = R as the Reynolds number of the flow A@, t). 

Let A(i, t) be the vector field of the flow guaranteed by the condition (C4) above 
and let us suppose that the period of the assigned boundary values is one. The sequence 
of vector functions &(n) =A@, n) (n = 1,2,3,. . .) is bounded and equicontinuous 
in f. Hence by Arzela’s theorem (cf. [63, p. 59) this sequence contains a subsequence 
which converges uniformly to a continuous vector function A(Z) in the domain D(t), 
We shall see now that indeed the entire sequence A@, n) converges to A(R). If this 
is not true, there would be another subsequence converging to the continuous vector 
function B (3). Put 

Z&r) =k(Z,t+m-n),t a0 (32) 

and let m > n. The vector function 2’ (2, t) is a solution of the micropolar flow equa- 
tions and satisfies the prescribed boundary conditions. 

Let 

T{A(R, t)} = 4 I pIA@, t) I* = 3 I p{fi(ff, t>)*+i s pj{5@, t)}* (33) 

denote the kinetic energy of the flow k(& t). 
From the definitions of X(X, t) ,A’ (2, t) and condition (C4), both the above flows 

satisfy the condition R* < 80 and by Theorem 1 we see that 

T{x’ -2) s To exp (-ET) (34) 

where T,, = (T{z -A}) = t o and E is given by (30). We note To is bounded above by 
the constant 2pd3($ +- jvg) = A and hence by putting t = n in (34) we get 
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T{<p, - s;,} C A exp (- en). (35) 

Letting n -+ cQ and passing on to the limit in (3 5) we see that 

Jl T{&-6;,} = 0. (36) 

The domain of integration in (35) and_(36) is D(n) = D(0). Allow_m, n to infinity 
through sequences of integers such that am(n) -+ B (3) and an(a) 4 A (a). 

In view of (36) we have a contradiction of our earlier supposition that J(X) and 
B(X) are different. Hence the assertion that the entire sequence k(n, n) converges to 
the continuous function A(Z). By condition (C3) there exists a flow J* (a, t) such that 

A*(x,o) =A(@. (37) 

We shall now see that the solution k* (2, t) is periodic and also stable. 
Let 

R’(a, t) = k(n, t + n). (38) 

By (34) we have 

T{A* -A’} G T, exp (-pi) (39) 

in which E has the same meaning seen earlier and 

T, = (T{k* -A’“}),=, = T{A(,q -@n(.q}. (40) 

Setting t = 1 in (39) we get 

~{k*(z, I> -@n+l(~)) s G ew C-4 < G (41) 

and now allowing n to infinity, we get 

T{i*(i, 1) -J(n)} = 0 (42) 

since Tl has the limit zero when n -+ m. From (42) we can conclude that 

A*(& 1) =A@) =k*(n,O) 

and so A* (x, t) is periodic. 
By Theorem 1 we know that 

T{~*(R, t) -A(%, t)} + 0 as t + m. 

Since both A* (n, t) and A(_& t) are equicontinuous, we see that 

A;F-A-+Oast+m 

(43) 

(44) 

(45) 
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and so 

rngxA*(x, t) -maxA(n, t) s o(t). 
9 

Since A* (m, r) is periodic, we see from the above that 

m$xA*(n, t) s m_axJ(a, 1). 
5 

Hence the Reynolds numbers R for these two flows are such that 
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(46) 

(47) 

R2(i*) G Rz(& (48) 

Since R2 (2) < 80, by Theorem 1 we conclude that the flow A* (n, t) is stable. This 
completes the proof of Theorem 2. 

REMARKS 

(a) The boundary conditions prescribed must be compatible with a flow for which 
the restriction R2 < 80 holds. Thus for sufficiently low valued (periodic) boundary 
prescription of k(n, r), there exists a periodic flow to which every other motion 
tends eventually. 

(b) When the assigned conditions on the boundary are steady, Theorem 2 assures 
the existence of a unique, stable, time-independent solution of the micropolar flow 
equations, taking the prescribed values on the boundary. 

(c) The condition (C3) is mathematically stringent as the flow is to be valid for all 
t 3 0. However, it is enough if this condition holds for those initial data for which 
R2 < 80. 

(d) Theorem 2 is not to be deemed as the standard type of mathematical existence 
theorem. The conditions (C3) and (C4) may not hold for certain types of boundary 
data. The extent of applicability of the Theorem is not well-defined and this aspect 
of the problem needs investigation. 
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Resume - Les equations dun liquide micropolaire incompressible forment un sysdme couple d’bquations 
differentielles vectorielles comprenant les deux vecteurs de base, c’est a dire la vitesse 4 et la microrotation 
F des elements liquides. Soit D = D (1) un domaine borne dans l’espace, et supposons don&es une vitesse 
de l’dcoulement et une microrotation en chaque point de la limite de D (t) . Supposons que D (t) , de m&me 
que la vitesse et la microrotation don&es soient des fonctions p&iodiques du temps t et que la condition 
(2~+ k)j-4a 6 0 soit satisfaite (equation (25) dans le texte). D’autres hypotheses sont: (i) qtr.8 toute 
distribution initiale continue des champs d’ecoulement sur D, il corresponde une solution des equations de 
champ pour tout temps t 2 0, satisfaisant aux conditions donn6es aux limites; (ii) qu’il y ait une solution 
pour laquelle les nombres de Reynolds Re, Rm satisfont la condition Re* + Rm* < 80 et que cette solution 
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soit tquicontinue dans X = (x, y, z) pour tout t. Alors il existe une solution unique, stable et pCriodique 

des tquations d'6coulementmicropolaire dans D(t). prenant les valeurs prescrites Blalimite. Lademonstra- 
tion du th&or&me s'appuie sur une formule ddcrivant le taux de dicroissance de l'tnergie cinCtique de la 
diffkrence de deux icoulements micropolaires dans le domaine soumix aux m6mes conditions aux limites. 

Zusammenfassung - Die Gleichungen inkompressibler, mikropolarer Fliissigkeitsstr6mung sind ein gekop- 
peltes System vektorieller Differentialgleichungen, die zwei Grundvektoren einschliessen, das sind die 
Geschwindigkeit 4 und die Mikrorotation B der Fliissigkeitselemente. Es sol1 D = D(t) ein begrenzter 
Bereich im Raum sein und eine Striimungsgeschwindigkeit und eine Mikrorotation sollen an jedem Punkt 
der Grenze von D(t) vorgeschriebensein. Eswird angenommen,dass sowohl D(t) als auchdiezugeordneten 
Geschwindigkeits- und Mikrorotationsvektoren periodisch von der Zeit t abhingen und dass die Bedingung 
(2~ + k) j- 4a s 0 befriedigt ist (Gleichung (25) im Text). Weitere Annahmen sind dass (i) jeder kontinuier- 
lichen Anfangsverteilung der Strijmungsfelder iiber D eine LGsung der Feldgleichungen fiir die ganze 
Zeit t 3 0 entspricht, die die vorgeschriebenen Grenzbedingungen bcfiiedigt; (ii) dass es eine Lijsung gibt 
fib welche die Reynolds-Zahlen Re, Rm die Bedingung Re’+ Rm’ < 80 befriedigen und diese Msung 
gleich-kontinuierlich in f = (x. y, z) fir alle t ist. Es existiert dann eine einzigartige, stetige, periodische 
Liisung der mikropolaren Striimungsgleichungen in D(t), die vorgeschriebenen Werte an der Grenze 
nehmend. Der Beweis des Theorems beruht auf einer Formel, die die Rate des Verfalles der kinetischen 
Energie der Differenz zweier mikropolarer StrGmungen in dem Bereich beschreibt, die den selben Grenz- 
bedingungen unterliegen. 

Sommario-Le equazioni di unflusso fluid0 micropolare incomprimibile sono un sistema accoppiato di 
equazioni differenziali dei vettori the interessano i due vettori fondamentali e cioe la velocid 4 e la micro- 
rotazione F degli elementi fluidi. Supponiamo the D = D(t) sia un regione limitata nello spazio e the si 
prescrivano una velocita di flusso e una microrotazione a ciascun punto de1 limite di D (t). Presumiamo the 
i vettori D(t) al pari de quelli della velocit$ prescritta e dell microrotazione dipendano periodicamente da1 
tempo I e the si soddisfi la condizione (2~+ k) j-4n < 0 (eq. (25) nel testo). Si presuma anche the: (1) 
ad ogni distribuzione iniziale continua dei campi di flusso su D conisponde una soluzione delle equazioni 
di campo per tutto il tempo t 2 0 the soddisfa le condizioni limite prescritte; (ii) c’& una soluzione per cui 
i numeri di Reynolds Re e Rm soddisfano la condizione Re2 + Rm* < 80 e questa soluzione e equicontinua 
in .? = (x. y, z) per tutto T. Esiste allora una soluzione periodica, stabile e unica delle equazioni di flusso 
micropolare in D(t) prendendo i valori prescritti sul limite. La prova de1 teorema sta in una formula the 
descrive il ritmo di decadimento della energia cinetica della differenza didue flussi micropoiari nel campo 
sottoposto alle stesse condizionilimite. 

A~CTPQICT- YpaBHeHIiR IIOTOKa HeCXCHMaeMOti MRKpOnOJlffpHOfi XCHAKOCTH COCTaBflltOT CBI13aHHaR 
CaCTeMa BeKTOpHbIX AH+@epeHWaJlbHblX YPaBHeHHti, BKJUO'IalolUUe B Ce6e ABa OCHOBHble BeKTOpa, T. e. 
CKOpOCTb ABWKeHHII 4 H MHKpOBpameHHe DAaHHblX 3JleMeHTOB XCKWAKOCTII. nyCTb D==&t)6bITb OrpaHH- 
YeHHOii 06naCTbIO B npOCTpaHCTBe,3aAaHblCKOpOCTb nOlOKaHM&iKpOBpaLUeH&ie B Ka?KAOfi TOVKerpaHHUbl 
D(r). H~IIYCT~M, YTO D(t)saa~caT OT Bpeh4eHa I nepsoAHrecKu,a TaKxe 3aAatfHbIe oeKTopb1 CKOPOCTH I( 
MHK,,OBpaIUeHHH. BblnOnHeHO YCJIOBtie (2/_&+k)j-44a<O (CM. YpaBHeHae (25) B TeKCTe). ,&IyrLle AOny- 
U&?HHn: (i)KaIKAOc HeUpepblBHOe HaSaJlbHOe paCn&AeJIeHHenOJteii nOTOKa n0 D llMeeT COOTBeTCTBylOlQee 
peUIeHHe YpaBHeHHi! none&? AJW BCerO BpeMeHH t~0,yAOBneTBOpJUUeii 3aAaHHblM rpaHWiHbIM YCJtoBEiflM, 
(ii) IiMeeTCfl OAHOe PeIUeHHe, AJIH KOTOpOrO YACJIa PettHOJIbACa Re, Rm J'AOBneTBOpStT YCnOBMtO 
Re2+Rm2<80. II peIUeHHe eCTb paBHOHenpepbIBHbIM BHyTpH f=(&y,Z) Ana BCeX t. MCnOnb3ya 3aAaH- 
Hble 3Ha'IeHIIR Ua rpaHHUe, CymeCTByeT eAAHCTBeHHOe, yCTOi-iWiBOe, IIepaOAH'feCKOe peUIeH&ie YpaBHeHHii 
MHKpOnOJIapHOrO nOTOKa OTHOCHTeJIbHO D(t). AOKa3aTenbCTBO TeOpeMaOCHOBaHO Ha $OpMyAeCKOpOCTH 
PaCnaAa KuHeTWIeCKOfi 3HeprWi pa3HAUbl ABYX MEiKpOnOnapHblX ITOTOKOB B o6nacTu npH OAFiHaKOBbIX 
rpaHENHbIX J'CJIOBEIX. 


