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THE OSCILLATIONS OF A SPHERE IN A MICROPOLAR
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Abstract— The paper examines the rectilinear oscillation of a sphere along a dimeter and the rotary oscilla-
tion of a sphere about a diameter in Eringen’s micropolar fluid. The physical quantities like the velocity,
micro-rotation and the stress and couple stress components are calculated. The drag on the rectilinearly
oscillating sphere and the couple on the rotational oscillating sphere are calculated. It is observed that over
any period of oscillation, the maximum drag or the maximum cotiple, as the case may be, is larger in the case
of micropolar fluids as compared to the Newtonian fluid.

1. INTRODUCTION

THE sTUDY of micropolar fluids was put forward by A. C. Eringen in 1966[1]. These
are a sub-class of microfluids earlier introduced by Eringen himself[2], which exhibit
certain microscopic effects arising from the local structure and micromotions of the
fluid elements. In the simplified theory of micropolar fluids also, as in the more com-
plicated theory of microfluids, there is the possibility of sustenance of the couple stress.
The mathematical model underlying micropolar fluids is described, by the field equa-
tions expressing the conservation of mass, the balance of the linear momentum and the
balance of the first stress moments in terms of the two basic vectors g, the velocity,
and 7, the micro-rotation velocity. For incompressible fluids, which we consider in this
paper, p, the density, is constant and the unknown pressure, p, in the momentum equa-
tion is to be determined from the boundary conditions.

In this paper we examine the unsteady flow of micropolar fluid (i) due to the oscilla-
tion of a sphere rectilinearly along the vertical diameter and (ii) due to the rotary oscilla-
tion of a sphere about a diameter. The magnitude of oscillation in both the cases is
assumed so small that terms of second order in the amplitudes of oscillation can be
neglected. The velocity and micro-rotation and the surface and the couple stress com-
ponents are calculated in both the cases. In (i) the sphere experiences only a drag and
does not receive any contribution from the couple stresses even though they are sus-
tained in the fluid motion. In (ii) the sphere experiences only a couple. Both these
quantities are calculated for several fixed values of the ‘micropolarity coefficient’,
k/w. allowing the frequency of the oscillating system to vary. The above quantities are
conveniently expressed in terms of two parameters K and K’, whose variations for
different values of ‘micropolarity coefficient’, k/u, as well as for different imposed
frequencies of oscillations are numerically computed. It is seen that in both the drag
and the couple in (i) and (ii) respectively, the parameters K and K’ have the tendency
to increase steadily with increase of the ‘micropolarity coefficient’, k/u. Further this
trend is observed over the entire range of the imposed frequency values considered in
our numerical computations. In particular these parameters for the micropolar fluid are
always larger than their values in the case of the (non-polar) Newtonian fluid.

2. FIELD EQUATIONS

The equations of motion for incompressible micropolar fluids are given by
651
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%+ div (pg) =0 2.1)
pg—(tj= pf—gradp+kcurl p— (u+k) curl curl g+ (A +2u+ k) graddivg  (2.2)
pj%? = pl—2kv+kcurl g—ycurlcurl 5+ (a+ B +7) grad div 7, (2.3)

in which g, 7 are respectively the velocity and micro-rotation vectors. The symbols
p and j denote the density and micro-inertia and the coefficients A, u, £ as well as a,
B, v are the viscosity parameters, which are regarded as constants in this investigation.
The quantities p, fand / denote the pressure, body force per unit mass and body couple
per unit mass respectively.

The shear stress ¢; and the couple stress m;; are defined by the constitutive equa-
tions

ty= (—p+Adiv §)d;+ Qu+k)ey+ kéjm(wn—vm) 2.4)
my; = a(div 17)8”""' ,BVi)j+')/Vj,i (2.5)

where ¢;; is the strain velocity tensor and & is (1/2) curl 4. §; and €;;,, have their stan-
dard meanings.

PART A

3. RECTILINEAR OSCILLATIONS
A sphere of radius ‘a’ oscillates rectilinearly along the vertical diameter, § = 0,
in a spherical polar coordinate system (r, 8, ¢). Let the velocity of the sphere be U,
cos ot. We may choose the vectors g and ¥ in the form

g=u(r,0,0)e.+v(r,0,1)& (3.1)

and
v=C(r,0,1)é,. (3.2)
In equations (3.1) and (3.2) and in all subsequent equations, only, the real parts are

to be taken, when the physical quantities are represented by the complex quantities.
Since div g = 0, we can write

-V w1
T T r2sing a8’ rsingor (3.3)

The equations of motion now take the form

du_ du vou_ vH\_ . 9p k9 _pthk) o .,
”(at+”ar+rae r)‘pf’ ar Trsing 96 SN 0O~ airpas (W) G4
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v, v vov uv) . 19p ko (ptk)d  p
<6t+uar+r60+ )_ fo r oo rar( )+rsm0 ar( W) 3.5)
yelel aC voC\_ , k .
pj(at +udCtt 60)—p1¢ 2UC +—— E%+yDC. (3.6)
where
32 1 9% coth s
2 = —_— —
E _ar2+r2602 rz 96 (.7
and
1 92 248 108% cotf 3 cosec?s
= 2 e = = —_——
D=V rtsin2 4 ar2+r6 +r2802+ rz 40 rz 3.8)

Assuming that the amplitude of oscillation U, is small and neglecting the inertial
terms in (3.4) and (3.5) and the bilinear terms and the external couple in (3.6), we have
the linearized system of equations

ou__0 . _ k _(wt+k)d .,
P o= 5P prgcosd) 060 in8C) —- 502 (E*) (3.9)
w__10 T DN SR
P oy =729 P Precos 8) ———(rC) +- "= = (E) (3.10)
Pj£=—2kc+ Exy++yDC (3.11)
at rsin@ )

On the boundary r = a, we have the adherence condition which can be expressed in
the form

u=Uye“cosd (3.12)
v=—U,ei°sin g (3.13)
CcC=0. (3.14)

Eliminating the pressure term from (3.9) and (3.10), we obtain the equation
pathdf—(,u,+k)E2E2dJ—-—krsm 6DC. 3.15)

In view of the boundary conditions (3.12), (3.13) we choose

U= f(r)ei“sin? g (3.16)
and hence take

C = g(r) esin 4. 3.17)
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On substituting these in the equations (3.15) and (3.11), we get
dz 2)\2 d? d2 2d
{urb(§-2) —io(§s—3) 10 =w(3a+is -2 a9
a2 d2  2d 2
( )f(r) { (Eﬁ+7a_—)+ (pﬂo+2k)}g(r) (3.19)

If L denotes the operator (d?/dr?) —(2/r?), we see that the functions f(r) and h(r) =
rg(r) are governed by the system of differential equations

{(n+k)L2—ipaL}f(r) = kL(h(r)) (3.20)
and
kL(f(r)) = {—yL+ (pjic+2k)}h(r). (3.21)

Hence from (3.20), we obtain

((u+ k) L—ipa} £(r) — kh(r) = 1r2+B1 (3.22)

where 4, and B, are arbitrary (complex) constants. Eliminating the function A (r)
from (3.21) and (3.22), we get the following equation for the function f(r).

{V(—ME_JQL“’ [(2u+k)+tp0'<j+'tzj Z)]L+< ka +z2po~>}f(r)

= 2tipjo <A1r2+%). (3.23)

Let oy, 3;, be the complex numbers defined by means of the equations

kQ2u+k) | ipo(jk+ju+y)
y(u+k) y(pn+k)

af+ B = (3.24)

Jjora? | . (2kpo)

vip+k)  “yilpt+k) (3.25)

aiBy = —

We can see that neither of the constants «,, 8; can be purely imaginary. We choose
them such that their real parts are positive. The solution of (3.23) is found to be

flr)y= C1<%+ a1> e a4 C2<%+Bl> —

+ cs(}—al) e+ C(1-B,) eB'T+%r2+%% (3.26)

where C, to C, are a further batch of arbitrary (complex) constants. Since the sphere
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has only a small amplitude of oscillation, the velocity components, as well as the micro-
rotation have to vanish as r — «. For this reason we choose the constants C;, C, and
A, in (3.26) to be zero. Then the term A4, in equation (3.22) also is to be dropped. We
now have

flr)y= Cl(%'*' ax) e+ CZ(%-f-Bl) e‘Blr"‘l—pl'jj% (3.27)

and from equation (3.22), we see that

ina\
PO

/u+k RB.
hr) = (B L="52) ()~

+h)ad—i i
_ et bei—ipo ):‘ i (’cl(%+al>e—mr+(“—+k)fl IPUC2<%+,BI)6—BI( (3.28)

The velocity and micro-rotation are expressible in the form

= _%(Zrl et cos ¢ (3.29)
v =Jlrr) esin 9 (3.30)
C=&rr)e"‘"sin0 (3.31)
and from the boundary condition
fla) =—3U,a? (3.32)
f(a) =—U,4 (3.33)
h{a) =0 (3.34)

the constants C,, C, and B, in f(r) and h(r) are determined. They are found to be

3Ua(1+aBy) [(u+ k) B2 —ipa] e

= 2B =) [a(p+ k) 2B+ ipor (B -+ Bo)] (3.35)
C. — —3Usa(1+ao,) [(n+ k}aZ—ipo] e«
z_z(ﬁl—al)[a(n+k)a%3%+ipg(aalﬁl+al+Bl)] (3.36)
_ipoUpaf , 3(u+k)(1+ac)(1+aB:)(a;+B1)
b 2 ° +a(ﬂ+k)a§3f+ip0'(aa1,81+al+Bl)}' (3.37)

The graphs 1, 2 and 3 show the variation of the absolute values of the two velocity
components and the single micro-rotation component with the distance from the sphere.
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4. STRESS COMPONENTS
We find that the strain components are

Cpp = — 2@09 = 26’@ { f(r) + (Clafe_"‘" + Cz %C—Blr)} cos § ewt (4. 1)

B T CNL N V.| A A
e’o—{ZC‘(r‘+ r"+ r2+ r) +2C2 r3+r2+r e -Hpo-r* sinf e
4.2)
and
€ro = €gp = 0. (4.3)
The vorticity vector, @ is
W= —]—Lf(r) eitsin 6 &,
2r
_1 C 2 1 —air 2 1 ~gir 1 iot;
—2r 109 ;+a1 [ +C231 ;+B1 € sinfe €. (4.4)

The shear stress components ¢; are now calculated from the constitutive equation
(2.4). We find that

ty=— ’+2(2“+k){ f(r)+Ciate~ 7+ C,58 “’"}cos 6 et 4.5)

r__utk)

pr { f(r+Cia2e ™+ CyB%e “’"} cos § eio! (4.6)

togp=1les =—D —



658 S. K. LAKSHMANA RAO and P. BHUJANGA RAO

3.3
trg = [(2u+k){(7 r‘j‘+—l)cle

+< 4+3BI+_L)C e Bir4 g _:;_gll}_{_ p(r{C <12+ﬁ) e—wr
r po ¥ r r

+ C2<—1—+&) e“*"}] sin 9 et 4.7)

r2 r

2 3
[(Z,u+k){< +&+2a1+“l)c ‘mf+< + By %ﬁzl+—€—‘> e+ 3311}

r3 por

+ipa{C1<%+%) e+ Cz( €1> “B'T}]sin # et (4.8)

and
loo = tog = tyo = ter = 0, 4.9)
where

p' =p—prgcosb.
From equations (3.9) and (3.10), we get after an integration
p' = B,r=%cos § e+ const. (4.10)

5. COUPLE STRESS
The couple stress components m;; are obtained from equation (12.5). We find that

Myp = Mypg = Mg, = Mgg = Mgy = 0 (5.1)

while
+2 , > . 1
Mpy = — {——('Bkrzy) [{(pﬂ- k)a?— tpa}C1<a1 +7) e~

. 1 .
e 0Bi—ipr B+ 1) e |+ ZLH+ Kot~} Craf e
4 {(pt k) B2 —ipa} Cof? e—ﬂ-r]} sin 0 e (5.2)

e == (w0t = by €, 4 ) e

R pi—iprtCBi+7) e |+ EL{(wt kat—ipotCat e

+ {(n+k)B2—ipa}C,B? e“""]} sin 4 e (5.3)
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(y—8)
kr?

Mgy = — Myp =

[{ (n+ k)af—ipo}cl(%+ 0‘1) e

F{(pt k)@ ipO'}Cz(%-i— Bl> e—Bw] cos fet.  (5.4)

6. DRAG
The drag on the sphere due to surface stresses is given by

D = 2ma? f: [, cOS 8 — t,45in 8], sin 9 d@ 6.1)

and this is found to be

D= % 7ra2<ip0'a Uy,— %) eiot

6.2)

_ {—zm'po(ﬁU B 6mipocalUy(p+k)(1+ac;) (1+afB,;) (a1+Bl)} e
3 ° a(M+k)a%B%+ipo-(aalﬁl+al+ﬂl) )

The contribution of the surface stresses to the couple on the body (if any) is given
by

[T [ a2 X e+ tr020)rmaa?sin 040 db = a* ["] [ [1,5],0f0dp} 40 (6.3
o Jo AErX 1+ 11080 1r=0a olJo Lirelr=a€e ¢ (6.3)

and this is found to be zero.
The couple vector on the sphere r = a arising from the couple stresses is

Mypp&r+ Mpp@ot Mo (6.4)

and this reduces to

sin # eiote,. (6.5)

yh' (a)
a

Hence the couple on the sphere due to the couple stresses in the fluid equals

] ;’{ ) :" yh' (a)a sin 8 ete, d¢} do (6.6)
and this is zero.

Thus the sphere experiences only a drag in the direction of the oscillation given
above in (6.2) and no couple acts on the body though the fluid sustains a couple stress
distribution.

The case of the (non-polar) Newtonian viscous liquid with the single viscosity
coefficient, u, is recoverable from the above analysis by letting the parameters k& and
v to zero and carrying out the appropriate limiting process. Then in the equations
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(3.24) and (3.25) one ‘root’ (say, a?) becomes infinity and the finite root is given by

2092 ;
eo gy B _ o 6.7
P PR - (©.7)

The expression for the drag then becomes

(6.8)

Dy= {—% wipoa’U,— bmipralo(1+ aBl)} eiot

B

and in view of (6.7), this becomes

Dy= [—% mipeatlU,— 61r,qua{1 +ay/ <l—%1)}] et (6.9)

If M denotes the mass of the fluid displaced by the sphere, the drag, D, on it as
given in (6.2) can also be put in the form

D=MUyjo(—K' —iK) et (6.10)
and the real part of this expression is seen to be
Dp=MUyo(K sinagt— K’ cos at). 6.11)

The graphs 4 and § show the distribution of the parameters K and K’ over a range
of the imposed frequencies. It is clear from these graphs that the parameters K and K’
increase steadily with increase of k/u and the curves for the polar case (k/u > 0) are
naturally above the curve for the (non-polar) Newtonian case, as far as is evidenced
from the numerical values noticed by us. In particular it follows therefore that
V K%+ K’?is larger in the micropolar flow than in the Newtonian flow. Hence the max-
imum drag experienced by the sphere over any period of oscillation is larger in the case
of micropolar fluids as compared to the Newtonian fluids. Also the larger the ‘micro-
polarity coefficient’, k/u, the greater is this maximum drag value.

Analysis, analogous to the above, has been worked out for a three constant model of
Oldroyd elastico viscous fluids by K. R. Frater[3].

PART B
7. ROTARY OSCILLATION
A sphere performs slow oscillations about a diameter, which is chosen along the
axis 8 = 0 of the coordinate system (r, 8, ¢). The motion is then represented by the

velocity,

Q(r,0,1) _

9= " 5ing % 7.

and the micro-rotation vector 7 will now have the form

v=A(r,0,t)e.+B(r,0,1)e, (7.2)
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The problem has axial symmetry about the axis of rotation and the partial derivatives
with respect to ¢ do not appear in this analysis. Since the oscillations are presumed
to be slow, we neglect the nonlinear terms on the left hand side of the equations (2.2)
and (2.3). The body force and the body couple are also neglected. The problem is then
governed by the following equations,

o, . (6B B 134 ,

P ——krsm()(a +7 r60>+(u+k)EQ (7.3)
N k_ 3Q y 9 (aB Q_la_A)] f
et = 2kA—*’r 25in 6 39 rzsin060[ sin 0 + a0 e +,8+y) (74)

0B __k 3Q vy 8 dB ﬁ_lﬂﬂ 1af
Pitar = 2kB rsin g ar +rmn@&[sm{)( +r r a6 +(a +B+) 0 (7.5)

In the above equation

f=f(r.0,t)=divy (7.6)

and

2 -_— T
E ar + r206? rz 88 7.7

On the boundary r = a, we have the adherence condition and this can be taken in the
form

Q(a,d,t) = Qya?sin 2 g et (7.8)
A(a,0.1) =0 (7.9
B(a,9,1t) =0. (7.10)

At r = », we have the conditions

QO=A=B=0.
Let

dB B 104
194 7.11
h(r,0.1) = rsm0( + . 60)' ( )

The equations (7.3), (7.4) and (7.5) can be put in the form

a0
p&L= kh+ (u+ k) EXQ (7.12)
e e ey s SN LU ANy ol (7.13)

r2sinf 96 r sm086
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B _yup- Kk 30,y oh 19f
ST 2kB rsin g ar rsin06r+(a+'3+7)rae‘ (7.14)

From the last two equations, we see that
(pj58;+2k)f= (a+B+y)VY (7.15)

where V2 denotes the Laplacian operator in spherical polar coordinates and also
(pj;% + 2k)h = yE*h— kE*Q). (7.16)

From the equations (7.15), (7.16) and (7.12) we see that

k(2u+k) ply+jutjk) 8 2kp 3 Py 62}
4 __ 2 —_ 2 —_ —_ —
{E yuth) BT yath al Tyerna yurnort=0 1D

In view of the time-dependence in boundary-condition (7.8) we have to obtain the
solution () in the form

Q=Q(r, 8) e (7.18)

and so the quantities f, A, B, h must also be chosen in the form

f=f(r,0)e" (7.19)
A=A(r,0) e (7.20)
B = B(r,8) e (7.21)
h = h(r,0) e, (7.22)

The equation (7.17) will now become

R
In view of the boundary condition (7.18) we may take

Q(r,0) = F(r)sin?8 (7.24)
and then

f(r.0) =g(r) cosé. (7.25)

The function F(r) is then to be determined from the equation
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da 2 d 2
(a;—r—z'—a%><a'.—2—;—2—ﬁ%>f7(r) =0 (7.26)

where the complex constants a,, 8, are given by equations (3.24) and (3.295).
The solution of (7.26) is seen to be

1 1 1 1
F(r) - A1<‘;+ al) e_a1r+ Bl<;+ Bl) e_B‘r+ C1<;"' a1> ealr+ Dl(;_Bl) eBlr (7.27)

and the function f(r, 8) is found from (7.15) to be

—1 l E —cria _1__£ ria
f(r,e)—r{E1<r+a)ec +F1<r a)ef }cosa (7.28)

where c/a is the complex root, with positive real part, of the equation
cila® = (2k+ipjo)/(a+B+y). (7.29)

In view of the regularity of the solution at r = «, the divergent terms in Q and f(r, )
are to be deleted and this means that the arbitrary constants C,, D,, F, are zero. We
therefore have

Q(r.0.1) = {Al(lr + al) e-ar 4 B,(—i+ Bl) e“’"} sin? § eiot (7.30)

— i €\ a—cria iot
f(r,0,¢t) E1<r2+ar>e cos # e, (7.31)
From equation (7.12) we get

; —_ 2
h(r,0,t) = {M&Ale_‘_al) e-oir

; —_ 2
+w131(%+’31> e—Blr} sinzgeivt,  (7.32)
The functions 4 and B are to be found from equations (7.13) and (7.14). In view of
the expressions for {)(r, 8, t) and f(r, 8, ) we have to take

A(r,0,1) = A(r) cos 9 et (7.33)
and
B(r,8,1t) = B(r) sin 8 ei’%, (7.34)

It is seen that

A(r) = {2/(2k+ipj<r)}{<k+ r{pthof _iyz")Al(%+%) o

'Y(F‘+k) 2_1")’[)0') (_!_ &) —Bir (i i C2) —cr/a}
+<k+ k Bl k Bl r3+r2 c (a+B+'y)E1 r3+ar2+2a2r €
(7.35)
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. . +a? i 1 « 2

+k)B2 iypa\, (1 AP 1, €\ o ome
+(k+7(" T JBY _ w )Bl(ﬁ+%+%)e 2 —(a+B+y)El<ﬁ+;§>e /}.
(7.36)

From the boundary conditions, viz., & = Qa® sin? 8 ¥, 4 =0, B=0 on r = a, the
constants 4,, B,, and E, are determined. They are found to be

A= (CRE) ety (wt B~ ivpaHet (1 +aBy) +ai(ct +2e+2) e (737)

D
B, = (%as>{k2+7(u+k)aﬁ—iyptr}{c"-(l +aa,) +ata(c*+2c+2)} efre (7.38)
Qoa3
El—_—( D )2(/.L+k)kc2{af(l+a,81)—Bf(]-‘-aal)}ec (739)

where
D =—c(1+aay) (1+aB,) [{kQ2u+ k) —ipo (y —ju—jk) }2 — diypok?]'?

+ (c2+2c+2) 2k+ipjo)at [ (u+ k) {a2(1+aB,) —B2(1+acy) } + aipo(a; — B;) ]
(7.40)

The graphs 6, 7, 8 and S show the variation of the magnitude of the velocity compon-
ent, the two micro-rotation components and the angular momentum for increasing
distance from the sphere.

8. STRESSES

From the expressions for ¢ and 7 obtained in the previous section and equation
(2.4), we see that

by =log = lpo = —P (8.1

i

tyg= lor = 0 (82)
lge = —1lpg
= {(1/(2k~+ipjo)} { Lipor (k+27) =2 (w+K)ad]

231

1 L
XA1<;—3+ r2> e+ [ipo (j+k+2y) —2y(u+ k) B3]

1

2
X Bl<—r—3+%) e B+ k(a+B+y)E1<%+ 2 ¢

s azr) e“"’“} cos feiot,  (8.3)

UES Vol.9.No. 7~ F
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z¢,—[ 5 {A 4221y +B(B+25+ 5 e +4k+i2pjo

2 1
X {[ip(r(jk—!—Z'y) - 2‘y(,u.+k)af]A,<%+%+F> e
+ [ipa (jk+ 2vy) —2y(u+ k)B%] B, (Erl-l-ﬁl r3) e Br
+k(a+B+ Y)E(ﬁ*“%) e‘"/“}] sin § et = {[P]+ [Q]} sin @ ei°* (8.4)

tre = {[P]—[Q]} sin f e". (8.5)
9. COUPLE STRESS

From equation (2.5), we get

= [(a+ﬁ+y)El<%+£> e~ 1+ 2(B+y)E, ( 34,34 ) e—terio

2(B+7y) . a
__k(2k+ipaj){[k ivpo+y(u+k)e] A (—; )

2
x e "+ [k2—iypo +y(u+k)B}] B, (B —&4—%) e”B’T}] cosfe? (9.1

r3
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Fig. 7
Mgg = Mg
1 3a* y
= —_ = — _ —(cria)
Ha(r2 ) B+ )( cr3+czr4 e

_—(B+7) 2 __ g 2 & 3 —l!”'
+k(2k+ipja){[k typ0'+y(;L+k)al]A( +=+ )

2
+ (k2= iypo-+'y(u+k)ﬂf]31<%+%+%) e‘”"}] cosfet  (9.2)

1 3a, 3a
Myg = {(B+v)[E1<ﬁ+;%+~a~4) e~teri

cr

3y

_{ll[k(2k+ipo-j)]}{[kz"i’}’P0'+'}’(/.L+'k)af]A ( +_+ 3) oy

+ [k2—iypo +y(u+ k) B3] B, (Bl 331 +2 >e B"}]

r3
- [{1/ k(2K -+ ipj 2 iypor+y (-t K)ad] Ay B+ %) emar
| {1/ [k( lPJO')]}{[k iypo +y(n+k)ai] 1(, ,2)3

3 2
+ [k —iypo+y(u+ k)BﬂBl(érl+ %) e“""}]} sin # et

={(B+y)[P1]—7[Q:]} sinfe* (9.3)

meg = {(B+vy)[P] —B[Q,]} sin § e (9.4)

and

My = Myy = Mgy, = Meg = 0. (9.5)
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[10* B(y,8,t)/Q, cos 8

[10 2/Qcd° sin’ 8|
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10. COUPLE ON THE SPHERE

The couple acting on the sphere is comprised of contribution from the surface stress
t; and also the couple stress m;;. The couple due to the surface stress #;; is given by

v T 2T
Ng = f f a3§rx[trrér‘+ 1,969+ trtbéd)]r:a sin dd) dg eiot
0 0
T 2
- [ d tro],_uZo sin 6 d
a fo o fo [ o lr=a€s SIN

= 2ma® f:[t,,,,],:a sinz g dg £ ei=t (10.1)
where k is the unit vector in the direction of the axis of rotation. We get
Ng=—(8/3)ma®{ Bu+2k)Qy+ {(n+k)/a}{A,0? ee+ BB e Pa}] eivt.  (10.2)
The contribution to the couple from the couple stress is given by

— T 2T
Ne= fo {d@ fo [mrrér + M€yt mr¢é¢]r=aa2 sin @ dd)} eiot
T 27 ) .
- f {d0 f [mrrér+ m,»gég],:aaz sin @ dd)} eiot
0 0

= 2ma® f: [m,, cos 6 — m,qsin 8],_, sin 8 df k et (10.3)
and this becomes

Ne= (4/3)n[{(a+B+vy)c+a+B}E e°
+{(2ya)/[k(2k+ipaj) 1 H{ [K* —iypo +y(n+k)a?]4, 0} e~@
+ [k2—iypo +y(u+k)B2]BB3 e P19} ] e, (10.4)

On substituting for the constants 4,, By, E; in (10.3) and (10.4) we get
N5 =~ (8/3)ma*Qo{ 3+ 2k+ { (u+k)a*/D} [ (k*— iypo) c{B(1 + aa,) — a3(1 +aB;)}

+ipo (2k+ipaj)ala, — By){c?+ a(a, + B;) (c*+ 2c+2) } ]} et (10.5)
Ne={ 8/3)m DB {0+ py)ct at BHu+ k) et~ aay,— o — )

+ay(u+k)c?oBi(1+ aa; +aBy) + ac{kQu+k) + ipa(y+ju+jk)}
+ adipo (2k+ipaj) (c?+2c+2)] et (10.6)
and D is already given in (7.40). The total couple is given by

N:N5+Nc. (10.7)
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The case of slow steady rotation of a sphere is obtainable from the above analysis
by allowing the period of oscillation 27/o tend to infinity. The expressions for Ny
and N are then given by

ANk(p+k)c?
= 3 p— —
Ns (8/3)”"90[ 3w 2k+(2p.+k)c2(1+/\)+2(,u+k))\2(c2+20+2)] (10:8)
2(ut N (e 1) = Qut kAt 1)
- 3
Ne (8/3)77900k{(2p+k)c2(1+)\)+2(p,+k))\2(c“’+2c+2)} (10.9)
and the couple on the sphere is
— 3 2 p.
N = Not N, = 3Tt R) QuA D[N £ R+ 24 2)] (g o)

Qu+k) (14 2) +2(p+ k) A2+ 2¢ +2)

This is in agreement with the couple calculated in the steady rotation of a sphere, S. K.
Lakshmana Rao, N. Ch. Pattabhi Ramacharyulu and P. Bhujanga Rao[4], and as
observed therein, the couple experienced by the sphere is larger in the case of micro-
polar fluid than in the Newtonian viscous liquid.

The couple obtained above in (10.5), (10.6) and (10.7) in the unsteady oscillation of
a sphere can be employed for obtaining the limiting value when the fluid is Newtonian
viscous and non-polar. This is done by allowing the viscous coefficients k& and vy in
Eringen’s model to zero. We then notice that of the two quantities af. 8% defined by
(3.24) and (3.25), one (say, «;) becomes infinite and the other has the limiting value

212 r
Py B _ipT (10.11)
A lalso €2+ B4

The couple N arising from the couple stresses is then zero in the limit and the limiting
form of the couple is therefore

N = — (8/3)mua*Qy[3 + a*ipa/{ u(1+aVipo/n) }]

= — (8/3)mua*Qy[3 — £%a? (1 + ita) ] (10.12)
where
E=(1—-D)V(po/2un). (10.13)

which is a classical result{5].
The couple N given in (10.10) can be written in the form

N = MQya’c(— K' —iK) et (10.14)

where M = 4ma®p/3 is the mass of the liquid displaced by the sphere. The real part of
N is then given by

N = MQ,a*c (K sinot—K' cos ot). (10.15
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The graphs 10 and 11 show the variation of the parameters K and K’ introduced in the
above equation for different frequencies of oscillation of the sphere. These graphs
show increase in the values of these parameters when compared to the classical
Newtonian fluid, over the entire frequency range considered. In fact it is observed from
the graphs 10 and 11 that over the entire frequency range they increase steadily with
increase of the ‘micropolarity coefficient’, k/u. In particular it follows therefore that
V K%+ K'? is larger in the micropolar flow than in the Newtonian flow. Hence the
maximum couple experienced by the sphere over any period of oscillation is larger in
the case of micropolar fluids as compared to the Newtonian fluids. Also the larger the
‘micropolarity coefficient’, k/u, the greater is this maximum couple value.

The above analysis is entirely theoretical and we are not sure of the variables of the
appropriate experimental results for the oscillating systems employed in this paper.
In fact the values of the physical parameters or even their ranges do not seem to be
available. In the numerical calculations the only guiding restrictions on the parameters
are those mentioned in [1].
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Résumé — Cet article examine ’oscillation rectilinéaire d’une sphére le long d’un diamétre et I’oscillation de
rotation d’une sphére autour d’un diamétre, dans un fluide micropolaire d’Eringen. Les grandeurs physiques
telles que la vitesse, la micro-rotation, et les composantes de la contrainte et du couple de contrainte sont
calculées. La trainée sur la sphére en oscillation rectilinéaire et le couple sur la sphere en oscillation de
rotation sont calculés. Il est observé que sur une période quelconque d’oscillation, la trainée maximale ou
le couple maximal. comme cela peut étre le cas, est plus grand dans le cas d’un fluide micropolaire, par
comparaison au fluide Necotonien.

Zusammenfassung — Diese Arbeit untersucht die geradlinige Schwingung einer Kugel entlang eines
Durchmessers und die rotierende Schwingung einer Kugel um einen Durchmesser in Eringen’s mikropolarer
Fliissigkeit. Die physikalischen Grossen wie die Geschwindigkeit, Mikrorotation und Spannungs- und
Paarspannungskomponenten werden berechnet. Der Riicktrieb auf die geradlinig schwingende Kugel und
das Kriftepaar auf der rotationsschwingenden Kugel werden berechnet. Es wird beobachtet, dass iiber
irgendeine Periode der Schwingung der maximale Riicktrieb oder das maximale Kréftepaar, wie der Fall
liegt, im Falle der mikropolaren Fliissigkeit grosser ist, verglichen mit der Newton’schen Fliissigkeit.

Sommario— L’ A. esamina l'oscillazione rettilinea di una sfera lungo un diametro e I’oscillazione rotatoria di
una sfera sul diametro in un liquido micropolare di Eringen. Si calcolano le quantita fisiche quali la velocita,
la microrotazione, sollecitazione e componenti la sollecitazione d’accoppiamento. La reazione sulla sfera
oscillante rettilinearmente e la coppia sulla sfera oscillante rotazionalmente sono pure calcolate. Si osserva
che lungo un periodo qualsiasi di oscillazione la reazione massima o la coppia massima, secondo il caso,
sono piti grandi nel caso dei liquidi micropolari che non dei liquidi newtoniani.

AbGcTpakT— PaccMOTpeHBI OPAMOJIMHERHAA OCIM/UTALMA Iiapa BAONb JHAMETpPa H POTalUMOHHAS OCLIMILIA-
1A IIapa O AUaMeTpe B 3PHHIOBCKO MHKDPONOJISIPHOM KHAKOCTH. BeruMcnarcs ¢pu3Hueckie BETHIAHEI Kax
CKOPOCTb, MHKPOPOTALIMS, COCTABIIAIOLIME HANPSKEHUA W HANPAKCHAS NAphl, 4 TAKXKe COMPOTHBIEHHE HA
NPSMONHHENHO K0J1e6aroilMii IUap ¥ Mapa Ha POTALMOHHBIH KoneGaronmii map. YCTaBjaeHo, YTO B IepHoe
OCHMIIIALMH MM MAKCHMAJ/IbHOE CONMPOTHBIICHHE WIIM MakCHMMallbHas rapa Oospile At MHKPONOJISIPHBIX
XKHIKOCTEH, YeM B Cilyyae HbIOTOHHAHCKOH XHAKOCTH.



