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THE OSCILLATIONS OF A SPHERE IN A MICROPOLAR 
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Abstract-The paper examines the rectilinear oscillation of a sphere along a dimeter and the rotary oscilla- 
tion of a sphere about a diameter in Eringen’s micropolar fluid. The physical quantities like the velocity, 
micro-rotation and the stress and couple stress components are calculated. The drag on the rectilinearly 
oscillating sphere and the couple on the rotational oscillating sphere are calculated. It is observed that over 
any period of oscillation, the maximum drag or the maximum couple, as the case may be, is larger in the case 
of micropolar fluids as compared to the Newtonian fluid. 

I. INTRODUCTION 

THE STUDY of micropolar fluids was put forward by A. C. Eringen in 1966111. These 
are a sub-class of microfluids earlier introduced by Eringen himself[21, which exhibit 
certain microscopic effects arising from the local structure and micromotions of the 
fluid elements. In the simplified theory of micropolar fluids also, as in the more com- 
plicated theory of microfluids, there is the possibility of sustenance of the couple stress. 
The mathematical model underlying micropolar fluids is described, by the field equa- 
tions expressing the conservation of mass, the balance of the linear momentum and the 
balance of the first stress moments in terms of the two basic vectors 4, the velocity, 
and D, the micro-rotation velocity. For incompressible fluids, which we consider in this 
paper, p, the density, is constant and the unknown pressure, p, in the momentum equa- 
tion is to be determined from the boundary conditions. 

In this paper we examine the unsteady flow of micropolar fluid (i) due to the oscilla- 
tion of a sphere rectilinearly along the vertical diameter and (ii) due to the rotary oscilla- 
tion of a sphere about a diameter. The magnitude of oscillation in both the cases is 
assumed so small that terms of second order in the amplitudes of oscillation can be 
neglected. The velocity and micro-rotation and the surface and the couple stress com- 
ponents are calculated in both the cases. In (i) the sphere experiences only a drag and 
does not receive any contribution from the couple stresses even though they are sus- 
tained in the fluid motion. In (ii) the sphere experiences only a couple. Both these 
quantities are calculated for several fixed values of the ‘micropolarity coefficient’, 
k/p, allowing the frequency of the oscillating system to vary. The above quantities are 
conveniently expressed in terms of two parameters K and K’, whose variations for 
different values of ‘micropolarity coefficient’, k/p, as well as for different imposed 
frequencies of oscillations are numerically computed. It is seen that in both the drag 
and the couple in (i) and (ii) respectively, the parameters K and K’ have the tendency 
to increase steadily with increase of the ‘micropolarity coefficient’, k/p. Further this 
trend is observed over the entire range of the imposed frequency values considered in 
our numerical computations. In particular these parameters for the micropolar fluid are 
always larger than their values in the case of the (non-polar) Newtonian fluid. 

2. FIELD EQUATIONS 

The equations of motion for incompressible micropolar fluids are given by 
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$+div (pq) = 0 

dq p;i;=~~-ggradp+kcurla-(~+k)curlcurlq+(h+2~+k)graddivq 

pj$=pi-2ks+k curl 4 - y curl curl F + ((Y + /3 + y ) grad div i;, 

(2.1) 

(2.2) 

(2.3) 

in which 4, v are respectively the velocity and micro-rotation vectors. The symbols 
p and j denote the density and micro-inertia and the coefficients A, p, k as well as LY, 
p, y are the viscosity parameters, which are regarded as constants in this investigation. 
The quantities p, fand i denote the pressure, body force per unit mass and body couple 
per unit mass respectively. 

The shear stress lij and the couple stress mij are defined by the constitutive equa- 
tions 

tij= (--p+Xdivq)&j+ (2~+k)eij+k~ijn(Om_Vm) (2.4) 

mti = a(div D)& + pvij + yvj,i (2.5) 

where eij is the strain velocity tensor and w is (l/2) curl 4. 6ij and l ijm have their stan- 
dard meanings. 

PART A 

3. RECTILINEAR OSCILLATIONS 

A sphere of radius ‘u’ oscillates rectilinearly along the vertical diameter, 0 = 0, 
in a spherical polar coordinate system (r, 0, 4). Let the velocity of the sphere be U, 
cos UC. We may choose the vectors 4 and D in the form 

and 

q = up, 0, t)P,+v(r, 0, t)Pe (3.1) 

F = C(r, 0, t)t?,. (3.2) 

In equations (3.1) and (3.2) and in all subsequent equations, only, the real parts are 
to be taken, when the physical quantities are represented by the complex quantities. 

Since div 4 = 0, we can write 

1 w 1 w u=--- u=-- 
r2 sin 0 do’ rsin0 ar’ 

The equations of motion now take the form 

(3.3) 
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p g+ug+;g+g =pfe-+$-;$ (rC)+ 9; (EV) (3.5) 

> 
= pl,-2kC+ (3.6) 

where 

-- (3.7) 

and 

D G v2-1 

r2 sin2 e r2 de r2 ’ (3.8) 

Assuming that the amplitude of oscillation U, is small and neglecting the inertial 
terms in (3.4) and (3.5) and the bilinear terms and the external couple in (3.6), we have 
the linearized system of equations 

p$=-$(p-prgcosfI)+--!&$(sinBC)- $$$j$ (E2G) (3.9) 

p 2 = -i$(p-prg cos e) -r$(rC) +s$ (E2$) 

pj$=-2kC+ --& E2$+ yDC. 

(3.10) 

(3.11) 

On the boundary r = a, we have the adherence condition which can be expressed in 
the form 

u = U. eiflt cos e 

v = - U, eiut sin e 

c= 0. 

(3.12) 

(3.13) 

(3.14) 

Eliminating the pressure term from (3.9) and (3.10). we obtain the equation 

p $ E%,b - (p + k)EzE2$ = - kr sin BDC. 

In view of the boundary conditions (3.12), (3.13) we choose 

and hence take 

$ =f(r) eiut sin2 e 

C = g(r) eiat sin e. 

(3.15) 

(3.16) 

(3.17) 
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On substituting these in the equations (3.15) and (3.1 I), we get 

If L denotes the operator (d2/dr2) -(2/r2), we see that the functions f(r) and h(r) = 
rg (r) are governed by the system of differential equations 

and 
{ (/A$.k)LZ-ipaL}f(r) = kL(h(r)) (3.20) 

kL(f(r)) = {- yLs_ (pji(T++k)}h(r). 

Hence from (3.20), we obtain 

(3.21) 

{(p-tk)L-ipcr}f(r) -k/z(r) =A,?+? (3.22) 

where AI and II1 are arbitrary (complex) constants. Eliminating the function h(r) 
from (3.2 1) and (3.22), we get the following equation for the functionf(r). 

y(/J+k) 
k 

Lz-[ (2p+k) +iprr(j+$+h)]L +(-‘q+i2pcr)]f(r) 

- = 2k+y (A,rZ++). (3.23) 

Let (Y~, PI, be the complex numbers defined by means of the equations 

a2+pf = k(G++k) +ipdjk+&+r) 
1 rb+k) rb+k) 

(3.24) 

‘2 2 

a:~: = - JP (T +i (2kpcr) 

rb+k) yb+ k)’ 
(3.25) 

We can see that neither of the constants al, PI can be purely imaginary. We choose 
them such that their real parts are positive. The solution of (3.23) is found to be 

J’(r) = C, !+a, 
( 1 r 

e-““+C, ++& epPlr 
( 1 

+C,(i-a,) ea~~+C,(~-p,) eP”+2r’+2+ (3.26) 

where C, to C, are a further batch of arbitrary (complex) constants. Since the sphere 
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has only a small amplitude of oscillation, the velocity components, as well as the micro- 
rotation have to vanish as r + m. For this reason we choose the constants CS, C, and 
AI in (3.26) to be zero. Then the term A, in equation (3.22) also is to be dropped. We 
now have 

f(r) = C1(++ al) e+lr+ C,(~+&) eeBLr+2+ (3.27) 

and from equation (3.22) we see that 

h(r) = L!+!+(r) -2 

(/.L+k)a~-ipu (w+k)P::-iPfJ = 
k k 

(3.28) 

The velocity and micro-rotation are expressible in the form 

u = -2fo eid cos 0 

r2 

v =f’(r) eicrt sin 8 
r 

C = ho eiut sin fj 
r 

and from the boundary condition 

f(a) = -gJ()u2 

f’(a) =-u(y4 

h(u) = 0 

the constants C1, C, and B, inf( r) and h(r) are determined. They are found to be 

3U,u(l+up,)[(CL+k)P~-ipa] eala 
Cl = 2(p,-a,)[a(E.L+k)(U~P::+iP~(aalpl+a,+P1)1 

(3.29) 

(3.30) 

(3.3 1) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.37) 

The graphs 1, 2 and 3 show the variation of the absolute values of the two velocity 
components and the single micro-rotation component with the distance from the sphere. 
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7’” 

Fig. 1. 

Fig. 2. 
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Fig. 3. 

4. STRESS COMPONENTS 

We find that the strain components are 

err =-2eee=-2eM= ( $f (r) + -$ ( C1a:e-a”r + C2/31esBlr)} cos d eiof (4.1) 

5-9 = 

and 

( 
6 6P, 3P2 P” F+~B+-$+-$ _ e B1r+ 

(4.2) 

The vorticity vector, ti is 

er.b = eem = 0. (4.3) 

=~,a:(~+a,)e-al’+C2PI(~+~~)e-8”jsinBef”fC,. (4.4) 

The shear stress components r, are now calculated from the constitutive equation 
(2.4). We find that 

t, = -p’ + 2 (2PrT k){Sf.(r) + CIcuf edaIr+ C,/3: e+lr] cos 8 ebt (4.5) 

to,= t+&=--_p’- --f(r) + C,a; e-@lr + C,p; ePPlr cos fI eiut (4.6) 
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+ ( -$+$i+$ Cfe-SI’+i38,L +ipfl C 1 pu r4) { 1($+:) cafr 

+ Cz(-$+?) e-Blr}] sin 0 e’“’ (4.7) 

+i~~{C,(~+~)e-““+C,(~+~).-~lr}]sinBe”’ (4.8) 

and 

where 

tee = t@ = tr@ = t@. = 0, 

p’=p-prgcos0. 

(4.9) 

From equations (3.9) and (3. IO), we get after an integration 

p’ = Blr-” cos 0 eiat + const. 

S. COUPLE STRESS 

(4. IO) 

The couple stress components mij are obtained from equation (12.5). We find that 

mrr = m,e= mer= mee=mm,=O (5.1) 

while 

mrm=-{(‘l;:Ty’[[ (I*tk)a:ipv]C,(a,+$) edaIr 
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and 

me@=-mme= 

6. DRAG 

The drag on the sphere due to surface stresses is given by 

D, = 27ra* I,” [t,, cos 0 - trO sin 01 ,.=a sin 0 d0 

and this is found to be 

(6.1) 

Ds = !?ru2 ipuul/,-9 > eiut 

2 . = ( -- 3 
7Tzpau3u~ - 

6~ipuaUo(~++k)(1+acu,)(l+apl)(crl+P1) eat c621 

I u(rU+k)(Y:P:.+ipcr(ualpl+al+p,) ’ ’ 

The contribution of the surface stresses to the couple on the body (if any) is given 

[hlr=a& W] de (6.3) 

and this is found to be zero. 
The couple vector on the sphere r = a arising from the couple stresses is 

mrrtTr + mreee + mrmPm 

and this reduces to 

-N(a) sin 0 eiutF 
U 

fP. 

Hence the couple on the sphere due to the couple stresses in the fluid equals 

(6.4) 

(6.5) 

and this is zero. 
Thus the sphere experiences only a drag in the direction of the oscillation given 

above in (6.2) and no couple acts on the body though the fluid sustains a couple stress 
distribution. 

The case of the (non-polar) Newtonian viscous liquid with the single viscosity 
coefficient, p, is recoverable from the above analysis by letting the parameters k and 
y to zero and carrying out the appropriate limiting process. Then in the equations 
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(3.24) and (3.25) one ‘root’ (say, c$) becomes infinity and the finite root is given by 

p2 = Lt 4P: - +y 
Icd+m a:‘+ pi P 

The expression for the drag then becomes 

and in view of (6.7), this becomes 

D,= -~mjma3U,-6~pU,a 

(6.7) 

(6.8) 

(6.9) 

If M denotes the mass of the fluid displaced by the sphere, the drag, D, on it as 
given in (6.2) can also be put in the form 

D = MUg(- K’ - iK) eiat (6.10) 

and the real part of this expression is seen to be 

DR = MV,u(K sin ut- K’ cos wt). (6.11) 

The graphs 4 and 5 show the distribution of the parameters K and K’ over a range 
of the imposed frequencies. It is clear from these graphs that the parameters K and K’ 
increase steadily with increase of k/p and the curves for the polar case (k/p > 0) are 
naturally above the curve for the (non-polar) Newtonian case, as far as is evidenced 
from the numerical values noticed by us. In particular it follows therefore that 
%‘????? is larger in the micropolar flow than in the Newtonian flow. Hence the max- 
imum drag experienced by the sphere over any period of oscillation is larger in the case 
of micropolar fluids as compared to the Newtonian fluids. Also the larger the ‘micro- 
polarity coefficient’, k/p, the greater is this maximum drag value. 

Analysis, analogous to the above, has been worked out for a three constant model of 
Oldroyd elastic0 viscous fluids by K. R. Frater [3]. 

PART R 

7. ROTARY OSCILLATION 

A sphere performs slow oscillations about a diameter, which is chosen along the 
axis 8 = 0 of the coordinate system (r, 8,4). The motion is then represented by the 
velocity, 

and the micro-rotation vector 5 will now have the form 

(7.1) 

u =A(r, 13, t)P,+B(r, 8, t)G- (7.2) 
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The problem has axial symmetry about the axis of rotation and the partial derivatives 
with respect to C$ do not appear in this analysis. Since the oscillations are presumed 
to be slow, we neglect the nonlinear terms on the left hand side of the equations (2.2) 
and (2.3). The body force and the body couple are also neglected. The problem is then 
governed by the following equations, 

aa 
p-= krsinf3 

at ( 
$+:-+z 

> 
+ (~*++k)f?R (7.3) 

pj$!=-2kA+ k dlR y a --~- 
r2 sin 0 ae r2 sin 8 ae )I (7.4) 

pj$=-2kB- &g +A-/-[’ sin B($+$-:%)I + (a+P+r)f$. (7.5) 

In the above equation 

and 

f=f(r, 0, t) = div v (7.6) 

E2 = a2 I 1 a2 cot 0 a -- 
ar2 r2 a02 r2 do’ (7.7) 

On the boundary r = a, we have the adherence condition and this can be taken in the 
form 

fl(a, 0, t) = &a2 sin 2 0 eicf (7.8) 

A (a, 8, t) = 0 (7.9) 

B(u. 0, t) = 0. (7.10) 

At r = m. we have the conditions 

Let 

fl=A=B=O. 

h(r, 0, t) = r sin 0 
( 
$+f--ig 

> 
. 

The equations (7.3), (7.4) and (7.5) can be put in the form 

aa 
pat= kh+ (p+k)E2R 

pj$=-2kA-t 

(7.1 I) 

(7.12) 

(7.13) 
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From the last two equations, we see that 

(pj$+Zk)f= (a+P+r)V2f 

where V2 denotes the Laplacian operator in spherical polar coordinates and also 

(pji+2k)h = yE2h-kE2R. 

(7.14) 

(7.15) 

(7.16) 

From the equations (7.15), (7.16) and (7.12) we see that 

E&(2E1.+k) E2-f (Y+.h+jk) aE2 + 2kP a+ p”j 
r(p+k) r(p+k) at y(p+k) at y(p+k) at2 * 

(7.17) 

In view of the time-dependence in boundary-condition (7.8) we have to obtain the 
solution R in the form 

fi = fi(r, f3) eimt 

and so the quantitiesf, A, B, h must also be chosen in the form 

f=f(r, 6) eiaf 

A = A (r, 13) eiu’ 

B = B (r, 0) eiot 

h = h(r, 13) eiut. 

The equation (7.17) will now become 

k(2p+k)+ipcr(y+jp+jk) 

r(p+k) 

E2+pc(2ik-jpcT) a2=o 1 r(p+k) . 
In view of the boundary condition (7.18) we may take 

CI(r, 0) = F(r) sin2 0 

and then 

f(r, 13) = g(r) cos 8. 

The function F(r) is then to be determined from the equation 

(7.18) 

(7.19) 

(7.20) 

(7.2 1) 

(7.22) 

(7.23) 

(7.24) 

(7.25) 
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= 0 

where the complex constants (Y~, PI are given by equations (3.24) and (3.25). 
The solution of (7.26) is seen to be 

F(r) =Al(i+ol,) epa~r+B,(~+/3,) e-““+C,(f--a,) emlr+Dl(~-&) e@lr 

and the functionf( r, 0) is found from (7.15) to be 

f(r, 0) =~{El(~+~) e-cr/o+F1(~-~) e”‘a}costj 

where c/a is the complex root, with positive real part, of the equation 

?/a2 = (2k+ipjo)/(a+/3+y). 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

In view of the regularity of the solution at r = m, the divergent terms in R andf(r, 0) 
are to be deleted and this means that the arbitrary constants C,, D1, F1 are zero. We 
therefore have 

(7.30) 

f(r, 8, t) = El $+s e-cr/acos 8 eiut. 
( ) 

(7.3 1) 

From equation (7.12) we get 

h(r, 8, t) = 
ipa- (p+k)af 

k 

+‘~a- b+k)P: 
k 

B,(!+P,) e-@jr} sin2 f3 eiuc. (7.32) 

The functions A and B are to be found from equations (7.13) and (7.14). In view of 
the expressions for 0(r, 13, t) andf(r, 13, t) we have to take 

and 
A (r, 8, t) = A(r) cos 19 eiuc (7.33) 

It is seen that 

B(r, 13, t) = B(r) sin 0 eiut. (7.34) 

A(r) = {2/(2k+ipjrr)}{(k+Y’“~k’~~-~)A,(~+~)e-”” 

pf--~)Bl(-$+$) eePlr- (ol+pf y)E,($+s+&) eecria) 

(7.35) 
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(a+P+y)E,($+-$) e-CT/a}. 

(7.36) 

From the boundary conditions, viz., fi = R,a2 sin2 0 eiuT1, A = 0, B = 0 on r = a, the 
constants A,, B1, and E, are determined. They are found to be 

AI = {k2+-y(p+k)~~-iypu}{c2(1+a&)+aZ/3~(c2+2c+2)}e~~a 

{k2+y(p+k)a~-iyp}{c2(1 tar,) +u2a4(c2+2c+2)} ePla 

where 

(7.37) 

(7.38) 

(7.39) 

The graphs 6,7,8 and 9 show the variation of the magnitude of the velocity compon- 
ent, the two micro-rotation components and the angular momentum for increasing 
distance from the sphere. 

8. STRESSES 

From the expressions for c?j and D obtained in the previous section and equation 
(2.4), we see that 

t,,= to,= t&.$=-p 

tr,g = t&. = 0 

63.1) 

(8.2) 

= {l/W+b~~)l([ ip(jk+2y) -2y(p+k)af] 

epalr+ [ipu(j+k+2y)-22y(p+k)j3f] 

e-41r+k(a+~+y)E, (8.3) 

IJES Vol. 9. No. 7-F 
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IO 

9.- 

7- 

7-10 

Fig. 6. 

t@r = [- y+($+~+$) e-““+&(f+y+$) e-““} f (4k+jZpju) 

X ([ipc+(jk+2y) -2y(p+k)a3Al($+~+-$) eTafr 

+ [bd_ik+2y) -2y(~+k)P3& P, ( 
<+A+- e-PIT f2 j3) 

+k(a+P+y)E,(~+f)e-cria}]sineei”f={[p]+[Q]}sinse~u~ (8.4) 

t re = { [P] - [Q]} sin /3 eimf. (8.5) 

9. COUPLE STRESS 

From equation (2.5), we get 

mrs= [ (~+B+y)E,($+~) e- ccr/a)+2(p+y)~, $+“+2!$ ( cr3 > 
e-(cr/a) 

-k(2k+ ipuj) 
2(p+y) [P-iypu+y(p+k)a~] Al $+%+s) 1 ( 

xeealr+ [k”-iyp~+~(p+k)P:]B,(~+~+~) e+r]] COS 0 eict (9.1) 
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m 09 = 

= 

y/a 
Fig. 7. 

[{a($+-$- (Piy)($+~+g)E,} e-(-./a) 

mve= (@+y)[E,(-$+$+$) e-(cr’a) 

-y 
[ 

{l/[k(2k+ipj~)]}{ [P-iyp(~+~(p+k)+4, 5+$ e-alr 
( > 

= {(P+y)[P,l -Y[QJI sinoeiut (9.3) 

m er={(P+~)[P,l--PIQ,l}sinee’“’ (9.4) 

and 

w.6 =mdr=mgg= mm0 = 0. (9.5) 
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Y/O 

Fig. 8. 

Y’O 
Fig. 9. 
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10. COUPLE ON THE SPHERE 

669 

The couple acting on the sphere is comprised of contribution from the surface stress 
tij and also the couple stress mij. The couple due to the surface stress fij is given by 

G=JiJ, 2x a3@p [ t,,~,. -f t,go + t,,~,] _ sin 0 d$ d0 eiu’ 

= - a3 J,” do 1:” [fr+]r&O sin 0 d 

(10.1) 

where I$ is the unit vector in the direction of the axis of rotation. We get 

NS=- (8/3)~a3[(3~+22k)R,+{(~+k)/a}{A,a~e-a~n+B~~~e-P’a}] e’“‘. (10.2) 

The contribution to the couple from the couple stress is given by 

&. = j,” (do jIr [ mrrPr + mrge + mrmPm] r,au2 sin f3 d+} e”’ 

= j,” {de ,; [ mrrt?y + m,.oPB]r=na2 sin 0 d$} eiu’ 

[ mrr cos 19 - rnre sin e],=, sin 0 d0 k e”“l (10.3) 

and this becomes 

Nc = (4/3)~r[{ (c~+P+y)c+a+/3}E, e-c 

+ { (2yu)/[k(2k+ip~j)]}{ [k2-i.YP(T+Y(~+k)a~]Ala~e-a’a 

+ [k2 - iypcr+ y(p+ k>j3f]B& e-p’s}] eict. (10.4) 

On substituting for the constants A r, &, E, in ( 10.3) and (10.4) we get 

%a3k(P, - a1) 
D [{(~+P+Y)C+a+p}(CL+k)C2(-u(Y1P1-(Y1-P1) 

+uy(~+k)c2a,p,(l+aa,+up,)+uc~{k(2~++)++ip~(y+~~+-tjk)} 

+u3ipa(2k+ipaj)(c2+2c+2)] ei”” (10.6) 

and D is already given in (7.40). The total couple is given by 

N= NS+Nc. (10.7) 
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The case of slow steady rotation of a sphere is obtainable from the above analysis 
by allowing the period of oscillation 297/v tend to infinity. The expressions for N, 
and N, are then given by 

Ns = (8/3)m3& -3p-2k+ 
h2k(/_+k)c2 

(2p+k)c2(1+h)+2(p+k)h2(c2+2c+2) I 
(10.8) 

Nc= (8’3)nRoa3k 
2(p+k)h2(c+ 1) - (2p+k)c2(A+ I) 

(2p+k)c2(1+h)+2(p+k)A2(c2+2c+2) 1 
(10.9) 

and the couple on the sphere is 

This is in agreement with the couple calculated in the steady rotation of a sphere, S. K. 
Lakshmana Rao, N. Ch. Pattabhi Ramacharyulu and P. Bhujanga Rao[4], and as 
observed therein, the couple experienced by the sphere is larger in the case of micro- 
polar fluid than in the Newtonian viscous liquid. 

The couple obtained above in (10.5), ( 10.6) and (I 0.7) in the unsteady oscillation of 
a sphere can be employed for obtaining the limiting value when the fluid is Newtonian 
viscous and non-polar. This is done by allowing the viscous coefficients k and y in 
Eringen’s model to zero. We then notice that of the two quantities crf. pi defined by 
(3.24) and (3.25), one (say, a,) becomes infinite and the other has the limiting value 

(IO.1 I) 

The couple Nc arising from the couple stresses is then zero in the limit and the limiting 
form of the couple is therefore 

where 

=-(8/3)~pu3~o[3-~5’a2/(l+i&z)] 

t= (I --i)dI$?&T). 

(10.12) 

(10.13) 

which is a classical result [5]. 
The couple N given in (10.10) can be written in the form 

N = MLRou20(- K’ - iK) eiut (10.14) 

where M = 47ru3p/3 is the mass of the liquid displaced by the sphere. The real part of 
N is then given by 

NR = Mflou2u( K sin ut- K’ cos ut). (10.15) 
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The graphs 10 and 1 I show the variation of the parameters K and K’ introduced in the 
above equation for different frequencies of oscillation of the sphere. These graphs 
show increase in the values of these parameters when compared to the classical 
Newtonian fluid, over the entire frequency range considered. In fact it is observed from 
the graphs 10 and I I that over the entire frequency range they increase steadily with 
increase of the ‘micropolarity coefficient’, k/p. In particular it follows therefore that 
v?%?? is larger in the micropolar flow than in the Newtonian flow. Hence the 
maximum couple experienced by the sphere over any period of oscillation is larger in 
the case of micropolar fluids as compared to the Newtonian fluids. Also the larger the 
‘micropolarity coefficient’, k/p, the greater is this maximum couple value. 

The above analysis is entirely theoretical and we are not sure df the variables of the 
appropriate experimental results for the oscillating systems employed in this paper. 
In fact the values of the physical parameters or even their ranges do not seem to be 
available. In the numerical calculations the only guiding restrictions on the parameters 
are those mentioned in [ 11. 
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RCsumC-Cet article examine I’oscillation rectilintaire d’une sphere le long d’un diamktre et l’oscillation de 
rotation d’une sphkre autour d’un diamttre, dans un fluide micropolaire d’Eringen. Les grandeurs physiques 
telles que la vitesse, la micro-rotation, et Ies composantes de la contrainte et du couple de contrainte sont 
calcul6es. La trainte sur la sphtre en oscillation rectilinkaire et le couple sur la sphtre en oscillation de 
rotation sont calcults. II est observt que sur une periode quelconque d’oscillation, la trainee maximale ou 
le couple maximal. comme cela peut Ctre le cas. est plus grand dans le cas d’un fluide micropolaire. par 
comparaison au fluide Necotonien. 

Zusammenfassung- Diese Arbeit untersucht die gerddlinige Schwingung einer Kugel entlang eines 
Durchmessers und die rotierende Schwingung einer Kugel urn einen Durchmesser in Eringen’s mikropolarer 
Fliissigkeit. Die physikalischen Grijssen wie die Geschwindigkeit, Mikrorotation und Spannungs- und 
Paarspannungskomponenten werden berechnet. Der Rlicktrieb auf die geradlinig schwingende Kugel und 
das Kriiftepaar auf der rotationsschwingenden Kugel werden berechnet. Es wird beobachtet, dass iiber 
irgendeine Periode der Schwingung der maximale Riicktrieb oder das maximale Kr%ftepaar, wie der Fall 
liegt, im Falle der mikropolaren Fliissigkeit griisser ist, verglichen mit der Newton’schen Fliissigkeit. 

Sommario - L’A. esamina I’oscillazione rettilinea di una sfera lunge un diametro e l’oscillazione rotatoria di 
una sfera sul diametro in un liquid0 micropolare di Eringen. Si calcolano le quantiti fisiche quali la velociti, 
la microrotazione, sollecitazione e componenti la sollecitazione d’accoppiamento. La reazione sulla sfera 
oscillante rettilinearmente e la coppia sulla sfera oscillante rotazionalmente son0 pure calcolate. Si osserva 
the lunge un period0 qualsiasi di oscillazione la reazione massima o la coppia massima, second0 il case, 
sono pih grandi nel case dei liquidi micropolari the non dei Iiquidi newtoniani. 

A6CTpiWr-PaCCMOTpeHbI IIpRMOJIUHetiHaX OCUUJIIISILWI mapa BAOJIb AUaMeTpa A pOTaUUOHHaB OCUHJIJIa- 
UUII mapa 0 AnaMeTpe B 3pIiHrOBCKOii MAKpOnOnapHOff XMAKOCTU. BbIWfcnBTcrr &i3WIeCK~e BeJIWIHHbI KaK 
CKOpOCTb, MnKpOpOTaU”B, cocTaBmnomne HanpameHIiR u HanpB~eHnX napbr, a TaKxe ConpoTIlBneHIie Ha 
IIpBMOJTHHefiHO Kone6aIomIifi map II napa Ha POTaUAOHHblfi Kone6aromefi map. YCTaBfleHO, ST0 B IlepUOAe 
ocUHJInRUHA HJIH MaKCAMa,TbHOe COnpOTIiBneHIie HJIA MaKCHMaJIbHaB napa 6onbme AJIB MnKpOnOJI%lpHbIX 

XHAKOCTefi, ‘IeM B Cn,“Iae HbIoTOHHaHCKOti XWIKOCTH. 


