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STABILITY OF MICROPOLAR FLUID MOTIONS
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Abstract—The paper employs the energy method for obtaining criteria for the stability of the motion of an
incompressible micropolar fluid in an arbitrary domain. A formula is obtained for the time-rate of change of
the kinetic energy of the difference of two flows and if is shown that the original flow is stable when Re+
0-5Rm < R0 and Rm < 2m, + 6m%my. The quantities m1, and n, are material constants of the fluid and Re, Rm
denote the Reynolds number and microrotational Reynolds number respectively. A different form of stability
criterion is also noticed and a theorem is deduced concerning the uniqueness of steady, incompressible micro-
polar flows. Finally, a variational algorithm is established for the stability of a micropolar flow and this can be
employed to sharpen the estimate of the Reynolds number below which the flow is stable.

IN THIS paper we employ the energy method to examine the stability of flows of micro-
polar incompressible fluids. This method has the advantage that it is applied to a differ-
ence of two flows, rather than to a perturbation over another flow. The special features
and the generality of conclusions regarding stability that are possible by this method
have been clearly exposed by James Serrin[1] in his classic paper on the stability of
viscous fluid motions and subsequent to this work, the energy method of stability has
indeed gained an extraordinary resonance. In [1] Serrin obtains sufficiency conditions
ensuring stability of flows for arbitrary disturbances in bounded domains of arbitrary
geomelry and the results are applicable also to cases of unbounded geometry if the
disturbances are periodic in the corresponding variables. The stability criterion is
expressed as a Reynolds number estimate and the method also leads to a unigueness
theorem for steady bounded flows. Serrin has also given a variational algorithm for
improving the Reynolds number estimate and by an application of the energy method,
he obtains stability criterion for laminar Couette flow between rotating coaxial cylinders.
Daniel D. Joseph[2] has investigated the stability of the Boussinesq equations using the
energy method initiated by Serrinin [ 1].

The micropolar fluid flow discussed in this paper has two prominent departures
from the case of Navier-Stokes theory, viz., the sustenance of the couple stress and
the nonsymmetry of the stress tensor. Polar fluids have been the subject of study in
recent years by several authors, prominent among them being A. C. Eringen{3, 4] and
J. L. Bleustein and A. E. Green[5]. The constitutive equations of the linear micropolar
flow involve six constants and the field equations of this theory as presented by Eringen
[4] consist of a coupled system of differential equations for the two basic vectors of the
theory, viz., the velocity and microrotation of the fluid elements. The six constants
(three viscosity coefficients and three gyroviscosity coefficients) conform to inequalities
forced by thermodynamic considerations and at a boundary the two field vectors
satisfy the hyper-stick or adherence condition.

The stability criterion for micropolar fluid flow developed in this paper rests on the
formula for the rate of change of the kinetic energy of the difference motion. A stability
estimate expressed in terms of Reynolds numbers is obtained for arbitrary disturbances
in confined regions of unspecified geometry and the criterion is valid for periodic dis-

turbances in an unbounded fluid layer or cylinder. A uniqueness theorem is proved in
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the case of steady micropolar flows in a bounded domain. This is followed by a varia-
tional algorithm for obtaining the stability criterion.

I. REYNOLDS-ORR-SERRIN ENERGY EQUATION
The field equations of micropolar fluid flow are given by

p{%%“i‘ (v. grad)v} =—gradp+kcurlv— (u+k) curl curlv
+ (A +2u+k) grad (divv) (1)

pj{%lt'+ (v--grad) V} =—2kv-+kcurlv—ycurl curl ¥+ (a+ B8+vy) grad (dive) (2)

in which the vectors v,» denote respectively the velocity and microrotation. The
constants \;, u, k are the viscosity coefficients while «, 8, ¥ are the gyroviscosity
coefficients. The terms representing the body force and couple are omitted. The
density p and the gyration parameter j are constants and the velocity is a solenoidal
field.

We consider a basic motion (v, ») of the micropolar fluid in the region N = N(¢) of
space and on the boundary of N, we have the hyperstick condition. At an instant
(t=0) the basic motion is altered to the (starred) motion (v*, »*) and the latter flow
satisfies the same conditions at the boundary as the unstarred or basic flow. To deter-
mine if the altered flow approaches the basic flow asymptotically as ¢ — o« or differs
radically from it, we consider the kinetic energy of the difference motion with its
velocity u=v*—v (3) and the microrotation # = »* —w» (4). The kinetic energy is
given by

T=T,+T, (5)
in whicht
T, =4[ pu* (6)
and
T. =14 pjt* (7)

and on the boundary ¢ we haveu=» =0.
The rates of change of T, and T, are governed by the formulae

W —[pu.D utk [ 8. curlu=(u+k) [ (curlu) (8)
and
U, [pju.E.8+k[ 8. curlu—2k [ (32— [ (curl9)?
—(a+B+7) [ (dive) (9)

+The conventional volume infinitesimal is omitted consistently in the integrals, which are extended over
the volume N.
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where D is the strain rate matrix of the velocity (v) and E is the matrix gradient of the
microrotation (») of the basic flow. In an obvious notation

(D) =3 (Vi + Vi) s Eig = Vi (10)

To prove (8) and (9) we take the differences of the field equations (1) and (2) for the
starred and unstarred flows. The difference fields u and & are then governed by the
equations

p{%-‘- (u.grad)v+ (v*. grad)u} =grad (p—p*) +kcurl — (u+k) curlcurlu
(11)

pj { %?Jf (u.grad)y+(v. grad)ﬂ} = k curl u—2k3 —+y curl curl &

+ (a+B+7y) grad (divd). (12)
Scalar product of (11) with u yields

p% (u?2) =—pu.D.u—pdiv[(Fu?)v*]+div[(p—p*)u]+ku.curl ¥
— (p+k)(curlu)2+ (u+ k) div (ux curl u) (13)

on using the conditions div v = div v* = 0. Integrating this equation over the region N,
using the divergence theorem selectively and invoking the boundary conditions, we
obtain (8). In a similar way, the scalar product of (12) with & yields

pj:% (9%2) = —pju. E . 9 —pjdiv [(392) v*] + k& . curl u+ 2k
—y{div [ (curl ) x8] + (curl 8)2} + (a+ B +v){div [(div9)D]
— (div$)?)} (14)

on using the conditions div v = div v* = (. Integrating this result over the region N and
invoking the divergence theorem selectively, we obtain (9).

The proofs of the formulae (8), (9) demand the use of the divergence theorem and
hence do not hold when the region N is unbounded. However, under suitably restric-
tive assumptions on the asymptotic character of the functions, (8) and (9) can be vali-
dated for unbounded regions. Further when the flow geometry permits disturbances
which are spatially periodic at each instant, the formulae (8) and (9) continue to be
valid.

By addition of (8) and (9) we have

(:i—{=——fpu.D.u—fpju.E.ﬂ—kf (0—curlu)2—p.f (curlu)?

—k[—y [ (curl 9)2— (a+B+7) [ (dive)2 (15)
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The first term on the right side in the above is replaceable by + [ pu . (gradu) . v. We
shall refer to (15) as Reynolds-Orr-Serrin energy equation for micropolar fluids.

The viscosity coefficients k, u and the gyroviscosity coefficients y, a+ 8+ are
each non-negative and from the formula (15) we see that viscosity has the tendency to
stabilize the basic flow. In (8) and (9) the cross term [ & . curl u is indefinite and this
may inhibit stability as an interaction effect, but any such effects are rounded in the
combined equation (15). The Reynolds stress term [ pu. D .u and the couple stress
term [ pju. E . v can be destabilizing.

The symbols appearing in the paper are defined below:

d diameter of a sphere which includes the bounded region N = N(¢)
v, maximum speed of the basic flow over the time interval (0, ¢)
—m a lower bound for the eigenvalues of the strain rate matrix D of the basic flow
over (0,1)
n an upper bound for the magnitude of the matrix E over (0,)=u . b . {tr (EE")}2
over (0,1)
a min{a+B+7y,y)
Jld®=my, kjp=m,, y/ud*=my, pmd*/u = m, = Re, aly=m;, By =mg, (a+ B+y)y
= 1+ ms+mg= m,, pjnd/. = mg = Rm, alpd? = my, pved/p. = myy = Ro.

Here d is a characteristic geometrical length of the problem and v,, m, n depend on
the basic flow over the interval (0, ¢). The quantities my, ms,, . . . , M, are dimensionless
and barring mj, mg the rest are all non-negative. At any instant we fix the values of
my, my, my, m;, My = min (my, mym;). The Reynolds number of the flow is m, = Re or
my = Ro as may be the case and Rm is the microrotational Reynolds number.

2. CRITERIA FOR UNIVERSAL STABILITY
It is clear from the definition of m that

u.D . u=—nmut (16)
Also n is the upper bound over (0, ¢) of the quantity

waeenye={ s (2)}" an

k=1

and hence we have
u.E. 8= —nlul|® =~ (n2)(d9+u?/d). (18)

Using (16) and (18) in the energy equation (15) we have the result

= [ (pm+8)ue = [ (curlwy®+ [ (pind =92~ [ (8= curlw)?
—y [ (curl 9)2— (a+B+7) [ (dive)*. (19)
Since divu = 0 we have [1]7

+The constant on the right hand side of (20) as available in [1] is 3+ \/l3)1r2/2. I thank Professor James
B. Serrin for the information that this value is improved to 80 by Professors L. E. Payne and H. F.

Weinberger.
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f (curlu)? =f (gradu)? = %fﬁ (20)
and
f{(div 8)2+ (curl 8)} = %fm. 1)

Combining (19), (20), (21) we find that

C:TtT =< f (pm+pjn/2d—80u/d2)u2+f (pjnd|2 — k—3u2ald?)9? (22)
= (Re+Rm/2—80) 2m/m,) T, + (Rm—2m,— uwmy) (m/mm,)T,. (23)
From (23) we can deduce the stability criterion and the result is Theorem 1.
Theorem 1. If the Reynolds number Re and the microrotational Reynolds number
Rm of a micropolar flow in a bounded region N = N(#) of space satisfy the restrictions
Re+ Rm/2 < 80 (24)
Rm < 2my,+6m2my (25)
the kinetic energy of the difference motion tends to zero as t — o and the unstarred
motion is stable.
Whenever the conditions (24), (25) are valid we see that the energy T of the differ-

ence flow (u, #) decays faster than the exponential. Specifically, we have

T(t) < T(0)exp (—bt) (26)
where

—b=max {(Re+Rm/2—80) 2m/m,), (Rm—2m,—6m>my) (m/mym,)}. (27)

As mentioned earlier, the energy equation (15) can also be expressed in the form

‘;—f=jpu. (gradu) .v— [ pju. E.9—p [ (curlu)*—k [ 92—
—k [ (9—curluy*~y [ (div®)*— (a+B8+7) [ (curl 9)=. (28)
Using the inequality (cf. [1])
u.(gradu) .v < (u/2p) (grad u)?+ puv?/2u (29)

to replace the first term on the right side of (28) and dealing with the other terms in the
same way as before, we see that

% < [Ro+(Rm—80)/Ro)(ve/d) T, + (Rm—2m, —6mw2my) (vy/d) (1/m;R0)T,.  (30)
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From this we can deduce the stability criterion stated here as Theorem 2.
Theorem 2. If the Reynolds number Ro and the microrotational Reynolds number
Rm of a micropolar flow in a bounded domain N = N(¢) of space satisfy the restriction

Ro*+Rm < 80 (31)
Rm < 2m, + 6m2mq (32)

the kinetic energy of the difference motion tends to zero as t — = and the unstarred or
basic flow is stable.

When the conditions (31), (32) are valid we can deduce the law of decay of the
kinetic energy of the difference flow. If

— ¢ = max {(Ro*+ Rm —80)(vo/Rod), (Rm—2m,— 6m*my) (vy/d ) (1/m,Ro0)} (33)

we have
T(t) < T(0) exp (—ct). (34)

Theorem 3. Let (v,») and (v*, »*) be two steady flows in the domain N subject to
the hyperstick boundary conditions. If the Reynolds numbers Re, Ro and the micro-
rotational Reynolds number Rm satisfy the conditions (24), (25) or (31), (32) the two
flows are identical.

This result is seen easily from the fact that the difference motion u=v*—v, 9 =
v* —p also being steady, has constant kinetic energy and the laws of decay of the
kinetic energy in (26), (34) must hold true. This can happen only if T, = T, = 0 and
these imply thatu = 0,9 = 0orv* = v,»* = p.

Let us now suppose that the boundary of N consists of rigid fixed surfaces. Any
motion initially prevailing would presumably die out as there is no supply of energy.
If the basic motion (v, ») is chosen to be the trivial one so that v =» = 0, we have from

(22) that
g —{< 1:25) r,+(%E (Z’.Z“/dz))n}. (35)

From this we see that the energy T of an arbitrary flow (u,#) tends to zero according
to the law

T < T(0) exp (—st) (36)
where
2 2
—s=max{—16of,—2k+(6w_ ajd )}‘ (37)
pd pJ

A similar but different estimate has been obtained earlier by the author{6].

3. VARIATIONAL ALGORITHM

The theorems concerning the stability criterion noticed in the above section are
universal in the sense that they do not depend on the special features of either the
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geometry or the distribution of the basic field variables. This generality cuts across the
sharpness of the limits for stability of the flow. It is however evident from the nature
of the results that there must exist a finite Reynolds number and a finite microrotational
Reynolds number which are sharp estimates for the stability criterion. In Newtonian
or non-polar flows the variation technique has been employed [1] for obtaining (theo-
retically at least) the precise estimate for stability and this technique has been extended
also to the case of thermally-driven convective flows[2]. For the micropolar flows also
we can develop the variational technique.

We shall alter the scales in the variables and the starred symbols below denote the
non-dimensionalized quantities. Soon after their introduction the star superfixes are
removed and all the equations below will be in their non-dimensional forms even
though without the asterisks. The scale alterations are

t* = [m(1+my)/m,]t (38)
u* = [m,/(1+m,)md]u (39)
D*=D|m,E*=E|n (40)
9* = [Rm/(1+ my)nd]¥. (41)

From the earlier equations (8) and (9) in section 1, we can deduce their non-dimen-
sional equivalents in the form

d%fuz/2=—[Re/(1+mQ)]fu.D.u+ [m2/(1+mz)m,]f0.curlu
—f (curl u)? (42)

d

5/ #12=—[RmI(1+m)] [u.E. 9+ [m/(1+m,)] [ 9. curlu

— [2my/ (14 my)my] [ 82— [my/ (14 my)my] [ (curl 9)2
~[mymal (1+mp)my] [ (div 972 43)

To determine the best possible estimate for the Reynolds number to ensure the stability
of the basic flow, we now observe that the condition

d d
af (u*2+19%/2) T (T, +AT,) <0 (44)

must hold for all ¢+ > 0 and for every fixed positive value of A. This criterion provides
for possible inducement of instability by the interaction effects between the velocity
and microrotation fields when viewed in terms of the individual energy terms T, and
T,. However the combination T, + AT, which indeed plays the role of an energy for the
entire system of the field equations, does decrease monotonically when the condition
(44) holds for all t > 0. We choose
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A=[0Gm,+4) —{8(m,+1)(my+2)}'*]/m, (45)
so that A is fixed and 0 < A < 1. Introduce the quantity
f=0+mA)m2(1+my)m;,. (46)

The energy equation then takes the form

%f (22+N92[2) = —[Re/(1+m,) ] fu.D.u—[)\Rm/(l-i-mz)] fu.E.z?

— | (curlu— )2 — [md/ (14 my)m, ] [ (curl 9)2
— [mgm A (14 my)m,] [ (div 9)2. (47)

The statement in (44) will be true if and only if we have
Re{ly(w)+L,(u,8)}+D(u,9) =0 (48)
for every fixed value of Rm/Re, the quantities I,, I,, D being defined by
I(u)=[1/(1+m)] [u.D . u (49)
I,(u ) = [\Rm/Re(1+m,)] [u.E. & (50)

D(u,d) =f(curlu—f0)2+[m3)\/(1+mz)m1]f(curln?)z
+ [momoA (14 my)my] [ (div 9)=. (51)

We can now connect the problem of finding sharp estimates for the stability criterion
to the variational problem of finding the maximum of

—{l(w)+,(u,9)} (52)

among the class of vector functions u, ¥ which satisfy the constraint and the normaliza-
tion condition

divu=90 (53)
D(u,9)=1 (54)

in the region N and the boundary conditions
u=0,9=0o0ne¢. (55)

This gives rise to the variational problem

S{Il(u)+12(u,t9)—Pdivu+~11§D(u,t9)}=0 (56)
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in which P= P(x,y,zt) and R are the Lagrange multipliers. The Euler-Lagrange
equations corresponding to (56) are

[2/(1+my)ju. D+ [ARm/Re{(1+m,)]® . ET—grad P

—(2fIR)curl 9 — (2/R)V>a=0 (57)
and

[XRm/Re(1+my)]u. E~ (2f/R) curlu+ (2f*/R)9
2mg(14+my) A

m, (1+my)R grad (div ®) — [2mgAim; (14 my)R]V28 = 0. (58)
1

The scalar product of (57) with u and integration over the region yields the result
[2/(1+m)] [w.D . u+[ARm/Re(1+m)] [u.E. 9
—fIR) [u.cul 9+ (2R) [ (curlw)2=0 (59)

on applying the divergence theorem, using the constraint div u == 0 and the boundary
conditions u = = 0 on ¢. Likewise, the scalar product of (58) with & and integration
over the region vields the following result

[)\Rm/Re(l+n22)}fu.E.n?-(2ffR)f@?.curlu+(2f2/R) ftW

_2m3(1+m7))\

m1(1+mz)Rf(diV 0)2+2m3)\/m1(1+m2)Rf{(div 9)2+ (curl 9)2} =0, (60)

Addition of (59), (60) and the use of (54) show that any solution of the system comprising
the variational equations (57), (58) and the ancillary conditions (53), (54), (55) will
satisfy the relation

—{(w)+1,(u 9)} = /R (61)

It is already known that for the maximization problem stated in (52), (53), (54), (55)
solutions i, & exist and these are also eigen-functions of the corresponding system of
variational equations with the eigen value

1R =~ {I(a)+1,(&2, 9)} = max {I,(0) + L,(u, 8)]}. (62)
From (61) and (62) we have
R=R
for any eigenvalue R. We can now deduce the following theorem and the proof is

identical with that of a corresponding result (theorem 3) in reference [2].
Theorem 4. Let u, & be solutions of the variational problem for the system defined



762 S. K. L. RAO

in (52), (53), (53), (54), (55) above for fixed values of m,, m,, m;, m; and Rm/Re. The
eigenvalue problem stated in (53), (55), (57), (58) has then a least eigenvalue R and the
basic flow will be stable whenever Re < R.

REFERENCES

[1] J. SERRIN, Arch. ration. Mech. Analysis 3, 1 (1959).

[2]1 D. D.JOSEPH, Arch. ration. Mech. Analysis 20, 59 (1965).

[3]1 A.C. ERINGEN, Int.J. Engng Sci. 2,205 (1964).

[4] A.C. ERINGEN,J. Math. Mech. 16, 1 (1966).

[51 J.L. BLEUSTEIN and A. E. GREEN, Int. J. Engng Sci. 5,323 (1967).
[6] S. K.LAKSHMANA RAO, Q. appl. Math. 27, 278 (1969).

(Received 9 February 1970)

Résumé — Cet article expose la méthode de I'énergie pour obtenir des critéres de stabilité du mouvement
d’un fluide micropolaire incompressible dans un domaine arbitraire. Une formuie est obtenue pour la varia-
tion en fonction du temps de I’énergie cinétique de la différence de deux écoulements et il est montré que
I'écoulement initial est stable lorsque Re+0,5 Rm < 80 et Rm < 2m,+ 6m®m,. Les quantités m, et my sont
des constantes matérielles du fluide et Re, Rm représentent respectivement le nombre de Reynolds et le
nombre de Reynolds microrotationnel. Une forme différente du critére de stabilité est également relevée
et un théoréme est déduit concernant l'unicité des écoulements micropolaires incompressibles stables.
Finalement un algorithme varationnel est établi pour la stabilité d’un écoulement micropolaire et il peut
étre utilisé pour préciser I'évaluation du nombre de Reynolds en dessous duquel ’écoulement est stable.

Zusammenfassung — Die Arbeit beniitzt die Energiemethode um Kriterien fiir die Stabilitit der Bewgung
einer inkompressiblen mikropolaren Fliissigkeit in einem willkiirlichen Gebiet zu erhalten. Eine Formel
fiir das Zeitmass der Anderung der kinetischen Energie der Differenz zweier Stromungen wird erhalten und
es wird gezeigt, dass die urspriingliche Stromung stabil ist wenn Re +0,5 Rm < 80 und Rm < 2m,+ 6m*my,.
Die Grossen m, und m, sind Materialkonstanten der Fliissigkeit und Re, Rm bezeichnen die Reynolds-Zahl
und die Mikrodreh-Reynolds-Zahl, beziehungsweise. Eine verschiedene Form des Stabilititskriteriums wird
auch bemerkt und ein Theorem betreffend die Einzigkeit stetiger, inkompressibler mikropolarer Stromungen
wird abgeleitet. Letzlich wird ein Variationsalgorithmus fiir die Stabilitiit einer mikropolaren Stromung
aufgestellt, und dieser kann dazu verwendet werden, die Schitzung der Reynolds-Zahl zu verfeinern, unter
der die Strémung stabil ist.

Sommario— Nell'articolo I'A. adopera il metodo d’energia per ottenere criteri sulla stabilita del moto di un
fluido micropolare incomprimibile in un campo arbitrario. Ricava una formula per il tempo-ritmo di cambio
dell’energia cinetica della differenza di due flussi e dimostra che il flusso originale ¢ stabile quando Re
+0,5 Rm < 80 ¢ Rm < 2m,+ 6m?m,. Le quantita m, ed m, sono costanti materiali del fluido e Re, Rm
denotano il numero di Reynolds e il numero microrotativo di Reynolds rispettivamente. Si nota anche una
forma diversa di criterio di stabilita e si ricava un teorema riguardante 'unicita dei flussi micropolari costanti
¢ incomprimibili. Per ultimo, stabilisce un algoritma variazionale per 1, stabilith di un flusso micropolare,
che pud essere impiegato per rendere piii precisa la stima del numero di Reynolds sotto it quale si ha stabilita
di flusso.

AGcTpakT—M3/105KEHO OPHUMEHEHHE FHEPTETHYECKOTO MeTOAa, YTOOK! MONy4YHBbL KPHTEPHH YCTONUMBOCTH
IUTS ABMKEHHA HECKHMAEMO#, MHKPONIONAPKO# XHAKOCTH B IPOM3BOJbHOM oGnactu. Tonyyena dopmyna
TSt TEMIIA W3MCHEHWs BO BPEMEHM [0 KMHETHYECKOM 3HEPTHH Pa3HHUbI ABYX NOTOKOB, MOKa3aHO 4TO
OpHMTHMHANBLHLIH NOTOK ycTOHYMBO, koraa Re+ 0.5 Rm < 80, Rm < 2my + 6m2my, rae me, my — MaTepHasib-
Hble NOCTOSHHbIE XUIKOCTH, Re n Rm— uncno PefiHonbiaca ¥ MUKpPOpOTaUMOHHOE 4MCAO PeiiHonbaca
COOTBETCBEHHO. 3aMeueHa KpHTEpHs YCTOHYMBOCTH PA3JIMMHOTO BHMJA, [aH BBIBOJ TeOpeMa O eIHHCTBEH-
HOCTH HEBO3MYLLUEHHBIX, HECKHHAEMBIX MUKPOTIONIADHBIX NOTOKOB. OKOHYATENBHO, YCTAHOBIIEH BApPHALIHOK-
Holil aNTOPUTM A0S YETOHUMBOCTH MMKPOMOJIIPHOTO NMOTOKA, YTO MOXHO NPUMEHHUTB, YTOGbI YTOYHHTL
oleHKy yicna PelHosbaca, HUKE KOTOPOTO NOTOK YCTOHYMBO.



