
Int. J. Engng Sci. Vol. 8, pp. 753-762. Pergamon Press 1970. Printed in Great Britain 

STABILITY OF MICROPOLAR FLUID MOTIONS 

S. K. LAKSHMANA RAO 

Department of Mathematics, Regional Engineering College, Wrangal4, India 

AMracf-The paper employs the energy method for obtaining criteria for the stability of the motion of an 
~ncorn~~ssjb~e micropolar Auid in an arbitrary domain. A formula is obtained for the time-rate of change of 
the kinetic energy of the difference of two flows and it is shown that the originai Aow is stabk when Rei- 
05Rm < 80 and Rm < Zm, 4 6?r%+ The quantities FFZ~ and m, are material constants of the &id and Re, Rm 
denote the Reyndds number and m~crorotatioo~ Reynolds aumber respectively. A different form ofstab~fity 
criterion is also noticed and a theorem is deduced concerning the uniqueness of steady, ~~compress~b~e micro- 
polar ffows. Finally, a variational aigorithm is established for the stability of a micropofar flow and this can be 
employed to sharpen the estimate of the Reynolds number below which the flow is stable. 

1~ THIS paper we employ the energy method to examine tbe stability of flows of micro- 
polar in~~rnp~~ssible fiuids. This method has the advantage that it is applied to a differ- 
ence of two flows, rather than to a perturbation over another flow. The special features 
and the generality of conclusions regarding stability that are possible by this method 
have been clearly exposed by James Serrin[if in his classic paper on the stability of 
viscous fluid motions and subsequent to this work, the energy method of stability has 
indeed gained an extraordinary resonance, In [ 11 Serrin obtains sufficiency conditions 
ensuring stability of flows for arbitrary disturbances in bounded domains of arbitrary 
gemnetry and the results are applicable also to cases of unbounded geometry if the 
d~sturb~~~s are periodic in the ~o~espo~ding variables. The stability criterion is 
expressed as a Reynolds number estimate and the method also Ieads to a uniqueness 
theorem for steady bounded flows. Serrin has also given a variational algorithm for 
improving the Reynolds number estimate and by an application of the energy method, 
he obtains stability criterion for taminar Couette Aow between rotating coaxial cylinders, 
Daniel L). Josephf2f has investigated the stability of the Boussinesq equations using the 
energy method initiated by Serrin in [I]_ 

The micrapoiar fluid flow discussed in this paper has two prominent departures 
from the case of Navier-Stokes theory, viz., the: sustenance of the couple stress and 
the nonsymmetry of the stress tensor. Polar ffuids have been the subject of study in 
recent years by severaf authors, prominent among them being A. C. Eringen[3,4] and 
J. L. ~~~~stei~ and A. E. Green [S]. The ~onstitutive equations of the linear micropofar 
flow involve six constants and the field equations of this theory as presented by Eringen 
[4] consist of a coupled system of differential equations for the two basic vectors of the 
theory, viz., the velocity and microrotation of the fluid elements. The six constants 
(three viscosity coefficients and three gyrovis~~sity coefficients) conform to inequafities 
forced by therm~y~mi~ ~onsideratiuns and at a bo~~d~y the two field vectors 
satisfy the ~y~~r-si~c~ or adherence condition. 

The stability criterion for micropolar fluid flow developed in this paper rests on the 
formula for the rate of change of the kinetic energy of the diffierence motion. A stability 
estimate expressed in terms of Reynolds numbers is obtained for arbitrary disturbances 
in eonfined regions of unspecified geometry and the criterion is valid for periodic dis- 
turbances in an unbounded fluid layer or cylinder. A uniqueness theorem is proved in 
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the case of steady micropolar flows in a bounded domain. This is followed by a varia- 
tional algorithm for obtaining the stability criterion. 

I. REYNOLDS-ORR-SERRIN ENERGY EQUATION 

The field equations of micropolar fluid flow are given by 

p z+(v.grad)v 
1 

=-gradp+kcurlv-(p+k)curlcurlv 

+ ( A1 + 2~ + k) grad (div v) (1) 

s+ (v_;grad) v} =-2kv+kcurlv-ycurlcurlv+ (a+P+-y) grad (divv) (2) 

in which the vectors v, v denote respectively the velocity and microrotation. The 
constants AI, ~1, k are the viscosity coefficients while (Y, p, y are the gyroviscosity 
coefficients. The terms representing the body force and couple are omitted. The 
density p and the gyration parameter j are constants and the velocity is a solenoidal 
field. 

We consider a basic motion (v, V) of the micropolar fluid in the region N = N(t) of 
space and on the boundary of N, we have the hyperstick condition. At an instant 
(t = 0) the basic motion is altered to the (starred) motion (v*, u*) and the latter flow 
satisfies the same conditions at the boundary as the unstarred or basic flow. To deter- 
mine if the altered flow approaches the basic flow asymptotically as t + m or differs 
radically from it, we consider the kinetic energy of the difference motion with its 
velocity u = v* - v (3) and the microrotation 6 = u* -u (4). The kinetic energy is 
given by 

T = T, + T2 (5) 
in whicht 

T,=+Ju’ (6) 
and 

Tz =tlpj8’ (7) 

and on the boundary cp we have u = v = 0. 
The rates of change of T, and T2 are governed by the formulae 

dT,=_- 
dt 

Jpu.D.u+kJ6.curlu-(p+k)J (curlu)2 (8) 

and 

dTz=- 
dt 

Ipju.E.8+kj6. curl”-2kl (7Y)2-rj (cur16)2 

- (a+@+~) j (div6)2 (9) 

tThe conventional volume infinitesimal is omitted consistently in the integrals, which are extended over 
the volume N. 
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where D is the strain rate matrix of the velocity (v) and E is the matrix gradient of the 
microrotation (v) of the basic flow. In an obvious notation 

(D)ik = + (CA + v/J 9 Etk = NI. (10) 

To prove (8) and (9) we take the differences of the field equations (1) and (2) for the 
starred and unstarred flows. The difference fields u and 6 are then governed by the 
equations 

E+(u.grad)v+(v*.grad)u =grad(p--p*)+kcurlg-((Cc+k)curlcurlu 

(11) 

pj 
I 

g+ (u . grad)v + (v . grad)b = k curl u - 2kzP - y curl curl 6 

Scalar product of (11) with u yields 

+ ((~+p+y) grad (diva). (12) 

p~(u2/2)=--pu.D.u--pdiv[(~~2)v*]+div[(p-~*)u]+kll.curlB 

-(p+k)(curlu)2+ (p+k) div (uxcurlu) (13) 

on using the conditions div v = div v* = 0. Integrating this equation over the region N, 
using the divergence theorem selectively and invoking the boundary conditions, we 
obtain (8). In a similar way, the scalar product of (12) with 6 yields 

pj5(#/2)=-pju.E.6-pjdiv[(&B2)v*]+kG.curlu+2kiY2 

-y{div [(curl6)fi]+ (cur16)2}+ (cz+P+Y){div [(div6)9] 

- (div 9)2} (14) 

on using the conditions div v = div v * = 0. Integrating this result over the region N and 
invoking the divergence theorem selectively, we obtain (9). 

The proofs of the formulae (8), (9) demand the use of the divergence theorem and 
hence do not hold when the region N is unbounded. However, under suitably restric- 
tive assumptions on the asymptotic character of the functions, (8) and (9) can be vali- 
dated for unbounded regions. Further when the flow geonietry permits disturbances 
which are spatially periodic at each instant, the formulae (8) and (9) continue to be 
valid. 

By addition of (8) and (9) we have 

dT -=- 
dt 

Ipu.D.u-~pju.E.6-k~(6-curlu)2-~~(curlu)2 
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The first term on the right side in the above is replaceable by + J pu . (grad u) . v. We 
shall refer to (15) as Reynolds-Orr-Serrin energy equation for micropolar fluids. 

The viscosity coefficients k, p and the gyroviscosity coefficients y, CX+P + y are 
each non-negative and from the formula (15) we see that viscosity has the tendency to 
stabilize the basic flow. In (8) and (9) the cross term J d . curl u is indefinite and this 
may inhibit stability as an interaction effect, but any such effects are rounded in the 
combined equation (15). The Reynolds stress term J pu . D . u and the couple stress 
term J pju . E . v can be destabilizing. 

The symbols appearing in the paper are defined below: 
d diameter of a sphere which includes the bounded region N = N(t) 

v. maximum speed of the basic flow over the time interval (0, t) 
-m a lower bound for the eigenvalues of the strain rate matrix D of the basic flow 

over (0, t) 
n an upper bound for the magnitude of the matrix E over (0, t) = u . b . {tr (EET)}‘12 

over (0, t) 
a min (cu+/~+-Y,Y) 

j/d2 = m, , k/p = m2, ylpd2 = m3, pmd2/p = m4 = Re, sly = m5, Ply = m6, (CY + P + y)ly 
= 1-t m5 + m6 = m7, pjndlp = m, = Rm, alpd2 = ms, pvodlp = m,, = Ro. 

Here d is a characteristic geometrical length of the problem and vo, m, n depend on 
the basic flow over the interval (0, t). The quantities m,, m,, . . . , ml0 are dimensionless 
and barring m5, m6 the rest are all non-negative. At any instant we fix the values of 
m, , m, , m3, m,, my = min (m3, m3m,). The Reynolds number of the flow is m4 = Re or 
m 1o = Ro as may be the case and Rm is the microrotational Reynolds number. 

2. CRITERIA FOR UNIVERSAL STABILITY 

It is clear from the definition of m that 

u.D.u>--2. 

Also n is the upper bound over (0, t) of the quantity 

{tr (EET)l1’2 = {k$l ( $)2}“2 
and hence we have 

u. E.6 3 -nlu((6( 2 - (n/2)(dG2+u2/d). 

Using (16) and (18) in the energy equation (15) we have the result 

(16) 

(17) 

(18) 

(curlu)2+J (tpjnd-k)s’-kl (*--urlu)2 

-yI (cur16)2- (c~+P+y) j (div9)2. (19) 

Sincedivu=Owehave [IIt 

tThe constant on the right hand side of (20) as available in [l] is (3 + d13)rr2/2. I thank Professor James 
B. Serrin for the information that this value is improved to 80 by Professors L. E. Payne and H. F. 
Weinberger. 



Stability of micropolar fluid motions 757 

1 (curl u)~ = \ (grad u)” 2 $1~~ 

and 

I 34 
{ (div 9)2+ (curl 6)) 3 - 

d2 I 
G2. 

(20) 

(21) 

Combining (19), (20), (2 1) we find that 

dT< 
dt . I (pm + pjn/2d - 80p/d2) u2 + j (pjnd/2 - k - 3.rr2a/d2) 62 (22) 

= (Re+Rm/2-80)(2m/m,)T,+(Rm-2m- n2~)(m/m,m,)T2. (23) 

From (23) we can deduce the stability criterion and the result is Theorem 1. 
Theorem I. If the Reynolds number Re and the microrotational Reynolds number 

Rm of a micropolar flow in a bounded region N = N(t) of space satisfy the restrictions 

Re + Rm/2 < 80 (24) 

Rm < 2% +6r2mg (25) 

the kinetic energy of the difference motion tends to zero as t + 03 and the unstarred 
motion is stable. 

Whenever the conditions (24), (25) are valid we see that the energy T of the differ- 
ence flow (II, 6) decays faster than the exponential. Specifically, we have 

where 
T(t) s T(0) exp (-bt) (26) 

-b=max{(Re+Rm/2-80)(2mlm,), (Rm-2m2-6’rr2mg)(mlmIm,)}. (27) 

As mentioned earlier, the energy equation (15) can also be expressed in the form 

dT 
z=Ipu. (gradu) .v-fpju.E.6-pj (curlu)2-kj62- 

-kf (29-curlu)2--y~ (div9)2-(,+p+y) / (cur129)2. (28) 

Using the inequality (cf. [ 11) 

u . (grad u) . v s (p/2p) (grad u)~+Pu~v~/~~ (29) 

to replace the first term on the right side of (28) and dealing with the other terms in the 
same way as before, we see that 

$6 [Ro+(Rm-80)/Ro](u,#)T,+ (Rm-22m,-6~2~)(u,/d)(l/m,Ro)T2. (30) 
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From this we can deduce the stability criterion stated here as Theorem 2. 
Theorem 2. If the Reynolds number Ro and the microrotational Reynolds number 

Rm of a micropolar flow in a bounded domain N = N(t) of space satisfy the restriction 

Ro2+Rm < 80 (31) 

Rm < 2m2+6+m, (32) 

the kinetic energy of the difference motion tends to zero as t --* CQ and the unstarred or 
basic flow is stable. 

When the conditions (31) (32) are valid we can deduce the law of decay of the 
kinetic energy of the difference flow. If 

-c= max{(Ro2+Rm-80)(u~/R~d),(Rm-2m2-6~m,)(u,/d)(l/m,Ro)} (33) 

we have 
T(t) S T(0) exp (-ct). (34) 

Theorem 3. Let (v, V) and (v”, v*) be two steady flows in the domain N subject to 
the hyperstick boundary conditions. If the Reynolds numbers Re, Ro and the micro- 
rotational Reynolds number Rm satisfy the conditions (24), (25) or (3 l), (32) the two 
flows are identical. 

This result is seen easily from the fact that the difference motion u = v* -v, 6 = 
V* -_y also being steady, has constant kinetic energy and the laws of decay of the 
kinetic energy in (26), (34) must hold true. This can happen only if T, = T, = 0 and 
these imply that u = 0,6 = 0 or v* = v, Y* = Y. 

Let us now suppose that the boundary of N consists of rigid fixed surfaces. Any 
motion initially prevailing would presumably die out as there is no supply of energy. 
If the basic motion (v, V) is chosen to be the trivial one so that v = v = 0, we have from 
(22) that 

(35) 

From this we see that the energy T of an arbitrary flow (u, 6) tends to zero according 
to the law 

where 

T c T(0) exp (-sr) (36) 

-,y=mm 1601.~ 2k+ (6w2a/d2) -- - 
pd2 ’ 

(37) 

A similar but different estimate has been obtained earlier by the author[6]. 

3. VARIATIONAL ALGORITHM 

The theorems concerning the stability criterion noticed in the above section are 
universal in the sense that they do not depend on the special features of either the 
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geometry or the distribution of the basic field variables. This generality cuts across the 
sharpness of the limits for stability of the flow. It is however evident from the nature 
of the results that there must exist a finite Reynolds number and a finite microrotational 
Reynolds number which are sharp estimates for the stability criterion. In Newtonian 
or non-polar flows the variation technique has been employed [I] for obtaining (theo- 
retically at least) the precise estimate for stability and this technique has been extended 
also to the case of thermally-driven convective flows [2]. For the micropolar flows also 
we can develop the variational technique. 

We shall alter the scales in the variables and the starred symbols below denote the 
non-dimensionalized quantities. Soon after their introduction the star superfixes are 
removed and all the equations below will be in their non-dimensional forms even 
though without the asterisks. The scale alterations are 

t* = [m(l+m,)/m,]t (38) 

u* = [rn,/(l-t&)rnd]U (39) 

D* = D/m,E* = E/n (4) 

6* = [Rm/(l+m,)nd]G. (41) 

From the earlier equations (8) and (9) in section 1, we can deduce their non-dimen- 
sional equivalents in the form 

&/u2/2=-[Re/(l+~)]~u.D.u+[~/(l+~)mi]~8.curlu 

- (curlu)2 I (42) 

To determine the best possible estimate for the Reynolds number to ensure the stability 
of the basic flow, we now observe that the condition 

$1 (u2/2+M2/2) = $ (T, +AT2) c 0 (4) 

must hold for all I > 0 and for every fixed positive value of A. This criterion provides 
for possible inducement of instability by the interaction effects between the velocity 
and microrotation fields when viewed in terms of the individual energy terms Tl and 
T,. However the combination T, + AT, which indeed plays the role of an energy for the 
entire system of the field equations, does decrease monotonically when the condition 
(44) holds for all t > 0. We choose 
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A= [(3m,+4)-{8(m,+l)(m,+2)}1’2]/~ (45) 

so that A is fixed and 0 < A < 1. Introduce the quantity 

f= (1+m,h)m,/2(1+m,)m,. 

The energy equation then takes the form 

(46) 

~~(~2/2+h6)/2)=-[[Re/(l+m,)]~u.D.u-[A~mi(l+m,)]~u.E.B 

- _f (curlu-@>2- [m,A/(l+m,)m,] I (cur16)2 

- [m,m,A/(l+m,)m,] j (div6)2. (47) 

The statement in (44) will be true if and only if we have 

Re{I,(u)+Z,(u,6)}+D(u,6) 2 0 

for every fixed value of RmlRe, the quantities II, I,, D being defined by 

Z,(U)= [l/(l+m,)]~u.D.u 

Z,(u 6)= [ARm/Re(l+~)]~u.E.6 

D(u,~) = I (curlu-f8)2+ [m,Al(l+m,)m,] j (cur16)2 

+ [m,m,A/(l +m,)m,] I (div6)2. 

(48) 

(49) 

(50) 

(51) 

We can now connect the problem of finding sharp estimates for the stability criterion 
to the variational problem of finding the maximum of 

-{~l(u)+~2(u~~)~ (52) 

among the class of vector functions u, Q which satisfy the constraint and the normaliza- 
tion condition 

div u = 0 (53) 

D(u,@) = 1 (54) 

in the region N and the boundary conditions 

u=0,6=Ooncp. 

This gives rise to the variational problem 

Z,(u)+Z2(u,9)-Pdivu+AD(u,t9) =0 

(55) 

(56) 
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in which P = P(x, y, z, t) and R are the Lagrange multipliers. The Euler-Lagrange 
equations corresponding to (56) are 

[21(1 +m2)]u. D+ [hRm/Re(l -km)]t9. ET-grad P 

- (2fJR) curl $?- (2jR)V2u = 0 (57) 
and 

[XRm/Re(l+rn,)]u. E- (2f/R) curIu+ (2f”/R)t9 

+W~+WP 
@(l +mm grad (div 6) - [21n,h/xn, (1 + mz)R] V*G = 0. (58) 

The scalar product of (57) with u and integration over the region yields the result 

[2i(l+mz)]I~_D_n+[xRmiRe(I~~)flu.E.6 

- (2flR) I u. curl 8+ (2/R) l (curl u)~ = 0 (59) 

on applying the divergence theorem, using the constraint div u = 0 and the boundary 
conditions u = 6 = 0 on (p. Likewise, the scalar product of (58) with 6 and integration 
over the region yields the following result 

_2mu+%)A 
m,(l+mz)R I (div $), + 2m,A/mI( 1 + m,)R 

I 
( (div 8)” -I- (curl 8)“) = 0. (60) 

Addition of (591, (60) and the use of (54) show that any solution of the system comprising 
the variational equations (571, (58) and the ancillary conditions (531, (54), (55) will 
satisfy the relation 

-(Z,fu)+Z2(u -9)) = I/R. (61) 

It is already known that for the maximization problem stated in (52), (53), (54), (55) 
solutions ii, & exist and these are also eigen-functions of the corresponding system of 
variational equations with the eigen vahre 

l/R=-(Z,(ii)+Z,(ii,8)) =max(I,(u)+Z,(u,9)]2. (621 

From (61) and (62) we have 

for any eigenvalue R. ‘We can now deduce the following theorem and the proof is 
identical with that of a corresponding resuit (theorem 3) in reference [2]. 

Theorem 4. Let u, 8 be sofutions of the variational problem for the system defined 
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in (52), (53), (53), (541, (55) above for fixed values of m,, m2, m,, m, and Rm/Re. The 
eigenvalue problem stated in (53), (55), (57), (58) has then a least eigenvalue a and the 
basic flow will be stable whenever Re < ii. 
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Resume-Cet article expose la methode de l’bnergie pour obtenir des criteres de stabilite du mouvement 
d’un fluide micropolaire incompressible dans un domaine arbitraire. Une formuie est obtenue pour la varia- 
tion en fonction du temps de l’tnergie cinetique de la difference de deux Ccoulements et il est montre que 
l’ecoulement initial est stable lorsque Re + 0,5 Rm < 80 et Rm < 2m, + &rrPmg. Les quantids m, et m, sont 
des constantes materielles du fluide et Re, Rm representent respectivement le nombre de Reynolds et le 
nombre de Reynolds microrotationnel. Une forme differente du crit$re de stabilite est Cgalement relevte 
et un thCor&me est deduit concemaut I’unicid des ecoulements micropolaires incompressibles stables. 
Finalement un algorithme varationnel est Ctabli pour la stabilite dun tcoulement micropolaire et il peut 
etre utilise pour preciser f&valuation du nombre de Reynolds en dessous duquel I’tcoulement est stable. 

Zusauuueufassuug-Die Arbeit beniitzt die Energiemethode urn Kriterien fur die Stabilitiit der Bewgung 
einer inkompressiblen mikropolaren Fliissigkeit in einem willkiirlichen Gebiet zu erhalten. Eine Formel 
fur das Zeitmass der Anderung der kinetischen Energie der Differenz zweier Striimungen wird erhalten und 
es wird gezeigt, dass die urspriingliche Stromung stabil ist wenn Re + 0,5 Rm < 80 und Rm < 2m, + 6+m,. 
Die Grossen m2 und m, sind Materialkonstanten der Fliissigkeit und Re, Rm bezeichnen die Reynolds-Zahl 
und die Mikrodreh-Reynolds-Zahl, beziehungsweise. Eine verschiedene Form des Stabilitiitskriteriums wird 
such bemerkt und ein Theorem betreffend die Einzigkeit stetiger, inkompressibler mikropolarer Striimungen 
wird abgeleitet. Letzlich wird ein Variationsalgorithmus Wr die Stabilitit einer mikropolaren Striimung 
aufgestellt, und dieser kann dazu verwendet werden, die Schatzung der Reynolds-Zahl zu verfeinern, unter 
der die Stromung stabil ist. 

Suuuuario-Nell’articolo 1’A. adopera il metodo d’energia per ottenere criteri sulla stabilid del moto di un 
fluid0 micropolare incomprimibile in un campo arbitrario. Ricava una formula per il tempo-ritmo di cambio 
dell’energia cinetica della differenza di due flussi e dimostra the il flusso originale B stabile quando Rc 
+ 0,5 Rm < 80 e Rm < 2m2+6~zmy. Le quantid mz ed m, sono costanti materiali de1 fluid0 e Re, Rm 
denotano it numero di Reynolds e il numero microrotativo di Reynolds rispettivamente. Si nota anche una 
forma diversa di critetio di stabilita e si ricava un teorema riguardante I’unicita dei flussi micropolari costanti 
e incomprimibili. Per ultimo, stabilisce un algoritma variazionale per 1, stabilid di un flusso micropolare, 
the pub essere impiegato per rendere pi6 precisa la stima del numero di Reynolds sotto il quale si ha stabilid 
di flusso. 

Agcrpaur-Hsnoxceno npHMeHeHHe 3HepreTHYecKoro Merona, ‘iTO6bl nOJIyYHBb KpHTepHH YCTOgWBocTH 
BJtB nBHW(eHHB HeCXOiMaeMOfi, MHKpOnOnBpHOti 3KunKOCTH B npOH3BOnbHOtt o6nacTa. DonYYeHa r$OPMYna 
n,H, TeMna H3MeHeHHfl BO BpeMeHH n0 KuHeTHYeCKOk 3HeprHH pa3HHUbI ABYX noToKoB, nOKa3aHO ‘1To 
OpurHHaJIbHbIh noToK YCTOhWIBO, Korea Re + 0.5 Rm < 80, Rm < 2% + 6n % a, me ma, m9 - Marepnanb- 
Hble uOCTOBHHble XOinKOCTW, Re I4 Rm- YWCJlO PCfiHOJTbiPi W MHKPOPOTaWiOHHOC YHCJIO PefiHonbAca 

COOTB~TCEWZHHO. %MeWHa KpnTepnB yCTogrnBocTn pa3nHHHoro Bnna, AaH BUBOA TeOpeMa 0 eAuHcTBeH- 
HOCTH HeB03MYmeHHbIX, HeCIKKWHaeMblX MHKpOnOJHIpHblX DOTOKOB. GKOHYaTenbHO, YCTaHOBneH BapHauuoH- 
Hblti anropuTM nnr yeTogrnBocTn MnKpononnpHoro norora, YTO MOKHO npnMeHHTb, HTo6br YTOHHHTB 
OUCHK,’ Hricna PetiHonbAca, Hnme KOTOpOrO n0~0K YCTO+tHBo. 


