
SLOW STEADY ROTATION OF A SPHERE IN A 
MICRO-POLAR FLUID 

I. INTKODlI( ‘1‘ION 

1 N A KECENT paper. Eringen [ I ] has given a theory of ‘simple nlicro-~L]~ds’ ch~~~lcter-i~cd 

hv properties and behaviour of the fflrent medium that are affected by the local motions 

;~f the nuter~inl particles in arch volume element. ‘I‘hesc fluid\ possexs local inertia and 

ncu principles of continuum mechanics are needed for their study. The ne\v concept 

of the iner:ial spin, body moments. micro-stress averages and stress moments are 

twcc:surily introduced in this theory along with the principles of conservation of micro- 
inerti;! moments ;ts well the h;Amce of first stress moments. Simple n~icr~~-t~~iids are 
viscous fluids in which the constitutive equations express the stress tensor fr,;,), the 
micro-stress average (S’,,.,) and the first stress moments (A,,,,,) as functions of the velocity 

gradients (cl,;,). the gl ration tensor (1-j,,.,) and its gradient. These relations are subject to 

spatial and material objectivity. In the somewhat simplified case of the linear theory of 

simple-micro-flrtids. the stress and micro-stress average are linear expressions in the 

r;ttc of (icf(~rlll~lti~~ii ten\or ctf) and micro-defier-ln~~tion rate tensor (h) and thcrc arc in 

all r~;cnty two ciscohity coetlicients in thih model. 
.A simple micro-tluid is called ‘micro-polar’ ifforall motions (the first stress moments) 

x,,.,,,. and the gyration tensor II/<{ satisfy the condition (i) hk,,,, = --A,:,,,, and (ii) v,(, 2 - v,,:. 
‘fhis is a further specialization of the linear theory of simple micro-fluids and .I. c‘. 

Eringen has proposed a theorq of such fluids aisof2]. These exhibit micr~~-rot~~ti~)n~~l 

effects and can support surface and body couples. Some anisotropic fluids such as 

animal blood ;md liquid crystals made up of bar-like or dumb-bell-shaped molecules 

seem to fall within the micro-polar fluid theory. This is a theory of structured continua 

obtained by assigning continuous fields to the average per unit volume of the respective 
moments of the dynamical. kinematical. and structural properties of the molecular 
distribtIti~~ns. The flow field at a point is defined as the local average tr~~nslati~)n~ll 

velocity of the molecules. and the local average rotational velocity of the molecules is 
defined as the spin field in the micro-polar theory. This spin field is dynamically coupled 

with the fluid velocity by means of the collisional interactions of the molecules. The 
coupling between these two fields is a manifestation of non-central inter-molecular 
forces. 

In the theory of micro-polar fluids, the field equ~~tions are presentable in term5 of the 
velocity vector (yi) and the micro-rotation vector (vi = ( 112) E;~,v~,). The field equations 
involve only six material constants. Eringen has examined the steady flow of a micro- 
polar liquid in a straight circular tube under the influence of a constant pressure gradient 
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and shown that the velocity profile is no longer parabolic[2]. T. Ariman and A. S. 

Cakmak have given one dimensional steady flow profile for a micro-polar fuid between 
two parallel plates [3]. 

In this paper, we examine the problem of slow steady rotation of a sphere about its 
diameter in a micro-polar fluid. This corresponds to the well known Stokesian problem 
for the rotation of a sphere in a classical viscous liquid[4]. 

2 BASIC EQUATIONS 

The field equations of micro-polar fluid dynamics are 

Q 
z +p div q = 0 (1, 

p$!= (h,+2~CL+)grad(divq)-(~+k~curlcurlq+~curlv-gradp+pf (7) 

and 

du 
j,o,= (C~+p+y)grad(div~)-ycurlcurlq+I:curlq-2/cV-+I (3) 

in which q, V, f and 1 represent respectively the velocity. micro-rotation. body, force. 
and body couple vectors. The constants p and j are the density and gyration parameters 
while (p, k. A,) and (cu, p, y) are material constants. The constants in the first group are 
viscosity coefficients with the dimensions M/Lr and those in the second group have the 
dimensions ML/T. These constants conform to the inequalities: 

p 2 0; k a 0; y 3 0; 1~1 < y;3~,+2/1,+k> 0;3a+p+y B 0;3u+2y 2 0; 

tu+p+y 3 0. (4) 

The stress tensor tk-, and the couple stress tensor Mu, = - E~~,X,;~, are given by 

rk, = Alu,.,r6s,+; (2~ + k) Cut.,+ ut,li) +k~k I,,, (w,ri- vu,) (5) 

an d 

wherein Ui and vi denote the components of the velocity q and the micro-rotation V. 
Also 2wi are the components of the vorticity vector. 

When k = 0, the field equations (2) and (3) are decoupled and the stress tensor is 
symmetric. The global motion of the fluid is then unaffected by the micro-rotation of the 
fluid particles. 

3. SLOW ROTATION OF A SPHERE ABOUT A DIAMETER 

Let (1.. 0, 4) denote spherical polar coordinates and e,, eO, em represent unit vectors in 
the directions of (r. 0,4) respectively and the sphere Y = N rotate with the angular 
velocity fi about its diameter along 6, = 0 in a micro-polar liquid. The velocity q is then 
in the direction of the e, and the micro-rotation vector u is in the meridian plane. 
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Let 

and 

q = W(r. O)e, 

v=A(r.B)e,.+B(r.0)e,. (7) 

Under the assumption of the Stokesian flow (i.e. with the omission of the inertial terms) 
and neglecting the body forces and couples. the flow is described by the following 
equations: 

(8) 

o= (p+k)DW+kg(,_. 0). (9) 

O= -%A 

where the functions,f‘( I’. 0) and K( r. 0) represent 

and 

and 

~(r. 0) = [curl ZJ]~ =$+F-i$ 

(IO) 

(12) 

(13) 

with V’representing the Laplacian operator in spherical polar coordinates viz., 

Equation (8) yields a constant pressure p throughout the flow-region. 
From the above set of equations, it is noted that the velocity satisfies the equation 

D D-5 W=O 
c ) 

(14) 

which is of the 4th order reducible in terms of the operator II and the functionf’satisfies 
the relation: 
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wherein 

x-2 k(2p+kj andc= 26 
7= y(pL-tk) iI2 cy+p+y (16) 

It is interesting to note that g(r. H) = [curl v]~ satisfies the relation 

i i 
0-s g=o. (17) 

From equations (15) and ( 17). both the divergence and the only non-vanishing com- 
ponent of the curl of the micro-rotation vector v can be easily determined after obtaining 
the solution of (14). 

The functions A and B are obtained from equations (IO) and (11) in terms of two 
functions W andf. Hence the problem now reduces to the solution of the two differen- 
tial equations (14) and (15) with the regularity of the flow functions and the conditions 
of zero slip and spin on the boundary. 

The solution of (I 4) can be expressed in the form 

where 

and 

w- w,+w, 

DW, = 0 

i 1 D.-S w,=o. 

We find that 

(20) 

(21) 

w, = tTR; r-_(M+l) > * ( Pycos @); gjpcos 8)) 

and 

wt, = (r”:“l,~+,,, (Yj; Y-(l%+,,X(xj) . ( P,;’ (cos 0); Q;:’ (cos 0)) 

It= 1.2.3. . . . . . 
The parenthesis ( > indicates a linear combination of the arguments concerned and 
Pl:) (cos 6) and (2::) (cos H) denote the associated Legendre functions. The portion W, of 
(IS) given in (20) occurs in the corresponding problem in the classical viscous theory, 
i.e. the solution of equation (2) with the suppression of the term containing V. 

Equation (15) yields the solution 

(18) 

( I ‘)a) 

(I’)b) 

~ i 

I’= 
‘(‘I 

r-“‘“‘f,i, ,iy - . 0 (1 ’ 
I.-cli2)k( 

,,+1?2 ( j) $ {P,, (cos @I; Qn (cos @)) (22) 

n = 0. 1.2. 3.. 
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Since the velocity W equals flrr sin H on the boundary v = (I and is regular at infinity. 

we take only r Oif I’ P:,” (cos H) in (20) and c(‘/“’ K,,, ,#? z 
( i 

F’:,” (cos 0) in (2 1) with II = I. 

.The regularity for,f’nt infinity and its connection with W as seen from (10-l 2) require 

the omission of I,, , ,I:! (cr/rr) and the choice of II = 1 in (22) also. The functions Q’,:’ 

(cos H) in (20-22) are, of course, omitted by the consideration of regularity on the axis 

of rotation for which cos H = & 1. Thus we have 

W, = s sin H; ,.‘) (23) 

(24) 

w= w,+w, (35) 

where I’, . I’, and I’:, are constants to be determined. 

L)cr(,l7l1i/l(lf;~)/1 ftf’A(r. 8) tr~zd B(r, H) 

From equation (9). we get 

(26) 

(27) 

When (27) is substituted in (IO) and (I I). we obtain that 

and 

The conditions of zero-slip and spin on the boundary I’ = (I lead to the equations 

from which the constants P,. P,. I’:, in the equations (23). (3-4) and (26) are determined. 
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We find that 

P, = 2na:‘(~+k) [(2+2r.+c’)h”+c”( 1 Sh)]/D; 

(31) 

and 

P, = -Stkhil:~'2~."l[DK,:,iA)] 

where 

D = 2(i*+k)(2+2~~-t~“)h’+~*‘(2/*+k)(1 +A). 

The stress tensor tkr is given by (5). In the present problem, the strain-velocity 
tensor has its only non-vanjshing component 

and the vorticity components are 

WcotH 
Wr-c‘----’ 

r ’ 
ms=gg+;j; w*=o. 

(32) 

(33) 

Hence we have the stress-distribution 

t,, = tee = tQm = - p (a constant); 

tro = t&. = 0; 

(34) 

(35) 

t f+* = - f*fl = 
k  w cot t) ( ---_ 1 [ = 

r 
- (2p+k)P,r-3’” (1 +~)Km(~) 

+kp,,q.-l/z *+&+2Lt:! K 

c ( cr ,.?,!J 112 (z)] cos 0; 

t 3(2p-t-k) 
@Jr = - 

[ 2r:’ 
P,+ (2,+k)~~~-:~/~(~+2+~)~~,~(~) 

and 

(36) 

(37) 

t t-m = - 
3(2p+k) 

2r3 
P,+(2,+k)P,r-:~;2(1+~)~,,~(~) 

+kP,NLr--rsf2(l +E)K,,2(f)] sin 0. 
C2 (38) 



The coupk stress F?Q,.~ defined in (6) has the components 

The contrib~~~o~ from the ~~~~~~e stress is given by 
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N,.=j n:nr],,._,,, . K ds 

= 23-u” 1: [m,.,. cos H--m,, sin HI,.,,, sin H dH 

(46) 

(p.t-k)yh(hS- 1) 

k 
P,rr-1’“K,,,(h) +ficl”‘( 1 ic)P,,K,,,(c) (.:i (47) 

The total couple on the body can now be obtained as 

Nh= N,y+N,.=-4n-(2k+k)P, 

=-8n-W(2p+k)(p+k)[(2+2C.+cL)h~+c’)(1+h)] 
2(~+k)(2+2c_t(.“)A~+c~(2~+k)(l+h) 

(48) 

The results for the case of the classical viscous flow can be recovered in the limit as 
X -+ 0. In that case both A and c + 0 and it is seen that 

Hence the velocity is given by 

P, - Iltr::. (49) 

w = SW sin M _____ 
/.:) . (SO) 

The couple on the body can now be given by 

IV,, = - 8ir/_dW. (51) 

These results agree with the well-known classical result of Stokes [4]. 
From equations (48) and (5 1) we can write 

where 

NJN,,= (R+S)/[R/(l+m)+S/(1+2m)] (52) 

R = (2+2~,+~“) A’; S = (1 +A)? and m = k/2p. (53) 

In view of equations (4) and (16), the constants R. S and 111 are positive and then 
from equation (52) we see that 

NJN,, 3- 1. (54) 

This shows that the couple experienced by the sphere rotating in a micro-polar fluid is 
greater than that in the classical viscous liquid. More specifically we can see that 

l+k<N,< l,li. 
2~ N,, P 

(35) 

The following pictures show the distribution of the velocity, microrotation com- 
ponents, the shear stress differences and the couple stress components for the values 



It is clear from Fig. 1 that the velocity in the non-polar fluid is less than that in the 

micro-polar fluid. 

---Velocity in the case of 

Newtonian fluid 

- Velocity in the case of 

oaI.O 
r/o 

Fig. I. Velocity profile. 

2.0 

Fig. 2. Micro-rokition. A 

Fig. 3. Micro-rokltion. R 
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Fig. 4. Shear stress difference I#*- tmH. 
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Fig. 5. Shear stress difference t,., - I,,.. 

Fig. 6. Couple stress ni,, 
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r/a 

Fig. 7. C-ouple stress ,)i ,,,,. 

Fig. 8. Couple stress ,u,.~, 

Fig. 9. Couple stress m,,, 
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R&me- Dans le prCsent Rapport, on Ctudie I’Ccoulement de Stokes dti a la rotation lente et conbtante J’une 
sph&re dans un liquide micropolaire qui peut subir une contrainte antisymCtriquc et une contminte de couple’. 
On obtient des expressions pour la vitesse et la microrotation. ainyi que pour le couple applique au carp\. On 
trouve un couple plus tlevC dans la prtsente theorie quc dans celle des fluides visqueux classiqucs. 1.~ chitfrz\ 
don& 5 la fin montrent quelle est la rbpartition des grandeurs physiques 5 proximitt! du corps 

Zusammenf’assung- Die St~,Lc\-StrtimunF. :erur~~ch~ durch die \tcuge IIrehung cincr hugcl tn ctnc!- rnlhrt~- 

polaren Fliissigkeit. die antisymmetrischc Spannung und Kraftep~larspunntjn~ aufrechterhalten kann. \vird 
untersucht. Ausdriicke fiir die Geschwindigkeit und die Mikrodrehung sowohl wie ftir das Kriiftepaar auf 
den KGrper wcrden erhalten. Es wird gefuiden. dash dus Kriiftepaar in der gegenwartigen Theorie griis\cr- 
ist als in der klassischer viskoser I-liissigkciten. Die Abbildungcn am Ende seigen die Verteilunp der ph) \ih- 
alischen GrGssen in der Nahe des KGrpers. 

Sommario- Si \tudia il flu\ao di Stohc\ cau\ato dalla I-otarione lentaeunifol-medi una\fera in un liquido mlcl o- 
polare capace di sopportare sollecitar.ioni anti\immctriche e di coppia. Si ricavaml ecpre\\ioni per la vclocitilc 
la microrotarione. oltrc the per la coppia WI corpo. Si scopre the la coppia i? superiore nclla pre\ente tcorlache 

in quella dei classici fluidi viscosi. 1.e cifre in calce indicano la dixtribuzione di quantitativi fisici in vicinanla 
del corpo. 

AGc-r-pah_T-MsyqaeTca Te%nHe CTOYKC~, BL13LlBae,WOC Me&leHHhlM "OC~ORHHLlM B,XiU,CHMW, ula,,if R 

MHKpO,,On54pHOfi XHUKOCTM, B Ko~opoR ~oryr no_mepxmaTbCn npoTweocMMMeTpuwLle HanpnmeHwH H 

MOMeHTblHanp~wteH~~.nOnyYaloTCnBLIpa~eHMRnnnCKOpOCTM M MIIKpOBpamCHrtn.aTaK~Kefl.~R MOMeHTa 

npHnOXeHHOl-0 K KOpnj'Cy. 06HapyWlBaCTCn, 9ro 3HayenMe MohleHTa 6onbme no nacroflLueii ~eop~i4. 

geM "0 TeOp‘,‘, ,W,R KflaCCllWCKMX BI13KMX WUIKOCT'd. R OKOHWH)III "pHBOflRTCS4 ,TaHHbW, KOTOphlt' 

oTo6paHtatoT pacnpeneneHHe $ni3ClqecKMx aenuqmi ~6.~314 Kopnyca. 


