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Abstract — The Stokes™ flow due to the slow steady rottion of a sphere in a micro-polar liquid which can
sustiin anfi-symmetric stress and couple stress iv investigated. Expressions are obtained for the velocity und
the nucro-rotation as well as the couple on the body. It is found that the couple s more in the present theory
thun n that of classical viscous fluids. The figures in the end show the distribution of the physical quaatitics
near the body.

1L INTRODUCTION

IN A RECENT paper. Eringen[1] has given a theory of simple micro-fluids’ characterized
by properties and behaviour of the fluent medium that are affected by the local motions
of the material particles in each volume element. These fluids possess local inertia and
new principles of continuum mechanics are needed for their study. The new concept
of the inertiul spin, body moments. micro-stress averages and stress moments are
necessarily introduced in this theory along with the principles of conservation of micro-
inertia moments as well the balance of first stress moments. Simple micro-fluids are
viscous fluids in which the constitutive equations express the stress tensor {1}, the
micro-stress average (5,,) and the first stress moments (Ag,,) as functions of the velocity
gradients (d,,). the gyration tensor (v,,) and its gradient. These relations are subject to
spacial and material objectivity. In the somewhat simplified case of the linear theory of
simple-micro-fluids, the stress and micro-stress average are linear expressions in the
rute of deformation tensor () and micro-deformation rate tensor (hy and there are in
all twenty two viscosity coeflicients in this model.

A simple micro-fluid is called ‘micro-polar’ if for all motions (the first stress moments)
Aune and the gyration tensor vy, satisfy the condition (1) Ay, = — Ay and (D vy, = — vy,
This is a further specialization of the linear theory of simple micro-fluids and A. C.
Fringen has proposed a theory of such fluids also{2]. These exhibit micro-rotational
effects and can support surface and body couples. Some anisotropic fluids such as
animal blood and liquid crystals made up of bar-like or dumb-bell-shaped molecules
seem to fall within the micro-polar fluid theory. This is a theory of structured continua
obtained by assigning continuous fields to the average per unit volume of the respective
moments of the dynamical. kinematical. and structural properties of the molecular
distributions. The flow field at a point is defined as the local average translational
velocity of the molecules. and the local average rotational velocity of the molecules is
defined as the spin field in the micro-polar theory. This spin field is dynamically coupled
with the fluid velocity by means of the collisional interactions of the molecules. The
coupling between these two fields i1s a manifestation of non-central inter-molecular
forces.

In the theory of micro-polar fluids, the field equations are presentable in terms of the
velocity vector (g;) and the micro-rotation vector (v; = (1/2) €,,v;). The field equations
involve only six material constants. Eringen has examined the steady flow of a4 micro-
polar liquid in a straight circular tube under the influence of a constant pressure gradient
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and shown that the velocity profile is no longer parabolic[2]. T. Ariman and A. S.
Cakmak have given one dimensional steady flow profile for a micro-polar fluid between
two parallel plates[3].

In this paper, we examine the problem of slow steady rotation of a sphere about its
diameter in a micro-polar fluid. This corresponds to the well known Stokesian problem
for the rotation of a sphere in a classical viscous liquid [4].

2. BASIC EQUATIONS
The field equations of micro-polar fluid dynamics are

do g — .
dt+pd“q 0 (1
p%: (A +2u+k) grad (div @) — (u + &) curl curl g+ A curl v — grad p+pf  (2)
and
jp%: (a+ B+ ) grad (div v)—y curl curl g + & curl q — 2&kw +1 (3)

in which q, v, f and I represent respectively the velocity. micro-rotation, body force.
and body couple vectors. The constants p andjare the density and gyration parameters
while (u, k. ) and («, B8, y) are material constants. The constants in the first group are
viscosity coefficients with the dimensions M/LT and those in the second group have the
dimensions ML/T. These constants conform to the inequalities:

w=0k= 0y =2 0B8] < v 30 +2u+k> 0,3e+B+y = 0;3a+2y = O
a+B+y = 0. (4)

The stress tensor t,; and the couple stress tensor ni,, = — €;;;A,; are given by

v 4

= )\lur,rakl + .lf (2#- + /‘) (g, + u[.k) + keklm(wm V) (
and

My =ov, S+ Byvratyvig (6)

wherein u; and v; denote the components of the velocity q and the micro-rotation .
Also 2w; are the components of the vorticity vector.

When k& = 0, the field equations (2) and (3) are decoupled and the stress tensor is
symmetric. The global motion of the fluid is then unaffected by the micro-rotation of the
fluid particles.

3. SLOW ROTATION OF A SPHERE ABOUT A DIAMETER
Let (r. 6, ¢) denote spherical polar coordinates and e,, ey, e, represent unit vectors in
the directions of (r. 8, ) respectively and the sphere r = a rotate with the angular
velocity € about its diameter along 8 = 0 in a micro-polar liquid. The velocity q is then
in the direction of the e, and the micro-rotation vector v is in the meridian plane.



Slow steady rotation ot a sphere 907

Let
q=W(r.0)e,
and
v=A(r.0)e.,+B(r.0)e, (7)
Under the assumption of the Stokesian flow (i.e. with the omission of the inertial terms)

and neglecting the body forces and couples, the flow is described by the following
equations:

b _q. =0;

ar a6 ®)
0= (u+k)DW+kg(r.6). (9)
af y(&g ) /\<8W ) ”
_ , o piadd — 10
0= (a+B+y o aH—Fg cot 6 aa—f—WcotH 2kA (10)
- 6f ag g <dW K>_7 ,
0= (a+B+y)7aH y( ‘+r> k ar+r kB (11
where the functions f(r. ) and g(r. 6) represent
. 04 24 1aB Bcotd
= =4 = 12
flr.9)y=dive a+‘ 180+ p (12)
and
dB B 144
y(r.0) = | ==
g(r.0) = [eurl v], =204 2~ 80
and
D=V>— l (13)
¥ sin* 6

with V2 representing the Laplacian operator in spherical polar coordinates viz.,

4 29 149 cotdd

V=

art  rar  rroe? rroae’

Equation (8) yields a constant pressure p throughout the flow-region.
From the above set of equations, it is noted that the velocity satisfies the equation

D(D—%)W:O (14)

which is of the 4th order reducible in terms of the operator D and the function f'satisfies
the relation:
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z_f; = S
( u._,)_/ 0 (15)

wherein
A kQ2u+k) & 2k
at y(ut+k) e a+B+y (16)
It is interesting to note that g(r, 8) = [curl »], satisfies the relation
. A2
(D 7) ¢=0. (17

From equations (15) and (17). both the divergence and the only non-vanishing com-
ponent of the curl of the micro-rotation vector » can be easily determined after obtaining
the solution of (14).

The functions 4 and B are obtained from equations (10) and (11) in terms of two
functions W and f. Hence the problem now reduces to the solution of the two differen-
tial equations (14) and (15) with the regularity of the flow functions and the conditions
of zero slip and spin on the boundary.

The solution of (14) can be expressed in the form

W=Ww,+W, (18)
where
DW,=0 (19a)
and
A2
(Du-l-ﬁ) W, = 0. (19b)
We find that
W= (r im0y - (PP(cos 0); O\ (cos ) 20
and

Wy = (1,00 (X)) K (B} (P (o5 00 05 cos 0y, (21)

n=1.2.3......
The parenthesis { ) indicates a linear combination of the arguments concerned and
PV (cos 8) and Q'Y (cos #) denote the associated Legendre functions. The portion W, of
(18) given in (20) occurs in the corresponding problem in the classical viscous theory,
i.e. the solution of equation (2) with the suppression of the term containing .
Equation (15) yields the solution

f: <r7(”2)1n+ 12 (%)a ’.7(1j2>K¢s +1iz (%)> ( PN (COS g)s Qn (COS 6)> (22)

n=20.1.2.3..
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Since the velocity W equals Qu sin 6 on the boundary r = « and is regular at infinity.
we take only r """ PV (cos 6) in (20) and r— ¥ K, 1, (%:—) P! (cos 9)in(21) with n = 1.

The regularity for f at infinity and its connection with W as seen from (10-12) require
the omission of 1,12 {crf/a) and the choice of n =1 in (22} also. The functions Q')
(cos ¢) in (20-22) are, of course, omitted by the consideration of regularity on the axis
of rotation for which cos ¢ = = 1. Thus we have

W, = (23)
sl .
W, = ’—A<ﬂ> sin 6; (24)
A a
W=Ww,+W, (25)
and
. Py 5
f= I,,K{,<()COSH (26)
where P,. P, and P, are constants to be determined.
Determination of A(r, 8) and B(r, )
From equation (9), we get
(curlv)d,:g(zae):—“—t’inw:—)‘—;/isz. (27)
k at ok
When (27) is substituted in (10) and (11). we obtain that
= 1 ( +L0tH>W + 1M+/‘< + cot H)W +iﬂ
a6 k ar
P, + A Ar P.a* r r or
- [7';+('LL——)P K. ’(_”> — u'{f:o{zk:m (ﬂ) +iKl _’(l) H cos ff (28)
I krt d i L d a aj)

and

B:

U k(e Wy (Pt
2\ ar + r k * raf [Zr“Jr k P,

- AT . > 2
X {r*“’fl\'x,2 (2‘,’) +1 K. <M>}— I‘,‘A;{,l,.,K;;,Z(”)} sin 6. (29)
“\a a a ISl 7

The conditions of zero-slip and spin on the boundary r = «a lead to the equations

. ar r,

Wi(a.0) =Qasing; A(a.0)=10; Bl{a.§) =10 (30)

from which the constants P,. P,. P, in the equations (23). (24) and (26) are determined.
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We find that
P=20a*(pu+k) [(242c+ )N+ 2 (1 + X)) ]/D;
(31
Py =~ QkNa®?c*[DK, (A} ]
and
Py =20a AN (u+ kY [DKa6c) ]
where
D=2(u+k)2+2c+ N+ 2u+k)(14+\).
Stresses

The stress tensor #;, is given by (5). In the present problem, the strain-velocity
tensor has its only non-vanishing component

dyp = (M—% (32)
ar }
and the vorticity components are
_Weote LW W\ _
= P m9w2<a’_+’.), we = 0. (33)
Hence we have the stress-distribution
tr = tgs = lse = — p (a constant); 34)
Lg = tg, = 0; (35)
f()({,: "’fdm: k(”‘”’/%w—/‘t> = [— (2[L+k)P2f'w3[}(} +— )K1/2<(1)
L 2a Zaz) (”)
+ kP, (‘r ( o Tp Ky - cos 8; (36)
:¢r:—[&g‘rf;.'”—’flp,+ (2;L+k)P2F_"”z< +2+2(1)K,,2( I)
— kP, —'i"w(l‘i- )KW( )} sin@: 37
and
o PR i (1))

+kP3‘(i_;r"*”2(1+ >K1,2<a)] sin 6. (38)
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The couple stress »1;,; defined in (6) has the components

a4
M = g+ {3-;»3&—

= Py Ky (crfa) cos 8-+ (B-+v) [ %P‘ _m&r"‘w(%-{ﬂ+3—u;)1<,,9(2\~')

k At a
3 2 A
+ Py *{2%—{5 &?\;*%é?g}&fg{”ﬂ cos §; 39}
¥ At U iV
Hlyg = Mae= af+ (B+y )‘ﬁ-@t—g aPy Ky (erfa) cos B+ (B+7) Fﬁ‘
"}EP W»}S){}‘}%}’%ég)f{;;_(m} =Py 4 w(%{, 3?:>K312{("'5f‘3}€§}5§2
el Ar ¢ { o
4
ry 3 3¢
My = »z—'l» “+Al’ ‘”””( +3+3£)Km(( )”*p:z%"“m(l “*"(—i{*{%“)

(j)}%mfﬁ ’yw—w?; = ”{ 4Mw)K§ ( )smﬁ* “4hn

Mg == (B-+y) S50 fL—;\‘“ oF ‘(U*’%“PEQ)KP(K) p‘ Mz*>(14.355+3_‘.f_)

Ar cretr
X K 1o ( }}smg ;3“””;‘ «i—- - ’(i + 4 }K; L (Arfa) sin 9 42)
and
Hlyg = Mlyg = Mg == e, = (), {43)

Conple on the body
The couple on the sphere has contributions from the stress #, as well as from the
couple stress my.,. The contribution from the stress is given by

Nx=fr><(n:r),de (44)

wherein r= 4@, n:7 = 8,0+ 48 and K is the unit vector in the direction of
the axis of rotation. Also the integral extends over the surface of the sphere. We find
that
, g
1'\]5' = 277”(1"’]

@

sint g de

r=q

ivp
—:m%*f{ 2n44) gh)‘}

{‘Pw?, 32 KA + kP ‘f*és“““m e ;} (45)

The contribution from the couple stress is given by
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N,.= j n:m|g., . Kds (46)

= 2ma? f“ [m,, cos 8—m4sin B],_, sin @ dg

— 8%[(#«4‘ k)');()\(}\+ I)PzarmKl/z()\) +k(({:‘5"

(l+(.)P:;K1/2(C')]. (47)

The total couple on the body can now be obtained as

NA:N5+N(':_47T(2H+/()P]

_ —8m0a*2u+ k) (p A [(2+2c+ AN+ E(1+N)]
2+ k) (2+2c+ AN F EQut k) (1 1)

(48)

The results for the case of the classical viscous flow can be recovered in the limit as
k — 0. In that case both A and ¢ — 0 and it is seen that
P, — Qd”. (49)
Hence the velocity is given by

_ Qa’sin ¢
P

w (50)

The couple on the body can now be given by
Ny = —8mplda®. (5

These results agree with the well-known classical result of Stokes [4].
From equations (48) and (51) we can write

NyNy= (R+S)/[R/(1+m)+S/(14+2m)] (52)
where
R=2+2c+ A S=(1+AN)c* and m=k2u. (53)

In view of equations (4) and (16), the constants R, § and m are positive and then
from equation (52) we see that
NANy = 1. (54)

This shows that the couple experienced by the sphere rotating in a micro-polar fluid is
greater than that in the classical viscous liquid. More specifically we can see that

kN, k
I+— <=2 < 1+—. 55
2w SN, T G2

The following pictures show the distribution of the velocity, microrotation com-
ponents, the shear stress differences and the couple stress components for the values
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=10; A=1; ¢=4 and afy=gly=05. (56)

It is clear from Fig. | that the velocity in the non-polar fluid is less than that in the

micro-polar fluid.

-~=Velocity in the case of
Newtonian fluid

—— Velocity in the case of
micropolar fluid
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Résumé — Dans le présent Rapport, on étudie 'écoulement de Stokes di a la rotation lente et constante d'une
sphére dans un liquide micropolaire qui peut subir une contrainte antisymétrique et une contrainte de couple.
On obtient des expressions pour la vitesse et la microrotation. ainsi que pour le couple appliqué au corps. On
trouve un couple plus élevé dans la présente théorie que dans celle des fluides visqueux classiques. Les chiffres
donnés a la fin montrent quélle est la répartition des grandeurs physiques a proximité du corps.

Zusammenfassung — Die Stokes-Stromung. verursacht durch die stetige Drehung ciner Kugel in ¢iner mikro-
polaren Fliissigkeit, die antisymmetrische Spannung und Kriftepaarspannung aufrechterhalten kann, wird
untersucht. Ausdriicke fiir die Geschwindigkeit und die Mikrodrebung sowohl wie fiir das Kriiftepaar aut
den Korper werden erhalten. Es wird gefunden. dass das Kriftepaar in der gegenwirtigen Theorie grosser
ist als in der klassischer viskoser Fliissigkeiten. Die Abbildungen am Ende zeigen die Verteilung der physik-
alischen Grossen in der Nihe des Korpers.

Sommario — Si studia il flusso di Stokes causato dalla rotazione lentae uniforme diunasferainun liquido micro-
polare capace di sopportare sollecitazioni antisimmetriche e di coppia. Si ricavano espressioniper lavelocitae
la microrotazione. oltre che per la coppia sul corpo. Siscopre che la coppia € superiore nella presente teoriache
in quella dei classici fluidi viscosi. Le cifre in calce indicano la distribuzione di quantitativi fisici in vicinanza
del corpo.

AbcTpakT—MW3yyaetcs Teyenune CTOyKca, BbI3BIBAEMOE MEAICHHBIM TOCTOAHHBLIM BpPALICHUEM LUapa B
MHKPOTOJIAPHON XKHAKOCTH, B KOTOPOH MOTYT NMOMIEPXKHUBATLCA NMPOTHBOCHMMETPHYHbBIE HANPSKEHHN H
MOMEHNThI HanpsikeHui. T1oy4aroTes BbIpaXkeHus U1s CKOPOCTH U MHUKDPOBPALLEHHS, @ TAKXKE AN MOMEHTA
NPUIIOKEHHOTro K Kopnycy. OOHapyXHBacTCs, YTO 3HAYCHHE MOMEHTA OOnblie 1O HACTOSLUEH TEOpHH,
yeM IO TEOPMM MR KIIACCMYCCKMX BSA3KMX KHIKOCTEH. B OKOHYaHMM MPHBOASTCH JaHHBbIC, KOTOPLIC
oToBpakaroT pacnpenencHue GHUIMYECKUX BEJIHYHH BOTU3H KOpryca.



