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Abstract-The paper examines the uniqueness of compressible micropolar fluid .flows over an arbitrary 
region R(t) with a smooth boundary JR(t). It is shown that there is at most one solution of the flow 
equations and boundary conditions which corresponds to suitably assigned initial values of the density, 
velocity, microrotation and temperature fields. The analysis rests on the use of differential inequalities 
involving the time derivatives of certain energy integrals. 

INTRODUCTION 

IN THIS paper, we examine the uniqueness of compressible micropolar fluid flows[ll in an 
arbitrary bounded region. The question of uniqueness of viscous fluid flows has a long history 
and the uniqueness of incompressible viscous fluids was examined by FoP[2] in 1929. Extension 
of the enquiry on the uniqueness of flows to compressible viscous fluids was first considered by 
Graffi[3] who restricted the investigation to fluids satisfying the piezotropic relation p = f(p) 
connecting the fluid density p and the pressure p. The uniqueness of viscous compressible flows 
with a general equation of state was taken up by Serrin[4] in a remarkable paper in 1959. Under 
very general conditions, Serrin was able to establish the uniqueness of viscous compressible 
flows over an arbitrary region R under diverse boundary conditions. His investigations cover 
also the nonviscous fluids and the results in both the cases are obtained by the use of the energy 
method. This method essentially consists of evolving differential inequalities for certain energy 
functionals over a time interval and it is interesting to note that such a method can be developed 
also for compressible micropolar fluids. 

The theory of micropolar fluids[l] introduced by Eringen in ‘1966 differs from the classical 
theory of Navier-Stokes viscous fluids in two important features, viz. the sustenance of the 
couple stress in the fluid medium and the nonsymmetry of the force stress tensor. In this 
theory, the fluid element has the usual translatory degrees of freedom reckoned by the velocity 
vector q and has, in addition, degrees of freedom, enabling the intrinsic rotary motions of the 
fluid element. The latter motion is reckoned by the microrotation vector v. The constitutive 
equations for the stress and couple stress in the case of a non-heat conducting micropolar fluid 
medium have been presented by Eringen[l] and when the model is assumed to be linear, these 
involve, in all, six material constants. In the present investigation, we have to take note of the 
heat conduction in the compressible micropolar fluid medium and accordingly modifications are 
necessary in the constitutive equations for the force stress tensor and the couple stress tensor 
given in [ 11. The constitutive equations for heat-conducting micropolar fluids have already been 
given by Cowin[S, 61 as well as Kline and Allen[7]. 

For the linear model of heat-conducting micropolar fiuids, the constitutive equations for the 
force stress tensor tii, the couple stress tensor mij and the heat flux vector h are given by[S-71 

tij = (-P + AI@)Sij + (2~ + k)dij + keij,(o, - u,) (1) 

mij = a(div v)S, + flvi,j + 7vj.i + MijmO,m (2) 

h=-x,gradO+x,curlv (3) 

where q is the fluid velocity vector, v is the niicrorotation vector, w = (l/2) curl q, dij is the rate 
of deformation tensor, Vi,jr is the matrix gradient of the microrotation vector, @= div q, p is the 
thermodynamic pressure, 0 is the temperature and Eijm is the alternating tensor. The material 
constants {A,, CL, k} are the viscosity coefficients, {(u, p, y} are the gyroviscosity coefficients, x1 
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is the thermal conductivity and {x2, u} are measures of thermodynamic coupling. These material 
constants conform to the following inequalities [ 1,6,7] 

3h,+2p+kkO, 2/_i.+kk0, kr0 

3ar+p+y5.0, YZO, lPlIr 

XI 2 0, (x2 + BaJ2 5 2(Y - P)x& 

(41 

(5) 

The motion of micropolar fluids is governed by the laws of conservation of mass, con- 
servation of microinertia, the balance of momentum, the balance of first stress moments and the 
energy balance. The equations of motion are given by 

g+pdivq=O 

dj ;ii=o 

(6) 

. dv 
pjz=pI-2kv+kcurlq-ycurlcurlv+(a!-t~ty)grad(divv) (9) 

de 
p s = tijdij + tijEijm(O, - v,) + VIijVj,i - div h t pr, (10) 

In the above equations, the scalars p, j, E, r denote the fluid density, the gyration parameter, the 
internal energy density per unit mass and the heat source per unit mass, respectively while the 
vectors f, I denote the body force per unit mass and the body couple per unit mass. In the 
sequel, the term pr in the energy balance will be omitted as no heat sources are assumed to be 
present in the domain of the flow. The equation of state relating the thermodynamic variables p, 
p, e and f3 are taken to be 

P = P(P, 01 (11) 

E = 4% 0) (12) 

and both the functions p and E are assumed to be functions of class C”‘. To simplify the 
discussion in the sequel, the energy function e(p, 8) is assumed in the special form 

EIP, e> = CA@ (13) 

and the specific heat c, = f&/G%), is assumed to be a positive constant. The energy balance (10) 
can, therefore, be written in the form 

=1,6-divh (141 

where 

I+4 = tijdij + tijEijm(W, - V,) + mijVj,i. (19 

We consider the fluid flow over the finite region R = R(t) and the boundary c?R of the region 
is assumed to be smooth. The flow velocity q and the microrotation vector v have prescribed 
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values on the boundary aR(t). The relative normal speed U of fluid particles at the boundary is 
defined in the form 

U=q.n-G (16) 

when n denotes the outer normal vector and G is the outward normal velocity of the boundary 
aR(t). 

BOUND~Y CONDITIONS 

At all points of the boundary aR(t) and at all instants of time in the range of interest, the 
velocity vector q and the microrotation vector v are specified. Further (a) at points where 
U < 0, the density p and the absolute temperature 0 are prescribed; (b) at points where U > 0, 
the absolute temperature 8 is prescribed; (c) at points where U = 0, any one of the following 
three alternative conditions is assumed: (i) the temperature 8 is prescribed; (ii) the heat flux 
h . n is prescribed: (iii) the heat flux is assumed proportional to the difference between the fluid 
temperature 0 and a given wall temperature BO, i.e. 

The above conditions barring those pertaining to the microrotation vector Y, are the same as 
those adopted by Serrin[4] for proving the uniqueness of viscous compressible flows. Serrin’s 
proof of the uniqueness theorem which we follow in general here rests on the use of the energy 
integrals and systematically employs the transport formula which can be expressed in the form 

(18) 

where F is a continuously differentiable function over R(t). In the sequel, the volume 
infinitesimal dr in the volume integrals and the surface area infinitesimal da in the surface 
integrals are omitted. 

STATEMENT OF THE UNIQUENESS THEOREM 

Let the viscosity coefficients {A,, Jo, k}, the gyroviscosity coefficients (cu, /3, y} the thermal 
conductivity x1 and the thermomechanical coupling coefficients {x2, a} satisfy the inequalities 
(4) and (5) and let the relations (11) and (13) be valid. Then there can be at most one set of 
continuously differentiable functions (p, q, Y, 0) satisfying the differential eqns (6)-(9) and the 
boundary conditions stated in the preceding paragraph and reducing when t = 0 to the assigned 
initial distributions. 

To proceed with the uniqueness theorem, it is necessary to consider the basic equations 
governing the flow and all the constitutive equations in nondimensional form. With appropriate 
scaling, each of the eqns (l)-(3) and (6)~(1’7) can be considered to be a nondimensional 
statement. 

A set of continuously differentiable functions (p, q, Y, ti) satisfying the flow equations and 
the boundary conditions and reducing to assigned initial distributions when f = 0 is designated 
as a solution of the initial value problem. The solutions are presumed to exist over the interval 
0 5 t s T but may not be continuable beyond the value T. The solutions considered are assumed 
to have positive density p and positive gyration parameter j at every point of the closure of the 
region. 

To prove the uniqueness of mi~ropol~ tluid flows it is necessary to compare two possible 
flows pertaining to the same initial data and force the conclusion that the flows cannot be 
distinct. Let (p, j, q, v, 0) and (p*, j, q*, v*, f?*) be two possible solutions of the equations of 
micropolar fluid flows. The gyration parameter j is assumed to be the same in both the flows as 
a simplifying assumption though it is also possible to consider greater generality and allow 
variation in this parameter also. The specific heat c, has also the same value for the two 

motions in view of the earlier assumptions (cf. the statement immediately after eqn (13)). The 
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functions involved as well as the boundary al7 are assumed to be smooth enough to validate the 
divergence theorem. 

For any arbitrary flow quantity F, let 

F’z F*-F (19) 

denote the difference in its value pertaining to the two flows. It then follows that (cf.[4]) 

(A@* - (AB) = AB’ + A’B* (20) 

(pj$*-(pj$)=pj$$+pj(q’.grad)v*+p’j(g)* 

(21) 

(22) 

(23) 

(24) 

Since the continuity eqn (6) is satisfied by the primary flow (p, j, q, v, 0) as well as the starred 
flow (p*, j, q*, v*, e*), it follows from (6), (20) and (21) that 

Let 

d$ + q’ . grad p” + p div q’ + p’ div q* = 0. (25) 

.r, = I ;ppr2. 

Multiplying eqn (25) by p’ it can be noted that 

d 1 r2 -- 

dt 2’ ( > 

,W 
=P dt 

= - p’q’ grad p* _ pp”@t _ pj*@* 

where 6’ = div q’, @I* = div q*. From the transport formula (18), one has 

(26) 

(27) 

and this can be rewritten as 

dJ1= 
dt - I PP’ q’ . grad p* -I p2p1@ - 1 ppt2@* - f pu ($ pt2) 

= -I,, - 112 - 113 - I,@ 

(29) 

(30) 

The surface integral I,,, = 
f 

pU(l/2~‘~) in (29) is positive or zero under each of the boundary 

conditions mentioned above and hence it follows that 

dJ,<_I 
dt - II - I,? - 113. (31) 
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To derive an estimate for dJ,/dt, bounds for I,,, Ilz and I,3 are to be obtained and these are 
given below: 

II I=11 I1 pp’ q’ . grad p* 

5 
I 

(pp’ q’ . grad p*l 

(32) 

where n, and n2 are positive constants that can easily 

I421 5 IJ- P2P’@J 

5 P21P’@‘l 
I 

be evaluated. 

where Q, is an arbitrary positive number and n3 is a positive 
of El. 

II131 = IJ- PPQ*) 

Sn4 p. 
I 

I2 

(33) 

number depending on the choice 

(34) 

In deriving the bounds for Ir,, Ir2, II3 in the above, the basic tool employed is Cauchy’s 
inequality 

2ab ccx2a2+s (35) 

where a( # 0) is any real constant. The constants n,, n2, n3, n4 in the above bounds depend on 
the functions pertaining to the primary and starred flows as well as their spatial derivatives and 
their precise evaluation is not required for proving the uniqueness theorem. From (32)-(34) it 
follows that 

s5(n,+n3+n4) p’2tn J- 21(s’)%J&)2* (36) 

From the momentum balance (8) which is valid for both the primary and the starred flows 
over the interval 0 5 t I T, it follows that 

(p$)*-(p$)=p’f-gradp’ 

t (A~ t 2~ t k) grad @Y t K curl V’ - (CL + k) curl curl q’ 

and the 1.h.s. of (37) equals 

!!!f p dt tpq’.gradq*tp’ 

(37) 

(38) 

Let 

.r* = 
f 

; p(q’)2* (39) 
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From the transport formula it follows that 

From (37) and (38) it is seen that 

W 
pq'.dt= - pq’ . (q’ . grad q*) + p’q’ . 

(f- (3*) 

- q’ . grad p’ t (A, t 2~ + k) q’ , grad 0’ + k q' . curl v - (p t k)q’ . curl curl q’. (41) 

From (40) and (41) it follows that 

Z- 
I 

pq’.(q’.gradq*)+/p’q’. (I-$!)* 

- 
f 

q’ . grad p’t (A, t 2p t k) 
I 

q’ . grad @ 

t k f q’ . curl V’ - (p t k) f q’ . curl curl q’.- i f pU(q’)* (42) 

= - I,, t 122 - 123 t (A, t 2p t k)124 + kl,, - (P + k)126 - 120 (43) 

and the surface integral I*,, is zero in view of the implication q’ ldR = 0 arising from the boundary 
condition on the velocity vector. The integrands in 12,, 123, 124, IZ5 and 126 can be expressed 
alternatively by using the identities 

pq’ . [q’ . (grad q’*)] = pq’ . D* . q’, 
q’.gradp’=div(p’q’)-p’@‘, 
q’. grad 6’ = div (6’ q’) - @It2 
q’ . curl V’ = div(v’ x q’) t v’. curl q’, 

q’ . curl curl q’ = (curl q’)2 - div (q’ x curl q’). 

(4) 

In the above, D* denotes the rate of deformation matrix for the starred motion. In view of the 
boundary condition on the velocity vector, q’laR = 0 as noted above each of the volume 
integrals 

1 div(p’ q’), 1 div(@ q’), f div(v’ . q’), 1 div(q’ . curl q’) 

is seen to be zero on using the divergence theorem. Hence the following relation: 

dJ,_ 
dt 

-- pq’.D*.q’tfp’q’.(f-($)*) f 

It is easy to see that 

Ipq’ . D* . q’l 5 n5(q’)* 

(46) 

where c2 is an arbitrary positive quantity and n,, n6, n,, n, are constants. The constant n, 
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depends on the choice of e2. Also, in view of the equation of state (11) 
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(47) 

From (45)-(47) it follows that 

~C(n6+nsn9) 
I 

~‘~+(n~+n,) 
I 

(q’)2+n n 8 ,,~8’2+E?~~r~-(hl+2~+k)~o’2 

+ k 
I 

(v’. curl q’) - (p + k) 
I 

(curl q’)2. (48) 

From the balance of first stress moments (9) which is valid for both the primary and the 
starred flows over the interval 0 I t I: T, it follows that 

(pj$!)*-( ‘dv)- pj x - p’ 1+ k curl q’- 2kv’ - -y curl curl v’ t ((Y t p t y) grad (div v’) (49) 

and the 1.h.s. of (49) equals 

. dv’ 
PJ dt + pj(q . uad)v* + p’i * w-0 

in arriving at which use has been made that the gyration parameter j is the same for the two 
flows under consideration. Let 

J3 = 
I 
1 pj(v’)2. 

From the transport formula (18) it follows that 

and this can also be written in the form 

%=Jpj (v’.$)-f~pUj(v’)2 

(51) 

(52) 

(53) 

in view of the eqn (7). From (49) (50) and (53) it follows that 

g=Jpj(v’.g)-i$pUj(v’)’ 

=- f pjv’ . [(q' . grad)v*] t p’v I. (I-j ($*) 

+ k 
f 

(v’ . curl q’) -2k 
Iv f 

( ‘)‘- y (v’ . curl curl v’) 

t (a t /3 t y) 
f 

v’ . grad (div v’) - 1 pUj( v’)2 

= - 13, -t 132 + k&3 - 2kl,, - $3, t (a t /3 t y)136 - r3i, (54) 

and the surface integral I30 vanishes in view of the boundary condition on the microrotation 
vector. 

The integrands in 13,, 135 and lS6 can be expressed alternatively by using the identities 

pjv’ . [(q' . grad)v*l = pjq’ . (grad v*) . v’ 

v’ . (curl curl v’) = (curl v’)~ - div (v’ x curl v’) 
v’ . grad (div v’) = div ((div v’) v’) - (div v')~ (55) 
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where (grad v*) denotes the matrix gradient of the vector v *. It is easily recognised by the use 
of divergence theorem that the integrals J div (v’ x curl v’), J div ((div v’)u’) which arise in the 
course of simplification are zero. Hence the following relation: 

dJ3 _ 
dt-- I pjq’.(gradv*).v’+/p’(I-j($)*).v’+k(v’.curlq’ 

- 2k I (v’)* - y 1 (curl v’)* - ((Y + p + y) f (div v”). 

It is easy to see that 

(56) 

lpjq’ . (grad v*) . v’( I n,,(q’)* + n12(v’)* Ip’(l- j(g>*> . vfi 5 n&Y)*+ n,4(v’)2. (57) 

From (56) and (57) it follows that 

+ k f (v’ . curl q’) - 2k f (v’)‘- y [ (curl v’)* - (a! + p + y) 1 (div v’)* . 68) 

From the energy balance (14), which is valid for the primary as well as the starred flows over 
the interval 0 I t I 7, it follows that 

(pc,$!)*-(pcU$)=$‘-divh’. 

The 1.h.s. in the above equation is 

do’ 
pc, dt + pc,q’ . grad 8* t p’c, 

(59) 

(60) 

on recalling that the coefficient c, has been assumed constant and is the same for both the flows. 
The quantity e introduced in (15) can also be written in the form 

$=T:D+T:D*tM:gradv (61) 

in terms of the dyadics T, D, DA, M and grad v which represent respectively the force stress, 
the rate of deformation, the antisymmetric relative spin defined in the form DA = Eiim(O, - v,,,), 
the couple stress and the matrix gradient of the microrotation vector. The force stress tensor T 
and the couple stress tensor M have been defined earlier in (1) and (2) and in dyadic notation, 
these assume the form 

T = (-p + X,@)I t (2~ + k)D - klX 
( 

1 curl q - v) (62) 

M = a! (div v)I + P(grad v)= + y(grad v) - uIX grad 0. (63) 

From (20) and (61) it is seen that 

4’ = T: D’+ T’: D* + T:(D*)‘+ T’:(D*)* + M:grad v’+ M’:grad v*. (64) 

From (60) and (64) it follows that 

de’ 
pc,8’ dt = - pc,tl’ q’ . (grad 19*) - p’c,O’ * + O’f - 0’ div h’. (63 
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54 = I ; pc”e’2 

From the transport formula (18), it follows that 
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(66) 

(67) 

and on using (65) it follows that 

dJ, _ 
dt-- I pc,e’q’.grade*-fp’c,e’(~)* tIs’~‘-fe~divh’-~~pU(c,e”). (68) 

From (62)-(64), it is possible to see that 

,j,’ = (+ n + ,@)@ + (-p’ + ,@Y)@* + (2~ t k)D: D’t (2~ t k)D’:D* 

t 2k(o -v) . (w’- v’) t 2k(o’- v’). (w * - v*) t cu(div v)(div v’) t P(grad ~)~:(grad v’) 

t y(grad V) : (grad v’) t a(grad 0) . (curl v’) t a(div v’)(div v*) + P(grad v’)~ :&ad v*) 

t y(grad v’) : (grad u*) t a(grad 0’) . (curl v*). (69) 

Using Cauchy’s inequality one can deduce that 

jpc,Wq’ . grad 8*1 I nr5(q’)2 t n,&“, 

(pwf ($7 ) 5 n,,p” t n,8e’2. (70) 

To estimate the term W+V, the Cauchy’s inequality can be applied to each of the individual 
terms obtained by product of 0’ with +’ given in (69) and the individual bounds for the various 
terms in Wt,V can be pooled. It is seen easily that 

[e’@l I n,+~~ + n2,,W2 t &Y2 t Q(W’ - v’)’ t e5(div Y’)* 

t e6(grad Y’)’ t e,(curl P’)’ + l ,(grad 0’)’ + E@’ : D’ (71) 

where the E’S are arbitrary positive numbers and the n’s are constants that depend on the 
choice of the E’S. 

The term .j’ 8 div h’ can be expressed in the form 

f 
8’ div h’ = f div (0’ h’) - f h’ . grad 0’ 

=$O’h’.o-fh’.gradW (72) 

on using the divergence theorem. The surface integral $e’h’ . n is nonnegative under every form of 
the boundary conditions considered. From (3) it follows that 

h’ . grad 8’ = - x,(grad 0’)’ + x2(curl v’) . (grad 0’). (73) 

In view of the identity 

div(v’ x grad 0’) = (grad 0’) . (curl u’) - V’ . curl(grad 0’) (74) 
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and the divergence theorem, it follows that 

1 (curl v’) . (grad 0’) = f (Y’ x grad f3’). n (75) 

and this last integral vanishes in view of the boundary condition on the microrotation. Thus one 
has 

I 
h' . grad 19’ = -xl (grad 0’)2. (76) 

From (72) and (76) it follows that 

I 8’ div h’ 2 ,y, 
I 

(grad 0’)2. (77) 

The surface integral l/2 ( pU(c,0’*) in eqn (68) is zero in view of the boundary conditions on 
the temperature 0. Thus it follows from (68), (70), (71) and (77) that 

dJ, ~~(n,7+~,9)~p~*+~,.~(q~)2+(~,,t~,,+~2~~1(~~)2t~~~~~~ 

+ Ed I (0’ - vy2 t Eg f (div Y’)* f eg 1 (grad v’)* t E, 1 (curl Y’)* 

t es f (grad 0’)2 t l 9 f D’ : D’ - x1 f (grad or)*. (78) 

It can be shown that if a is a continuously differentiable vector field over the region 
R(t) x [0, T] with vanishing boundary values, 

f (grad a)* = [ (div a)* t 1 (curl a)2. (79) 

From the inequalities (36), (48), (58), (78) and the identity (79), one can see that 

&+J2tJ,tJl)r [(n,tngtnl)t(n,+n,n9)+n,,t(n,,tn,,)lfp’2 

t (nzt ?I,+ n,t n,, t n,J f (q')* +(n,*+n,d f w)2 
t(nRnletn,,tn,,tndf(e')* -2kJ(w~-v’)2-(hIt2Ftk)/@~2 

- (F t 5) 1 (curl q')'- y f (curl Y’)* - (a t p t y) f (div v’)* 

t(~,t~2t~~)~~~2t~~~(~1-yl)2+~s~(divv')2 

t t,[ f (div yr)* t J (curl YY] + l 7 1 (curl v’)* + e8 f (grad e’)* 

+ E9 f D’ : D’ - xl f (grad 0’)2. (80) 

The integral J D’:D’ in the above can be written in a more convenient alternative form on 
recognising the identity 

(grad q)* = D : D t i (curl q)2. (81) 
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Since the density p, the gyration parameter j and the specific heat c, are all strictly positive in 
the closure of the flow region, it is possible to write 

I p12 5 n2,J,; I W2 5 n22.4 

1 (v’>~ I n23J3; J Or2 I n2+14 

where n2,, nz2, nz3, nz4 are constants that depend on p, j and c,. Defining 

(82) 

J = J, + .I2 + J3 + 5.j (83) 

one can deduce from (80)-(82) that 

~~mJ-[(A,+2~+k)-(e,+e2+c,+Eg)]fO~2 

-[(j.~+t)-~]~(curlq’)1-[2k-~11( w’ - Y’)~ - [((Y + p + r) - (e5 t EJ] 
I 

(div Y’)~ 

- [y - (e6+ E,)] 1 (curl Y’)* - lx, - l 8) _/ (grad 0’)’ (84) 

where 

m =max{(n,t n3tn4tn6t n&t n13+n17+n&f21;(n2t n5t n5t nil+ n15)n22; 

(n12+ ndn23; hnlo t h6+ nl8 t n2&24}+ (85) 

Since the E’S are arbitrary it is possible to ensure that each of the six coefficients in parentheses 
( ) multiplying the integrals on the r.h.s. of (84) is positive. It therefore follows that 

d.l 
xrm.l, O<t57. (86) 

Integrating this differential inequality one obtains 

(87) 

where .I0 is the value of .I at t = 0. The integrals J,, J2, J3, .I4 are zero when t = 0 and it, 
therefore, follows from (87) that J remains zero throughout the whole time interval [0, T]. In 
view of (83) it follows that each of the measures J,, J2, J3, J4 remains zero throughout the time 
interval [0, tl. Hence the conclusion that the primary and the starred flows are identical and one 
has the proof of uniqueness theorem. 
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