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Abstract—The paper examines the uniqueness of compressible micropolar fluid flows over an arbitrary
region R(t) with a smooth boundary 8R(t). It is shown that there is at most one solution of the flow
equations and boundary conditions which corresponds to suitably assigned initial values of the density,
velocity, microrotation and temperature fields. The analysis rests on the use of differential inequalities
involving the time derivatives of certain energy integrals.

INTRODUCTION

IN THIS paper, we examine the uniqueness of compressible micropolar fluid flows(1] in an
arbitrary bounded region. The question of uniqueness of viscous fluid flows has a long history
and the uniqueness of incompressible viscous fluids was examined by Fo4[2] in 1929. Extension
of the enquiry on the uniqueness of flows to compressible viscous fluids was first considered by
Graffi[3] who restricted the investigation to fluids satisfying the piezotropic relation p = f(p)
connecting the fluid density p and the pressure p. The uniqueness of viscous compressible flows
with a general equation of state was taken up by Serrin[4] in a remarkable paper in 1959. Under
very general conditions, Serrin was able to establish the uniqueness of viscous compressible
flows over an arbitrary region R under diverse boundary conditions. His investigations cover
also the nonviscous fluids and the results in both the cases are obtained by the use of the energy
method. This method essentially consists of evolving differential inequalities for certain energy
functionals over a time interval and it is interesting to note that such a method can be developed
also for compressible micropolar fluids.

The theory of micropolar fluids[1] introduced by Eringen in 1966 differs from the classical
theory of Navier-Stokes viscous fluids in two important features, viz. the sustenance of the
couple stress in the fluid medium and the nonsymmetry of the force stress tensor. In this
theory, the fluid element has the usual translatory degrees of freedom reckoned by the velocity
vector q and has, in addition, degrees of freedom, enabling the intrinsic rotary motions of the
fluid element. The latter motion is reckoned by the microrotation vector ». The constitutive
equations for the stress and couple stress in the case of a non-heat conducting micropolar fluid
medium have been presented by Eringen[1] and when the model is assumed to be linear, these
involve, in all, six material constants. In the present investigation, we have to take note of the
heat conduction in the compressible micropolar fluid medium and accordingly modifications are
necessary in the constitutive equations for the force stress tensor and the couple stress tensor
given in[1]. The constitutive equations for heat-conducting micropolar fluids have already been
given by Cowin[5, 6] as well as Kline and Allen[7].

For the linear model of heat-conducting micropolar fiuids, the constitutive equations for the
force stress tensor t;;, the couple stress tensor m; and the heat flux vector h are given by[5-7]

tii = (_p + )\1®)8ij + (2# + k)dij + kE,'jm((l)m - Vm) (1)
m,-,- = Ct(div V)a,'j + BV,-,]' + YYii + Ueijme,m (2)
h=-x,grad 6 + x, curl » 3)

where q is the fluid velocity vector, v is the microrotation vector, w = (1/2) curl q, d; i$ the rate
of deformation tensor, v;;r is the matrix gradient of the microrotation vector, @= div g, p is the
thermodynamic pressure, ¢ is the temperature and e, is the alternating tensor. The material
constants {A,, u, k} are the viscosity coefficients, {a, 8, vy} are the gyroviscosity coefficients, x,
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is the thermal conductivity and {x,, o} are measures of thermodynamic coupling. These material
constants conform to the following inequalities[1, 6, 7]

3MF2u+k=20, 2u+k=0, k=20
3a+Btyz0, y=0, |Bl=<y ()]

X1 Z0,(x+ 80)’ < 2(y — B)x:6. (5)

The motion of micropolar fluids is governed by the laws of conservation of mass, con-
servation of microinertia, the balance of momentum, the balance of first stress moments and the
energy balance. The equations of motion are given by

%1’:— +pdivg=0 6

gl;: 0 o

p 3—? =pf—grad p + k curl w + (p + k) curl curl g + (A, + 2 + k) grad (div q) ®)
pi %}ti = pl—2kv + k curl g - y curl curl v + (a + B + y) grad (div ») ©)

p ((ii_: = tydyi + ti€ijm (@ — V) + myv;; — divh + pr. (10)

In the above equations, the scalars p, j, €, r denote the fluid density, the gyration parameter, the
internal energy density per unit mass and the heat source per unit mass, respectively while the
vectors f, | denote the body force per unit mass and the body couple per unit mass. In the
sequel, the term pr in the energy balance will be omitted as no heat sources are assumed to be
present in the domain of the flow. The equation of state relating the thermodynamic variables p,
p, € and 6 are taken to be

p=p(p ) (1n
e = €(p, 0) (1)

and both the functions p and e are assumed to be functions of class C*. To simplify the
discussion in the sequel, the energy function &(p, 8) is assumed in the special form

€lp, 8) = c,(6) (13

and the specific heat ¢, = (9¢/38), is assumed to be a positive constant. The energy balance (10)
can, therefore, be written in the form

de de
Py = PO 4
=y —divh (14)
where
¥ = tidy + ti€m(Om = V) + MYy (15)

We consider the fluid flow over the finite region R = R(t) and the boundary 4R of the region
is assumed to be smooth. The flow velocity q and the microrotation vector » have prescribed
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values on the boundary 8R{t). The relative normal speed U of fluid particles at the boundary is
defined in the form

U=q.n-G (16)

when n denotes the outer normal vector and G is the outward normal velocity of the boundary
AR(1).

BOUNDARY CONDITIONS

At all points of the boundary dR(t) and at all instants of time in the range of interest, the
velocity vector q and the microrotation vector » are specified. Further (a) at points where
U <0, the density p and the absolute temperature 9 are prescribed; (b) at points where U >0,
the absolute temperature 8 is prescribed; (c) at points where U =0, any one of the following
three alternative conditions is assumed: (i} the temperature 8 is prescribed; (ii} the heat flux
h.n is prescribed; (iii) the heat flux is assumed proportional to the difference between the fluid
temperature 6 and a given wall temperature 6, i.e.

hon=ky(8—0p), ko= 0. 17

The above conditions barring those pertaining to the microrotation vector v, are the same as
those adopted by Serrin[4] for proving the uniqueness of viscous compressible flows. Serrin’s
proof of the uniqueness theorem which we follow in general here rests on the use of the energy
integrals and systematically employs the transport formula which can be expressed in the form

d [ 4F,
dtfR deT—J‘Rp L ar ﬁRpUFda (18)

where F is a continuously differentiable function over R(t). In the sequel, the volume
infinitesimal dr in the volume integrals and the surface area infinitesimal da in the surface
integrals are omitted.

STATEMENT OF THE UNIQUENESS THEOREM

Let the viscosity coefficients {A,, u, k}, the gyroviscosity coefficients {a, 8, y} the thermal
conductivity x; and the thermomechanical coupling coefficients {x,, o} satisfy the inequalities
{4) and (5) and let the relations (11) and (13) be valid. Then there can be at most one set of
continuously differentiable functions {p, q, », 8} satisfying the differential eqns (6)-(9) and the
boundary conditions stated in the preceding paragraph and reducing when t = 0 to the assigned
initial distributions.

To proceed with the uniqueness theorem, it is necessary to consider the basic equations
governing the flow and all the constitutive equations in nondimensional form. With appropriate
scaling, each of the eqns (1)-(3) and (6)~(17) can be considered to be a nondimensional
statement.

A set of continuously differentiable functions (p, q, », ) satisfying the flow equations and
the boundary conditions and reducing to assigned initial distributions when t = 0 is designated
as a solution of the initial value problem. The solutions are presumed to exist over the interval
0=t = 7 but may not be continuable beyond the value =. The solutions considered are assumed
to have positive density p and positive gyration parameter j at every point of the closure of the
region.

To prove the uniqueness of micropolar fluid flows it is necessary to compare two possible
flows pertaining to the same initial data and force the conclusion that the flows cannot be
distinct. Let (p, j, q, », 8) and (p*, j, q*, ¥*, 6*) be two possible solutions of the equations of
micropolar fluid flows. The gyration parameter j is assumed to be the same in both the flows as
a simplifying assumption though it is also possible to consider greater generality and allow
variation in this parameter also. The specific heat ¢, has also the same value for the two
motions in view of the earlier assumptions (cf. the statement immediately after eqn (13)). The
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functions involved as well as the boundary 3R are assumed to be smooth enough to validate the
divergence theorem.
For any arbitrary flow quantity F, let
F'=F*-F (19)

denote the difference in its value pertaining to the two flows. It then follows that (cf.[4])

(AB)*—(AB) = AB'+ A'B* (20)
(3 () s
(pd—q) (pdt) p%t +p(q'. grad)g* + p’ (%)* (22)
(i)~ (P 55) = 0i G + i - racy w4 1 (B2 @3)
(pcb. %) = v%t,+pcq grad 0*+p'c, (gf)*+pcv g—f (24)

Since the continuity eqn (6) is satisfied by the primary flow (p, j, g, », 8) as well as the starred
flow (p*, j, q*, v*, %), it follows from (6}, (20) and (21) that

(jit+q grad p*+ p divq' +p' divq* = 0. (25)

Let
1 2
5= 5" (26)
Multiplying eqn (25) by p’ it can be noted that
Al Ay
dt (2 P ) BEaT)
=-p'q grad p* - pp' @ - p"@* @7

where @' = div q', @* = div q*. From the transport formula (18), one has

%f%pp’2=f% p% (p’z)—%pr(p’z) (28)
and this can be rewritten as
I s [ 2@ — [ opr@* — L
T fppq.gradp fpp® fpp@ pr(zp ) (29)
=-I—-I,-I,-I,. (30)

The surface integral I, = § pU(1/2p') in (29) is positive or zero under each of the boundary
conditions mentioned above and hence it follows that

aJi _

T I 1,- I G1)
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To derive an estimate for dJ,/dt, bounds for I,;, I}; and I;; are to be obtained and these are
given below:

Iyl = Upp’ q' . grad p*

= f loo’ ¢ - grad p*|
=m [p2m [’ (32)
where n, and n, are positive constants that can easily be evaluated.
IES UPZP'®"
= f Pl @
sn;fp’2+ €1f®'2 (33)

where €, is an arbitrary positive number and n; is a positive number depending on the choice
of €.

|113| = U PP’2®* (34)

SnaJ‘P’Z-

In deriving the bounds for I,;, I;5, I3 in the above, the basic tool employed is Cauchy’s
inequality

2
2ab < a’a*+ g; (35)

where a(# 0) is any real constant. The constants n,, n,, ns;, n, in the above bounds depend on
the functions pertaining to the primary and starred flows as well as their spatial derivatives and
their precise evaluation is not required for proving the uniqueness theorem. From (32)-(34) it
follows that

% =(n;+n3+ny) f p?+n, j @) +¢ j (@')2- (36)

From the momentum balance (8) which is valid for both the primary and the starred flows
over the interval 0 <t <, it follows that

()~ 0) e

+ (A +2p + k) grad @' + K curl v’ — (u + k) curl curl ¢/ 37
and the Lh.s. of (37) equals
dq' x4 o (99}
pdt+pq.gradq +p (dt)' (3%)

Let

5= Loty (39)
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From the transport formula it follows that

%_ l _(1 /2_1 n2
i [3r g3 $pU@r “)

From (37) and (38) it is seen that
! d ' ! ’ [ d
pq g1 =—pq .(q.erad g +p'q . (f- (d—?)*)
—q.gradp'+ (A +2u+k)q . grad @'+ k q' . curl v — (u + k)q'. curl curl q'. {41)

From (40) and (41) it follows that

%= J’pq’-%—({—%épU(q’)z
=—qu’-(q’-gradq*)+fp’q'-( —%)*
-fq’.gradp’+(/\l+2pu+k)fq’.grad®’
+k f q .curl v’ —(u+k) f q .curlcurlq - % § pU(q)? (42)
==Lyt In—In+ A +2u + k)L, + klps—(pu + k) — Iy (43)
and the surface integral I is zero in view of the implication q' |,z = 0 arising from the boundary

condition on the velocity vector. The integrands in I,;, I;, L, Is and I can be expressed
alternatively by using the identities

pq . [q . (grad )] =pq . D*.q,

q .gradp’ =div(p'q)-p'@',
q. grad & = div(@ q)- ®” (44)
q .curlv' =div(y' X q')+»'. curl q,
q . curl curl q' = (curl ¢')*— div (g’ X curl q').

In the above, D* denotes the rate of deformation matrix for the starred motion. In view of the

boundary condition on the velocity vector, q|,;x =0 as noted above each of the volume
integrals

jdiv(p’q’),fdiv(@' q’),fdiv(v’ . q’),fdiv(q’.curl q)
is seen to be zero on using the divergence theorem. Hence the following relation:
dJ r ! ! ! d *
d—t2=—J‘pq .D* . ¢ +fp q.(f—(a(—tl) )
+[p@ -+ 2 +k) f @k [ v culg~(u+k) f (urlq? (45
It is easy to see that
loq' . D* . q| = ns(q)’
*
o - (8 (55)) | = o™+ mtay? (46)
lp'®| < ngp?+ @

where €, is an arbitrary positive quantity and ns, ng, ns, ng are constants. The constant ng



Uniqueness of compressible micropolar fluid flows 149

depends on the choice of €. Also, in view of the equation of state (11),
pr=ngp?+n0". 47
From (45)-(47) it follows that
dJ 2<(n6+ ngng)fp’2+(n5+ n7)f(q) +ngnmj 07+ e, f@’z—()\ +2u+k) j®'2
+k J' . curl )~ (1 + k) f (curl )’ (48)

From the balance of first stress moments (9) which is valid for both the primary and the
starred flows over the interval 0 <t <, it follows that

pi CLANE pi dvy _ p'l+kcurlq - 2ky' — y curl curl ¥’ + (a + B + y) grad (div v')  (49)
dt dt
and the Lh.s. of (49) equals
ve 4 +pj(q. grad)v* + p'j (d ) (50)
dt dt

in arriving at which use has been made that the gyration parameter j is the same for the two
flows under consideration. Let

5= ol 51)

From the transport formula (18), it follows that

dJ d ,
dt3 =f Pat ( oy *pU< i) ) (52)
and this can also be written in the form
dJ A, dv | R
=] oi (v G) - $3eviey (53)

in view of the eqn (7). From (49), (50) and (53) it follows that

5= [oi(v. ) -5 4 Ui
=~ [ oiv' . 10a" gradwn1+ [ oo (1= (S2))
+kf(v’.curl q’)—2kf(v’)2~yJ-(v’.curl curl v")
Fa+B+y) f v . grad (div v')—%gﬁpUj(u')?
= — Iy + I+ kg = 2kLg— yEs + (o + B + y) g Iy (54)

and the surface integral I, vanishes in view of the boundary condition on the microrotation
vector.

The integrands in I3, I;s and I can be expressed alternatively by using the identities

piv' . [(q' . grad)y»*] = pjq' . (grad »*) . v’
v’ . (curl curl »') = (curl ')’ — div (»' X curl »')
v'. grad (div ') = div ((div »") »') - (div ') (55)
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where (grad »*) denotes the matrix gradient of the vector »*. It is easily recognised by the use
of divergence theorem that the integrals [ div (' X curl '), f div ((div »')»’) which arise in the
course of simplification are zero. Hence the following relation:

——J’qu'.(gradv*).v’ +Jp' (1 (%) ) .v’+kfv’.curlq’
-2k J ) -y f (curl ')’ —(a + B +y) f (div »"). (56)
It is easy to see that

. ! d * ’ !
i -rad ) v = m@ ey o (10(G) ) v = nerner. 6D

From (56) and (57) it follows that

ffnnj(l),)z'*' "11]((1’)2'*'("12"' "14)[(”')2
+k J' (v' . curl ¢) - 2K J' )=y j (curl ¥’ —(a+ B +7v) j (div »')? . (58)

From the energy balance (14), which is valid for the primary as well as the starred flows over
the interval 0 <t =<, it follows that

doy* dé T
(pcv Ei?) - (pcv ?1?) =y —divh’ (59)

The L.h.s. in the above equation is
de’ " de
pe, gy +pC.q - grad 6%+ p'c, (dt) (60)

on recalling that the coefficient c, has been assumed constant and is the same for both the flows.
The quantity ¢ introduced in (15) can also be written in the form

y=T:D+T:D*+M:gradv 61
in terms of the dyadics T, D, D* M and grad » which represent respectively the force stress,
the rate of deformation, the antisymmetric relative spin defined in the form D* = €, (0 — V),
the couple stress and the matrix gradient of the microrotation vector. The force stress tensor T

and the couple stress tensor M have been defined earlier in (1) and (2) and in dyadic notation,
these assume the form

T =(=p + M@ + Qu + k)D — kIX ( curl q - v> 62)

M = a (div »)I + B(grad »)" + y(grad ») — oIX grad 6. (63)

From (20) and (61) it is seen that
¢'=T:D'+T':D*+ T:(D* + T':(D**+ M:grad v' + M': grad v*. 649

From (60) and (64) it follows that

pc,b' (:it —pc,d' q . (grad 6%) —p'c, 6’ (3?)* + 0y —6'divh'. (65)
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Let

J.= j ; pc,8” (66)

From the transport formula (18), it foltows that

‘”“ f 0 dt( 06’2) 3§%pU(cvo'2) ©67)

and on using (65) it follows that
dI4 bt % _ r__ 2 172
J’pceq grad 6 p'c,o’ ( ) f@d/ 9’ divh pU(c,0"). (68)

From (62)-(64), it is possible to see that

V=(+p+ A\ @)D + (- p'+1,@)@*+(2u + k)D: D'+ (2u + k)D':D*
+2k(w —»). (0 —¥") + 2k(w'— v") . (0* — v*) + a(div »)(div ») + B(grad »)" :(grad v')
+ y(grad »): (grad »") + o(grad ) . (curl »') + a(div »')(div ¥v*)+ B(grad »')" :(grad v*)
+ y(grad v"): (grad »*) + o(grad ¢’) . (curl ¥*). 69
Using Cauchy’s inequality one can deduce that
lpc,8'q . grad 8% =< n,s(q') + n,0”%,
*
|P'Cu9' (?T?) i <n;p”+n0” 70)
To estimate the term 6'y’, the Cauchy’s inequality can be applied to each of the individual
terms obtained by product of 6’ with ¢' given in (69) and the individual bounds for the various

terms in 'Y/’ can be pooled. It is seen easily that

|0''| < niop™+ nyb” + e3®’2 + ef@' — V') + es(div v')?
+ eq(grad v')> + es(curl v')? + eg(grad 6')* + €,D': D’ an
where the €’s are arbitrary positive numbers and the n’s are constants that depend on the

choice of the €’s.
The term [ 0’ div h' can be expressed in the form

I6’divh’=Idiv(()’h/)—jh’.grad 6
=§6’h’.n—J’h’.grad6’ 72)

on using the divergence theorem. The surface integral §6'h' . n is nonnegative under every form of
the boundary conditions considered. From (3) it follows that

h'. grad 6’ = — y,(grad 9')* + x,(curl »') . (grad 6"). (73)
In view of the identity

div(v' X grad 6') = (grad 8") . (curl »") — »' . curl(grad ¢") 74)
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and the divergence theorem, it follows that

f (curl ) . (grad §') = 99 (v' % grad 6'). n (75)

and this last integral vanishes in view of the boundary condition on the microrotation. Thus one
has

fh' .grad ' = —y, j (grad 9" (76)
From (72) and (76) it follows that
f 6 divi' = y, f (grad 0')" (77)

The surface integral 1/2 ¢ pU(c,8") in eqn (68) is zero in view of the boundary conditions on
the temperature 6. Thus it follows from (68), (70), (71) and (77) that

%5("17‘* "19)]%”2'*' "15[(‘1’)2 +(ng+ng+ "2o)f(9’)2+ €3J’®’2
te, f (@'~ V') + e f (divv')? +e f (grad v + e, f (curl »'y?
te f (grad ')+ &, f DD -y, f (grad 0 (78)

It can be shown that if a is a continuously differentiable vector field over the region
R(t) x [0, 7] with vanishing boundary values,

f (grad a)* = f (diva) + f (curl a)?. (19)
From the inequalities (36), (48), (58), (78) and the identity (79), one can see that

%(]1‘*'12'*‘]3*‘]4)5 [(n+ n3+ny + (ng+ ngno) + niz+(ny7+ nyo)} J p”’

+(ny+ns+n,+n;+ngs) f (@) +(nip+nw) f )

T (gl + Mg+ Nig+ nzo)J'(e')2 —2kf(w'— V)= (A + 20 + k)f@2

- (w+5) [ CcurtqP=y [ cunl v ~ @+ g+ ) [@ive?
tletete) f @ +e, f (@ = V) + e j (div v’

+ es[ f (div )2+ f (curl v’)z] re J' (curl ¥+ & I (grad 6)?

+e j D':D-yx f (grad 6')2 (80)

The integral f D': D' in the above can be written in a more convenient alternative form on
recognising the identity

(grad @*=D:D+ % (curl g’ @1)
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Since the density p, the gyration parameter j and the specific heat c, are all strictly positive in
the closure of the flow region, it is possible to write

f pP=nply; f @) =nypl,

(82)
f (¥ = nply; f 87 <y,
where n,, n,, n,3, Ny, are constants that depend on p, j and c,. Defining
]=J1+J2+J3+]4 (83)

one can deduce from (80)-(82) that

‘;—{s ml =\ +2u+k)—(e,+ €+ 63+69)]f®’2
[(n+5)-2] [ curt - 12k - e [ (0= w7~ [l + B+ 1) (es+ e [ @ivey
~[y—(eet €] f (curl »')2 — [x, - € f (grad 6')? (84)
where

m = max{(n, + n3+ ng+ ng+ nghg + niz+ Nz + nigdnay; (ny+ Ns+ ns =+ Ry + 1y,

(12 nidny; (Mgl + nig+ nyg + nayghnggl. (85)

Since the €’s are arbitrary it is possible to ensure that each of the six coefficients in parentheses
( ) multiplying the integrals on the r.h.s. of (84) is positive. It therefore follows that

‘é—fsz, 0<t=<nr (86)

Integrating this differential inequality one obtains
J<Je™ 0<t=r7 (87)

where J, is the value of J at t =0. The integrals J,, J,, J5, J, are zero when t =0 and it,
therefore, follows from (87) that J remains zero throughout the whole time interval [0, 7]. In
view of (83) it follows that each of the measures J,, J,, J5, J, remains zero throughout the time
interval [0, t]. Hence the conclusion that the primary and the starred flows are identical and one
has the proof of uniqueness theorem.
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