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Adaptive methods for the estimation of unknown system parameters has the advantage of tracking time-
varying systems. Identification algorithms-for recursive systems produce nonquadratic performance functions. In
such problems it is very difficult to estimate the nature of convergence in a stochastic frame work. Recently, it has
been shown that the ensemble mean parameter updating equations of IIR adaptive algorithm can be represened by
associated ordinary differential equations (ODEs). A method of solving the ODEs in order to analyze the mean-
convergence behavior of these algorithms, given the mean description of the input in the form of power spectral
density, has been presented recently. In this paper, this procedure is applied to study the convergence behavior of
recursive adaptive algorithms applied for the identification of pole-zero systems. Effectiveness of this method is

shown through analytical and simulation results.

Indexing terms: System identification, Adaptive, Pole-zero systems, ODE, Mean-convergence.

ADAPTIVE estimation of systems with time-varying
characteristics is an important area of current research [1-
7]. Most of the work carried out in this area is avatlable under
the system identification and adaptive filtering literature. IIR
adaptive algorithms have several advantages over their FIR
counterparts. In many situations it is possible to approximate
even an all zero system of a large order by a pole-zero system
of a much lower order. Further, an IIR filter may represent an
optimum structure for pole-zero systems which are commonly
encountered in practice. The main drawbacks of an IIR
adaptive filter are the need for stability monitoring during
adaptation and uncertainty in the convergence time for
stochastic inputs which is a result of . the nonquadratic
performance function. The nature of convergence and
convergence time may be different even for the same input
signal when the noise sample set is different. In the case of IIR
adaptive filters, while handling stochastic signals, it is very
difficult to estimate the nature of convergence and
convergence time. If the estimator dynamics is known, some
idea regarding the stability and the convergence time required
can be obtained. Therefore in such situations it is of interest to
estimate the nature including the time of ensemble mean
convergence, at least. In this direction, recently, a method of
analyzing the ensemble mean convergence behavior of
recursive adaptive filters given the mean description of the
input is presented in [17-18]. The basis for this anlaysis is the
ordinary differential equation (ODE) representation of the
recursive adaptive filters [9].

Orginally, the ODE approach was presented by L Ljung
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for the convergence analysis of recursive identification
algorithms [8]. It was shown that the asymptotic behavior of
an identification algorithm can be obtained by solving the
ordinary differential equations corresponding ‘o the
identification  algorithm. The recursive identification
algorithms use an adaptive step size which tends to zero as
time tends to infinity. Whereas in an adaptive filter the step
size is a constant so that the algorithm can track the variations
in the input. Later, the ODE approach was extended to IIR
adaptive filters {9-15]. In [9] it was shown that the ensemble
mean behaviour of IIR adaptive filters can be represented by
their corresponding OEDs. Earlier, we applied this approach to
study the convergence behavior of constrained IIR adaptive
filters [9-10]. The ODEs representing an IIR adaptive filtering
algorithm are nonlinear and it is extremely difficult to obtain a
general closed form expression for convergence time and
nature of convergence. It is only possible to evaluate and find
solutions for specific filtering problems using numerical
procedures.

In this paper we applied this procedure to study the
convergence behavior of recursive adaptive identification
algorithms for pole-zero systems. The nature and time taken
for convergence of general examples of systems is studied.
Location of the system poles relative to the unit circle decided
the convergence nature of the identification algorithms. Hence
in this work we have studied the dependence of the
convergence behavior and the time taken for convergence on
algorithm parameters and location of poles.

Through analytical method which involves computation of
the ODE solutions numerically, the convergence behavior can
be studied. This analysis provides a means to obtain a good
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idea about the nature of parameter adjustment, stability and
convergence time. Effectiveness of this method is shown
through some analytical and simulation results obtained from
system identification examples.

THE FORMULATION OF AN ADAPTIVE ESTIMATOR
System model

Here, we considered the adaptive system identification
problem as shown in Fig 1. The estimation of the unknown
system is done by its inverse model. Let us consider the system
transfer function as

ey

where C(z) =T+cz '+ ... + ez’

and A (2)=1+az "'+ .. + az ™ z - is the unit delay

operator. Here, w, and w' are the system input noise and output
measurement error which are uncorrelated with each other.
The time variable 1 is an integer which is a discrete time index.
The SNR represents the ratio of the system output power to the
additive measurement error power. The system output which is
corrupted with the measurement noise is fed to the inverse
model and the model parameters are estimated by whitening
the output. The inverse model can also be viewed as a
prediction error filter whose transfer function, input and output
can be given as

co = o @
C@)
x = System output + additive noise. 3)
£ = X- ¢1T 91— | 4)
where ¢, =[~x_,..—x_ €_ .. £_] atthe time index t
6_, = laa,.a cc,.c] attimeindexs-1.

Algorithm recursions

A widely used criterion function for the estimation of the
pole-zero system parameters is likelihood function of the
conditional probability density function of the parameter
vector given the observations. The RML algorithm is a
recursive’ algorithm obtained for maximizing the likelihood
function. The RML algorithm recursions for estimating the

sarameter vector é, can be given as [3,4],
_ T Q)
g=x-¢76_ (5a)

c iz}

A N IR & TP
I=_ Pl_l_ -1 lIll llfl =1 (Sb)
A A+y’P vy
91: 9]—1+uPl WI 8/ (SC)

9, ~a -

where v = m,D(z): 1 +kclz"+...+k/’cpz”’ (5d)

Here A is the forgetting factor (0 < A < 1) used in
computing the covariance matrix f)l recursively and p is the
adaptation step size. k is an algorithm parameter which
controls the transient behavior of the algorithm [7]. Usually
k is taken as 1. This algorithm is initialized by P (0) = a I and
] (0) = O,where « is a suitable scalar. In the Gauss-Newton
algorithm form equation (5) can be expressed as [3-4].

0=0_ +uR'ye (6a)
R=AR  +wyy’ (6b)
where ﬁ, = P, is proportional to the Hessian matrix of the
G-N algorithm.
ODE REPRESENTATION

In {9], it is shown that the ensemble mean of the updating
equations, (50) and (5¢) can be represented in the following
ordinary differential equation form in continuous time, T

d5;= HP E[y (8)¢(6)] (Ta)
ail (1__ ) b PEWYIP
dt A Y OA+E[YP_ y]

Here, the denominator in (7b) involves computation of
Ely’P vl

g p
which can be expressed as X X p, E [y (i) v (k)]

i=1 k=1

(7b)

where P, is the (i, k)th element of the matrix [P} and ‘I’,(i) is
the ith element of vector y.

For the ODE representation to be applicable, in addition to
the regularity conditions required for ODE representation
given in [8], the ensemble-mean representation requires an
additional assumption on the input and the adaptive filter.
It is necessary. that the response of the adaptive filter attains
steady state before the input charges appreciably. This means
that there is a restriction on the rate at which the input signal

Noise
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/
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Noise AlzZ] x,_t

+
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Fig 1 Block diagram of the system identification problem
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characteristics can vary. That is, the rate of variation in the
characteristics of the input should be much smaller than the
inverse of the dominating time constant of the adaptive filter.
Further in [9] it is shown that the solutions of the ODEs
represent the mean trajectories of the parameter estimates, 9,.
It also means that the algorithms converge in mean to the

stable stationary points of the ordinary differential equations.

As explained in the introduction, the mean convergence
behavior of an adaptive filter in a specific application can be
obtained by solving the ODEs corresponding to the algorithm,
given the ensemble-mean description of the input such as the
power spectral density (psd). When the input to be estimated
is an ARMA process, the expectations of the gradient and the
covariance matrix are nonlinear functions of 6. Then the
differential equations are nonlinear by nature. Therefore, to
obtain analytical solutions, given a general input description
we have to resort to numerical procedures.

For solving these equations it is necessary to compute the
expectations of (é,)‘l’ T (é,), '} (é,) £ (9,) and y (i,é,) y/(k,é’)
for 1 £i<gq, 1 <k < p. Expressions for these are derived in
[17,18], given the power spectral density of the input to
system model, @ _(z), as

1 dz
T] — + y
ELy =5 Sy v @ : ®)
| dz
Ely, g] -En—jy‘wz)e(o — ©)
and
. _ 1 . dz .
ELY, () y,®] = 5 Py, 2wk 2) — (10)
forl <i<q,15k<p,
1
h =— O 11
where W/ (2) b ¢4) (1m

and P (D) =[-z"'X(@), ..., 27X, 27'G() X{2) > ...,
27G(2) X()I (12)
Here the + sign indicates the Hermitian operation.

These integrations can be computed using 6, and @ (z) and
help to solve differential equation (7).

The numerical procedure to obtain the ODE solutions can
be summarized as follows. This numerical procedure is ap-
plied using a small time interval, AT.

At any given time 7, given the parameter vector _and the
input power spectral description @ (z), expectations of y(8, )
v'(6,),y (8,)&(8,) and v, (i,6,) v, (k,8,) can be obtained us-
ing eqns (8)-(10). Substituting these in the difference equa-
tions corresponding to ordinary differential eqns (7a) and
(7b), the increments to the ODEs at time index ¢ can be com-
puted numerically. Using these increments 0, can be ob-
tained. Then using 6, and input power spectral description,
the same procedure can be repeated to get 6_,, . Continuing
this procedure until 6_attains a stage, where 6 increments are
negligible. That is, when 6_is very close to the optimum, the
parameter trajectories can be obtained.

Accuracy of the numerical solutions depends on the time
interval 7. A small time interval yields accurate results, but it
requires a lot of computational time and vice-versa. A reason-
able value for 7 = 1, the sampling time of the discrete version.

CONVERGENCE BEHAVIOURAL ANALYSIS

The parameter trajectories are the basis for the study of
convergence behavior. Speed of convergence, dynamics of the
estimates during the process of adaptation including the initial,
intermediate and final convergence and the time taken for con-
vergence efc, can be obtained from the ODE solutions. Depen-
dence of these on the input SNR and the algorithm parameters
also can be obtained from these characteristics. Although this
analytica] method can not provide closed form solutions for
the convergence analysis, it provides us with ensemble conver-
gence behavior. Individual convergence plots may deviate
slightly from these characteristics. However, the deviation is
not much and the ODE solutions give us a good idea about the
nature of convergence including the convergence time in a sto-
chastic environment.

Since the extended least squares (ELS) and recursive least
squares (RLS) algorithms can be treated as simplified and ap-
proximate versions of the RML algorithm [4], the analytical
method presented- here is applicable to these algorithms also.
Although the hyperstable adaptive recursive filter (HARF) and
its modified version (SHARF) [2, 16] are based on a different
reasoning, recursions of these algorithms are nearly the same
as those of the RLS algorithm but for using a filtered gradient.
Hence the analytical procedure given here is applicable for
these algorithms also.

EXPERIMENTAL RESULTS

To examine the validity of the present analysis, the present
analytical procedure is applied to several adaptive filtering
problems using different algorithm parameters and SNR’s.
Here we present some of the representative results obtained
from the following example of the system to be identified. In
this example the output of a second order IIR system driven by
pseudo random gaussian noise is considered as the determinis-
tic part of the noisy signal for prediction. The transfer function
of the system considered here is

H() = 1-[2r,cos(02m)]z "' +r2z?

1-{2r,cos (03m]z "'+ rjfz™

where the normalized frequency and radius of the conjugate
poles are 0.15 and r, respectively and the normalized fre-
quency and radius of the conjugate zeros are 0.1 are r, respec-
tively. Results are obtained for r, = 0.8 and r, = 0.9 unless
specified, otherwise. Further, the variance of the input noise =
1.0. Independent and appropriate amount of pseudo random
gaussian noise is added to this system output to form a noisy
signal at different SNR’s. Here for all the results an SNR of
1000.0 is considered.
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Figures 2a and 2b illustrate the simulated and theoretical
pole and zero parameter trajectories of the adaptive algorithm
for 4 =0.02 and A = 0.98. Figures 3 and 4 are obtained for the
values of u of 0.05 and 0.1, keeping the value of A at 0.98.
Figures 3 and 4 illustrate only the pole parameters. Here, the
simulation results represent the individual parameter
trajectories only. The error covariance matrix, P, is initialised
with o = 0.01. All these results show that there is good
agreement between the theoretical and simulation results.
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Because of the flat nature of the criterion function, away from
the optimum, during the initial convergence, the covergence
speed is low. During the intermediate convergence region it is
faster. Convergence speed during the final convergence region
falls in between. It is also observed that convergence speed
increases as { increases but results in high parameter noise
variance. From Figs 2a, 3 and 4 it is seen that parameter c,
attains the near optimum value in around 3300, 1900 and 1500
iterations respectively.
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Fig 2 Theoretical and simulated (a) pole and (b) zero parameter trajectories (inverse model) of the adaptive algorithm for p = 0.02, A=0.98
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Figures 5 and 6 illustrate agreement the pole parameter
trajectories for values of A of 0.99 and 0.95 respectively,
keeping the value of p at 0.02. Here also good agreement is
observed between theoretical and simulation results. It is
also seen that convergence speed is proportional to (1 — A).
From the Figs 5 and 6 it is seen that the parameter ¢, attains
a near optimum value in around 5000 and 2500 iterations
respectively. But increased (1 — A) causes more parameter
noise variance. From all the results, it is seen that the
applicability of the ODE approach is better for smaller values
of wand (1 - A).

The convergence speed of an identification algorithm for
pole-zero systems largely depends on the nature of the
performance surface. The non-quadratic nature of a
performance function depends on how close the poles and
zeros of the system to the unit circle. To study the dependence
of the convérgence nature on the pole radius, we considered
different values for r and r, in the system transfer function.
Here, we include results obtained for r, = r, = 0.9, 0.95 and
0.98. Though results are obtained for all parameters, to avoid
redundancy, only the result of a single parameter is shown in

Fig 7. In general, the convergence time of a gradient algorithm

increases with the closeness of the pole radius to the unit circle
[10]. But, in the case of the present algorithm, it is seen that
there is not much difference in convergence time for the
different pole radii as illustrated in the figure. This is one of
the advantages of the RML algorithm.

With this analysis, more general results can not be obtained
like in a closed form analytical expression.This is mainly
because, the convergence performance largely depend on the
transfer function, its pole and zero locations and the input
SNR. However, for a given class of systems some general
reuslts can be obtained as shown here.
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Fig5 Pole parameter trajectories of the adaptive algorithm for
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CONCLUSIONS

In this paper, the convergence behavior of adaptive
algorithms for identification of pole-zero systems is analyzed.
A method of solving the ODEs which represents the ensemble
behavior of the adaptive identification algorithms is applied to
make this study. Further, dependence of the convergence
behavior on algorithm parameters (¢ and A), system pole
radius are studied. This study is carried out with the help of
both analytical and simulation results.
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In this paper, it is seen that there is a good agreement
between the theoretical and simulation parameter trajectories.
Because of the nonquadratic nature of the criterion function, it
is found that the convergence speed is low during the initial
convergence region, faster during the intermediate
convergence region and it is in between during final
convergence. Further, it is observed that the convergence
speed is proportional to u (1 — A), but at the cost of parameter
noise variance. It is also found that the applicability of the
ODE approach is better for smaller values of u(1 - A).

The convergence speed of the adaptive algorithm for pole-
zero system also depends on the nature of performance
surface. Although the convergence time increases with the
closeness of the pole radius to the unit circle, it is found that
there is not much of difference in the convergence time for
different values of radii.
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