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Mean-Convergence behavior of Adaptive Identification Algorithms for 
Pole-Zero Systems 
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Kharagpur 721 302. India. 

AND 

CHUNDURI B RAMA RAO 
Department of Electronics and Communication, Regional Engineering College, Warangal 506 004, India. 

Adaptive methods for the estimation of unknown system parameters has the advantage of tracking time­
varying systems. Identification algorithms-for recursive systems produce nonquadratic performance functions. In 
such problems it is very difficult to estimate the nature of convergence in a stochastic frame work. Recently, it has 
been shown that the ensemble mean parameter updating equations of IIR adaptive algorithm can be represened by 
associated ordinary differential equations (ODEs). A method of solving the ODEs in order to analyze the mean­
convergence behavior of these algorithms, given the mean description of the input in the form of power spectral 
density, has been presented recently. In this paper, this procedure is applied to study the convergence behavior of 
recursive adaptive algorithms applied for the identification of pole-zero systems. Effectiveness of this method is 
shown through analytical and simulation results. 

Indexing terms: System identification, Adaptive, Pole-zero systems, ODE, Mean-convergence. 

A DAPTIVE estimation of systems with time-varying 
characteristics is an important area of current research [ 1-

7]. Most of the work carried out in this area is available under 
the system identification and adaptive filtering literature. IIR 
adaptive algorithms have several advantages over their FIR 
counterparts. In many situations it is possible to approximate 
even an all zero system of a large order by a pole-zero system 
of a much lower order. Further, an IIR filter may represent an 
optimum structure for pole-zero systems which are commonly 
encountered in practice. The main drawbacks of an I~R 

adaptive filter are the need for stability monitoring during 
adaptation and uncertainty in the convergence time for 
stochastic inputs which is a result of the nonquadratic 
performance function. The nature of convergence and 
convergence time may be different even for the same input 
signal when the noise sample set is different. In the case of IIR 
adaptive filters, while handling stochastic signals, it is very 
difficult to estimate the nature of convergence and 
convergence time. If the estimator dynamics is known, some 
idea regarding the stability and the convergence time required 
can be obtained. Therefore in such situations it is of interest to 
estimate the nature including the time of ensemble mean 
convergence, at least. In this direction, recently, a method of 
analyzing the ensemble mean convergence behavior of 
rec!Jrsive adaptive filters given the mean description of the 
input is presented in [17-18]. The basis for this anlaysis is the 
ordinary differential equation (ODE) representation of the 
recursive adaptive filters [9]. 

Orginally, the ODE approach was presented by L Ljung 
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for the convergence analysis of recursive identification 
algorithms [8]. It was shown that the asymptotic behavior of 
an identification algorithm can be obtained by soh ing the 
ordinary differential equations corresponding !o the 
identification algorithm. The recursive identification 
algorithms use an adaptive step size which tends to zero as 
time tends to infinity. Whereas in an adaptive filter the step 
size is a constant so that the algorithm can track the variations 
in the input. Later, the ODE approach was extended to IIR 
adaptive filters [9-15]. In [9] it was shown that the ensemble 
mean behaviour of IIR adaptive filters can be represented by 
their corresponding OEDs. Earlier, we applied this approach to 
study the convergence behavior of constrained IIR adaptive 
filters [9-10]. The ODEs representing an IIR adaptive filtering 
algorithm are nonlinear and it is extremely difficult to obtain a 
general closed form expression for convergence time and 
nature of convergence. It is only possible to evaluate and find 
solutions for specific filtering problems using numerical 
procedures. 

In this paper we applied this procedure to study the 
convergence behavior of recursive adaptive identification 
algorithms for pole-zero systems. The nature and time taken 
for convergence of general examples of systems is studied. 
Location of the system poles relative to the unit circle decided 
the convergence nature of the identification algorithms. Hence 
in this work we have studied the dependence of the 
convergence behavior and the time taken for convergence on 
algorithm parameters and location of poles. 

Through analytical method which involves computation of 
the ODE solutions numerically, the convergence behavior can 
be studied. This analysis provides a means to obtain a good 
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idea about the nature of parameter adjustment, stability and 
convergence time. Effectiveness of this method is shown 
through some analytical and simulation results obtained from 
system identification examples. 

THE FORMULATION OF AN ADAPTIVE ESTIMATOR 

System model 

Here, we considered the adaptive system identification 
problem as shown in Fig I. The estimation of the unknown 
system is done by its inverse model. Let us consider the system 
transfer function as 

C (z) 
H(z)=-~ 

A (z) 

where C (z) = I + c1z -I+ ... + cPz -p 

(!) 

and A (z) = I + a
1
z -I + ... + a z -q, z -I is the unit delay 

q 

operator. Here, w
1 
and w'

1 
are the system input noise and output 

measurement error which arc uncorrelated with each other. 
The time variable tis an integer which is a discrete time index. 
The SNR represents the ratio of the system output power to the 
additive measurement error power. The system output which is 
corrupted with the measurement noise is fed to the inverse 
model and the model parameters are estimated by whitening 
the output. The inverse model can also be viewed as a 
prediction error filter whose transfer function, input and output 
can be given as 

A (z) 
G (z) 

C (z) 
(2) 

X = System output+ additive noise. (3) 
I 

fl = XI- cpiT (}I- I (4) 

where C/J
1 

= [ - x 
1 

••• -x f 
1 

••• f Fat the time index t ,_ 1-q 1- t-p 

8,_ 1 = [a 1a 2 ••• a" c1c2 ••• c,,Fattimeindext-1. 

Algorithm recursions 

A widely used criterion function for the estimation of the 
pole-zero system parameters is likelihood function of the 
conditional probability density function of the parameter 
vector given the observations. The RML algorithm is a 
recursive· algorithm obtained for maximizing the likelihood 
function. The RML algorithm recursions for estimating the 
Jarameter vector e, can be given as [3,4], 

t:=x-"re 
I t 'f't t- I 

Noise 
Wt 

(Sa) 

[ 

A A 

P=~ p _P,_IIfl,~,rp,_l 
I A I- I A + Ill T p Ill 

.,..., t-1 't't l (5b) 

e, = e,_ I+ J1 ?, IJI, £
1 

(5c) 

C/J, A A A A 

where If! = -- , D (z) = I + k c z -I + ... + k '' c z-1' 
, D (z) I I' 

(5d) 

Here A is the forgetting factor (0 < A < I) used in 
computing the covariance matrix P recursively and J1 is the 

A I 

adaptation step size. k is an algorithm parameter which 
controls the transient behavior of the algorithm [7]. Usually 
k is taken as I. This algorithm is initialized by P (0) = a I and 
fJ (0) = O,where a is a suitable scalar. In the Gauss-Newton 
algorithm form equation (5) can be expressed as [3-4]. 

fJ = fJ +J1R-111't: I 1-l I 't'r I 

R =A R + Ill 11/T 
t t-1 't't .,., 

(6a) 

(6b) 

where R, = P,-1, is proportional to the Hessian matrix of the 
G-N algorithm. 

ODE REPRESENTATION 

In [9], it is shown that the ensemble mean of the updating 
equations, (5b) and (5c) can he represented in the following 
ordinary differential equation form in continuous time, -r 

Here, the denominator in (7b) involves computation of 

E [IJI,T P,_l IJI,] 
q p 

which can be expressed as L. L. P;kE [IJI,(i) lfl,(k)] 
i =I k =I 

(7a) 

(7b) 

where P;k is the (i, k)th element of the matrix [P] and IJI,(i) IS 

the ith element of vector If!,. 

For the ODE representation to be applicable, in addition to 
the regularity conditions required for ODE representation 
given in [8], the ensemble-mean representation requires an 
additional assumption on the input and the adaptive filter. 
It is necessary. that the response of the adaptive filter attains 
steady state before the input charges appreciably. This means 
that there is a restriction on the rate at which the input signal 

Fig I Block diagram of the system identification problem 
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characteristics cail vary. That is, the rate of variation in the 
characteristics of the input should be much smaller than the 
inverse of the dominating time constant of the adaptive filter. 
Further in [9] it is shown that the solutions of the ODEs 
represent the mean trajectories of the parameter estimates, B,. 
It also means that the algorithms converge in mean to the 
stable stationary points of the ordinary differential equations. 

As explained in the introduction, the mean convergence 
behavior of an adaptive filter in a specific application can be 
obtained by solving the-DDEs corresponding to the algorithm, 
given the ensemble-mean description of the input such as the 
power spectral density (psd). When the input to be estimated 
is an ARMA process, the expectations of the gradient and the 
covariance matrix are nonlinear functions of 8,. Then the 
differential equations are nonlinear by nature. Therefore, to 
obtain analytical solutions, given a general input description 
we have to resort to numerical procedures. 

For solving these equations it is necessary to compute the 
expectations of 1f1 (B,)lfl T (B,), 1f1 (B,) t: (B,) and lfl (i,B,) lfl(k,B,) 
for I ::; i ::; q, I ::; k ::; p. Expressions for these are derived in 
[17,18], given the power spectral density of the input to 
system model, <P )z), as 

I 1. dz 
E [ lfl, lfln = 

2
----:- r lJf(z) lfl + CzJ-

1tj z 

· I dz 
E [ 1f1 e ] = -. ~ lJI(z) E (z) -

, , 21tj z 
and 

I J. dz 
E [ lfl, (i) IJI, (k)] = -

2 
. Ylfl(i, z) lfl(k, z) -

1tj z 
for 1 ::; i::; q, I ::; k ::; p, 

I 
where lJI (z) = - <P (z) 

D(z) 

and <P (z) = [-z -I X(z), ... , -z -q X(z), z -1G(z) X(z) , ... , 

(8) 

(9) 

(10) 

(II) 

z-PG(z) X(z)Y (12) 

Here the+ sign indicates the Hermitian operation. 

These integrations can be computed using 8, and <P xx<z> and 
help to solve differential equation (7). 

The numerical procedure to obtain the ODE solutions can 
be summarized as follows. This numerical procedure is ap­
plied using a small time interval, ~'t'. 

At any given time 't', given the parameter vector 8, and the 
input power spectral description <P xx(z), expectations of lfl( 8,) 
1f!T(8,),lfl (8,)£(8,) and lfl, (i,8,) lfl,(k,8,) can be obtained us­
ing eqns (8)-(10). Substituting these in the difference equa­
tions corresponding to ordinary differential eqns (7a) and 
(7b), the .increments to the ODEs at time index t can be com­
puted numerically. Using these increments 8T+6r can be ob­
tained. Then USing 8t+M and input power Spectral description, 
the same procedure can be repeated to get 8r+2M Continuing 
this procedure Until 8TattainS a Stage, Where 8, incrementS are 
negligible. That iS, When 8T iS Very close tO the Optimum, the 
parameter trajectories can be obtained. 

Accuracy of the numerical solutions depends on the time 
interval 't'. A small time interval yields accurate results, but it 
requires a lot of computational time and vice-versa. A reason­
able value for r = I, the sampling time of the discrete version. 

CONVERGENCE BEHAVIOURAL ANALYSIS 

The parameter trajectories are the basis for the study of 
convergence behavior. Speed of convergence, dynamics of the 
estimates during the process of adaptation including the initial, 
intermediate and final convergence and the time taken for con­
vergence etc, can be obtained from the ODE solutions. Depen­
dence of these on the input SNR and the algorithm parameters 
also can be obtained from these characteristics. Although this 
analytical method can not provide closed form solutions for 
the convergence analysis, it provides us with ensemble conver­
gence behavior. Individual convergence plots may deviate 
slightly from these characteristics. However, the deviation is 
not much and the ODE solutions give us a good idea about the 
nature of convergence including the convergence time in a sto­
chastic environment. 

Since the extended least squares (ELS) and recursive least 
squares (RLS) algorithms can be treated as simplified and ap­
proximate versions of the RML algorithm [4], the analytical 
method presented· here is applicable to these algorithms also. 
Although the hyperstable adaptive recursive filter (HARF) and 
its modified version (SHARF) [2, 16] are based on a different 
reasoning, recursions of these algorithms are nearly the same 
as those of the RLS algorithm but for using a filtered gradient. 
Hence the analytical procedure given here is applicable for 
these algorithms also. 

EXPERIMENTAL RESULTS 

To examine the validity of the present analysis, the present 
analytical procedure is applied to several adaptive filtering 
problems using different algorithm parameters and SNR's. 
Here we present some of the representative results obtained 
from the following example of the system to be identified. In 
this example the output of a second order IIR system driven by 
pseudo random gaussian noise is considered as the determinis­
tic part of the noisy signal for prediction. The transfer function 
of the system considered here is 

I - [ 2r
1 
cos (0.2 1t)] z -I+ r

1
2 z -2 

H (z) = --~---------''-----
1 - [ 2r2 cos (0.3 ;rr)] z -I+ rz' z -z 

where the normalized frequency and radius of the conjugate 
poles are 0.15 and r2 respectively and the normalized fre­
quency and radius of the conjugate zeros are 0.1 are r

1 
respec­

tively. Results are obtained for r
1 
= 0.8 and r2 = 0.9 unless 

specified, otherwise. Further, the variance of the input noise = 
1.0. Independent and appropriate amount of pseudo random 
gaussian noise .is added to this system output to form a noisy 
signal at different SNR's. Here for all the results an SNR of 
I 000.0 is considered. 
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Figures ~a and 2b illustrate the simulated and theoretical 
pole and zero parameter trajectories of the adaptive algorithm 
for J1 = 0.02 and A= 0.98. Figures 3 and 4 are obtained for the 
values of J1 of 0.05 and 0.1, keeping the value of A at 0.98. 
Figures 3 and 4 illustrate only the pole parameters. Here, the 
simulation results represent the individual parameter 
trajectories only. The error covariance matrix, P, is initialised 
with a = 0.01. All these results show that there is good 
agreement between the theoretical and simulation results. 

"' c.. 
QJ ..... 
QJ 
e 
"' c.. 
"' a. 

0.5 

0 

-0.5 

-t 

-1.5 0 

C2 
~-----------------· 

theo. _;:::-....X:::__. •• 
1. 

(../sl•. 
I 
./ 

1250 2500 3750 5000 
No. of Iterations 

(a) 

Because of the flat nature of the criterion function, away from 
the optimum, during the initial convergence, the covergence 
speed is low. During the intermediate convergence region it is 
faster. Convergence speed during the final convergence region 
falls in between. It is also observed that convergence speed 
increases as J1 increases but results in high parameter noise 
variance. From Figs 2a, 3 and 4 it is seen that parameter c

1 

attains the near optimum value in around 3300, 1900 and 1500 
iterations respectively. 

rn 
c.. 
QJ ..... 
"' e 
"' c.. 
"' a. 

0.5 

0 

-0.5 

-t 

·1.5 0 

--,.:::---------
theo ;::::;--·· 

// 
I· (..; SUI. 

{ 
I t·· 

oz --· 

OJ 

1250 2500 3750 5000 
No. of Iterations 

(b) 
Fig 2 Theoretical and simulated (a) pole and (b) zero parameter trajectories (inverse model) of the adaptive algorithm for J1 = 0.02, A.= 0.98 

-- c2 0.75 [ 
-··------.,...--,.---""=-----·-~ t!"leo ..,...... .. -,.._ _,... -

0.5 /-_ r 

; ( 
0. 25 f r"sla. 

" o~t 
~ -0.25 ~ 
~ ~\ 
~ -0.5 t\\ 

-0.75 l- \\ 
§ \\m. 

-1 = "\) 
.. 

-1.25 -

_
1 5 

§"~.J .J j .i L.LLili.~uJ .LI. J 1.J j I I .l .I LLL i.J 
. 0 1000 2000 3000 

No. of Iterations 

Fig 3 Pole parameter trajectories of the adaptive algorithm for 
J1 = 0.05, A.= 0.98 

"' '-
"' 

0.5 

~ 0 
e 
"' '-
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Fig 4 Pole parameter trajectories of the adaptive algorithm for 
J1=0.1, A.=0.98 
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Figures 5 and 6 illustrate agreement the pole parameter 
trajectories for values of A of 0.99 and 0.95 respectively, 
keeping the value of J1 at 0.02. Here also good agreement is 
observed between theoretical and simulation results. It is 
also seen that convergence speed is proportional to (1 - A). 
From the Figs 5 and 6 it is seen that the parameter c

1 
attains 

a near optimum value in around 5000 and 2500 iterations 
respectively. But increased (1 - A) causes more parameter 
noise variance. From all the results, it is seen that the 
applicability of the ODE approach is better for smaller values 
of J1 and (1- A). 

The convergence speed of an identification algorithm for 
pole-zero systems largely depends on the nature of the 
performance surface. The non-quadratic nature of a 
performance function depends on how close the poles and 
zeros of t.he system to the unit circle. To study the dependence 
of the convergence nature on the pole radius, we considered 
different values for r

1 
and r

2 
in the system transfer function. 

Here, we include results obtained for r
1 
= r

2 
= 0.9, 0.95 and 

0.98. Though results are obtained for all parameters, to avoid 
redundancy, only the result of a single parameter is shown in 
Fig 7. In general, the convergence time of a gradient algorithm 
increases with the closeness of the pole radius to the unit circle 
[10]. But, in the case of the present algorithm, it is seen that 
there .is not much difference in convergence time for the 
different pole radii as illustrated in the figure. This is one of 
the advantages of the RML algorithm. 

With this analysis, more general results can not be obtained 
like in a closed form analytical expression.This is mainly 
because, the convergence performance largely depend on the 
transfer function, its pole and zero locations and the input 
SNR. However, for a given class of systems some general 
reuslts can be obtained as shown here. 

II) 

<.. 

"' .... 
"' I! ... 
<.. ... 

Q. 

0.5 

0 

-0.5 

-I 

-1.5 0 

Cl 

1000 2000 3000 ~000 

No. of Iterations 

Fig 5 Pole parameter trajectories of the adaptive algorithm for 
J1 = 0.02, A= 0.99 

CONCLUSIONS 

In this paper, the convergence behavior of adaptive 
algorithms for identification of pole-zero systems is analyzed. 
A method of solving the ODEs which represents the ensemble 
behavior of the adaptive identification algorithms is applied to 
make this study. Further, dependence of the convergence 
behavior on algorithm parameters (J.l and A), system pole 
radius are studied. This study is carried out with the help of 
both analytical and simulation results. 

c2 
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Fig 6 Pole parameter trajectories of the adaptive algorithm for 
J1 = O.Q2, A= 0.95 
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Fig 7 Pole parameter trajectories of the adaptive algorithm for 
different pole radii 
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In this paper, it is seen that there is a good agreement 
between the theoretical and simulation parameter trajectories. 
Because of the nonquadratic nature of the criterion function, it 
is found that the convergence speed is low during the initial 
convergence region, faster during the intermediate 
convergence region and it is in between during final 
convergence. Further, it is observed that the convergence 
speed is proportional to Jl. (I - A), but at the cost of parameter 
noise var.iance. It is also found that the applicability of the 
ODE approach is better for smaller values of p(l -A). 

The convergence speed of the adaptive algorithm for pole­
zero system also depends on the nature of performance 
surface. Although the convergence time increases with the 
closeness of the pole radius to the unit circle, it is found that 
there is not much of difference in the convergence time for 
different values of radii. 
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