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Abstract—The flow of incompressible microstretch fluids is governed by a coupled system of differential
equations involving the velocity vector g, microrotation vector # and the scalar » representing the
microstretch of the fluid element. The paper employs the energy method for obtaining criteria for the
universal stability of microstretch fluid flows and provides an algorithm for the determination of the critical
Reynolds number. It is seen that the Reynolds number can be defined in terms of the maximum speed of the
primary flow,

1. INTRODUCTION

THEe THEORY of simple microfluids developed by Eringen[1] takes note of the effects arising from
the local structure of fluid elements and their intrinsic motions consequent to these effects.
Apart from the usual translatory degrees-of-freedom reckoned by the velocity vector § the fluid
element has additional degrees-of-freedom enabling it to undergo intrinsic rotation as well as
deformation and the latter features are reckoned by the three gyration vector fields 5,. Even the
linear model of a simple microfluid poses difficulties in theoretical investigations as it involves
twenty two material constants in its constitutive relations. A simplified version of the model
leads to the class of micropolar fluids[2} in which the local motion of a fluid element is a rigid
rotation. Another simple version is the case of a microstretch fluid3,4] in which the local
motion of a fluid element involves both rotation and stretch. In this case the gyration tensor vy
and the tensor of first stress moment Ay, are expressible in the form

Vg = vy + €y, 8}
i
Arp = Ay =3 Eorli )

and the vector v, represents microrotation while the scalar denotes microstretch. The class of
microstretch fluids is wider obviously than that of micropolar fluids and both the two fluid
models depart from the classical Navier-Stokes theory in the two important features: the
sustenance of couple stress and the non-symmetry of the stress tensor.

In this paper we examine the stability of microstretch fluid motions with the aim of
obtaining a variational algorithm that enables the determination of the critical Reynolds
number, The method employed is the energy criterion introduced earlier by Serrin[5] for the
investigation of the stability of viscous fluid motions governed by the Navier-Stokes equations.
This powerful method has been extended by Joseph[6] for the discussion of the stability of
Boussinesq equations. Serrin’s method has been employed by the authors{7, 8] to obtain criteria
for the stability of micropolar as well as microstretch fluid flows and by Shahinpoor and
Ahmadi}9] in the case of Cosserat fluid flows.

2. EQUATIONS GOVERNING THE FLOW OF INCOMPRESSIBLE MICROSTRETCH FLUID

We consider the motion of an incompressible microstretch fluid in an arbitrary time-
dependent domain R(¢). The equations governing the flow are(3, 4]

divg=0, 3)

a - , .
(@ grad)j 25 =0, )

G . . -
p{f}_q X curl q_f.grad(%qz)} =pf~gradp+)c0grad v+kcurlv

—(u+k)curl curl §+ (A, +2u + k) grad (div §), 3
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pj[% +(q - grad) 17] =pi—2ki+kcurl §

—vycurl curl 7+ (a + B+ v) grad (div ), 6)
1. v - 2
3PI| 5+ - grad)v | = pl+aViv — (mo— Aoy M

In the above muster of equations p is the density of the fluid, j denotes the gyration
parameter, p is an undetermined pressure, f and 7 are, respectively, the body force and body
couple per unit mass and 1 in eqn (7) is one third of the trace of the first body moment per unit
mass. The vectors § and 7 are the velocity and microtation vectors and the scalar » denotes the
microstretch of the fluid elements. The viscosity coefficients Ay, u, k, 1, and A, and the
gyroviscosity coefficients a, B, ¥ and a, are constant and are subject to the following
restrictions 3, 4].

3/\|+2[.L+k?0, 2”+k>0, k?O, ’70_/\030,
2
(770‘)‘0)(3A1+2M+k)2—)‘—°, 3a+B8+y=0,
y=0, |B|$'Y, ag=0. (8)

The density p and the gyration parameter j are positive and the former is a constant.

Boundary conditions. We assume that on the boundary dR(t) the field variables g, 7, v are
prescribed. If £ is a boundary point and ¢ is the time and U(%, t), N(%, t) and Ny(%, f) are the
velocity, microrotation and microstretch of the element at ¥ and at time ¢, we have

q&t=U 1), #(xt=N(&1), v(E 1)=Ny%1). ©)
These conditions reflect a sort of super adherence of the fluid to the solid boundary.

3. ENERGY EQUATION

The flow (g, 7, v) of an incompressible microstretch flow in the domain R(¢)—referred to
henceforth as the primary motion—is altered at some instant (¢ =0, say) to the starred flow
(g*, v*, v*) and both the flows have the same density and gyration parameter j. The body force,
body couple and the body moment trace are omitted. On the boundary 4R(f) both the flows
conform to the adherence condition. The difference flow defined by (7= g*—g, 3 = i* -7,
0 = v* — p) satisfies the conditions

i=0, 3=0, 6=0 on 4R(}) )

and the parameters p, j are the same for the primary, starred and the difference flows. To
analyze the stability of the primary flow we may introduce the Liapunoff function T represent-
ing the kinetic energy of the difference flow (i, 3, 6) and study the time-rate of variation of T
and also its limit when ¢ —»«. The Liapunoff function

T=T,+Ty+ Ty=% [ pap dr +1 [ pi37 dr +3 [ pie* dR (10)
2 2 i

and each volume integral extends over the domain R(¢). The field quantities and the domain
R(t) are assumed smooth enough for the validity of the divergence theorem. In the sequel the
volume infinitesimal dR in the volume integrals over the domain R(¢) is omitted. Since the
primary as well as the starred flows satisfy the governing eqns (3)~(7) we see that

diva=0, (n

(i@ - grad)j —26j =0, (12)
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pf:%?-{-{é* cgrady@d +(a - grad)q] =—grad (p*—p)+ Ao grad 6
+kcurl &~ (u + k) curl curl @, (13)
pj [%';Z+ (* - grad)d +(a - grad)i] =—2k& + k curl ii — y curl curl §
+(a + B +v) grad (div 9), (14

;p][ X (" grad)f+ (0 grad)v] 2720~ (110~ Ao)b, (15)

We can use the relations {11)-(15) and the boundary conditions (9) to evaluate the time-rate of
change of each of the energy functionals Ty, T, and T; defined in (10). These are given below in
a form suitable for later deduction of the variational algorithm for the critical Reynolds number

=fpli-(gradli)~q+kf5-curlﬁ

~{u+k) f {curl #), {18

e [ - @rad 8- 5+ [ piv¥i7

+2fpjs§- §+kf5~curié

-2k f(é)z— ¥ f (curl 82 = (a+ B +7) f (div &), (17)
g{ =3 f pi(i - grad B)v +3 f piv*6°

+3 [ oo =3 f (erad 82— (g~ Ao) f ¢ (18)
We define the quantities V, My and M as the maximum modulus value of the speed,

microrotation and microstretch over the domain R{f) and over an arbitrary but fixed time
interval (0, 7] so that

(V, My, My=max (g}, 7], [vy on R(#) x (0, 7] (19)
and d =diameter of the domain R(#), for 0<t=<1. We adopt the scheme of non-dimen-

sionalization shown below in (20) and delete the primes over the non-dimensionalized quantities
thereafter

i= V@), §=V(@), d=M(), 7=M(5), 6=M(@),
v=M@"), »*=M@*), t~——(t') F=d(x), j=d4j). (20)

The time-rates of change of the energy functionals are given by

ad;f(ﬁ)’/anii « (grad @) - q‘+£~%f§-curl ﬁw’;;;f(curl >, 20
& [3idr=[in-Graa ). 5+ 244 ] HOY
2Mdf}0 17+—--~5f0 curl 7~ (9)?

< +
v R 10 - [ (curt gy 222 [ (div B, @)
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d (¥ - 3Md J* g2

ar 0 2f][u (grad )y + — Y ]

3Md S 2 3&0 f 2_3(7]0—)\0)f 2
+ v J’ vé Vil (grad 6) ———pv 7 0-. (23)

The stability criteria can be obtained by seeking conditions that ensure the decay of the
Liapunoff energy function T to zero as time t—x. Since the paper aims to develop an
algorithm for the determination of the critical parameter that ensures stability, we have to select
the parameter whose role is to be accentuated in comparison with that of others. Let us define
the parameters

,U«+k -1 __k _ Y
n = de =Re > n2_#«+k’ n3_(,.L+k)d2,
_a+B+y _ 300 _3(7]0‘A0) _M _M_{!
n4"'(,u+k)d23 ns_(ﬂ+k)d2’ ne = ([.L+k) , M= V ’ nST [ (24)

Each of the above eight parameters is positive and we have 0 < n,<2. The number Re = n;'
is the Reynolds number of the primary flow and the algorithm to be obtained below is derived
by accentuating the role of this parameter in the stability criteria. The time rate of energy eqns
(21)-(23) can now be written in the form

%f(zi)2/2=fﬁ *(grad ﬁ)-q+n1n2n7fi§-curl ﬂ—n,f(curl ay, (25)
d 1,z (. _ N2
a 51(19) = | jia(grad ) v+ng | jp*¥(F)

+2ﬂgf}01/ §+ 0 2}19 curl i

—2n,nzf(5)2—n1ngj’(curl 3

- nyng f (div 9)?, (26)
%f§j02=%fj[ﬁ-(grad v +%n8jjv*02

+3ngfju02—nln5](grad 0)2—n1n(,fb‘2. 27
We now define a two-parametered energy functional
T = Tl + /\2T2+ /\3T3 = f (12)2/2
1 oa 2 3 n2
o | ZHBR+As | 50 (28)
where the two parameters A, and A; are positive and observe that to achieve the universal

stability of the primary flow it is essential that

d
T T<0 29

for all t >0 and every positive pair (A, A;). From (25)-(28) we see that

dT

ar = 1@ 9)+ haL(d, 9, 6)+ As1x(i, 6)— mD(i, B, 6), (30)
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and the functionals I, I, I, and D are given by
IL=1(a &= f a-(gradid) - g+ n,n2n7j 9 - curl 4, 31
L=1a,8,0)= f jii - (grad &) - 7+ ng f r*(9)?
+2n8fjoa- 6+%f§-cur1 i, 32)
7

_ 3. . 3 a2 s

L(a, 0)=§ jli - (grad 0)]V+§n8 jv*6°+3ng | jub°, (33)
D, 9, 6) = f (curl @)+ A,(2n, f (9

+n3f(curl 5)2+n4j(div 5)2)+A3(n5j(grad 0)2+n6f02). (34)

The condition (29) is true if and only if we have
I+ A+ AL — n D@, 9, 6) < 0. (35)

We can connect the problem of finding the critical value of Reynolds number Re for universal
stability of the primary flow to the variational problem of finding the maximum of

1(d, 8, 8) = I(@, §) + A, (@, 9, 0) + A; (&, 0) (36)

among the class of the functions &, 9, 8 which satisfy (i) the constraint

diva=0 in R(t)x(0,7] (37
(ii) the normalization condition
D(a, 8, 8)= (38)
and (iii) the boundary conditions
=0, =0, 6=0 on BIR() 39

for prescribed values of the parameters n,, ns, ny, ns, ng, n; and ng as well as A, and A;. We
consider the variational problem

([ @ 5.00)=0 (40)
where
fla,d,0)=a-(grad @) - G+ nynon, & - curl i
+ ,\2( ji - (grad 9) - 7 + ngjv*(§y?
+2n,j07 - & +n—"l':-Z & - curl 12)
+ )«3(% jli - (grad 8)]v +% ngjv*6*

+ 3nsjV02) —-Pdivi —% D(a, 4, 6). (A1)
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The parameters P=P(x, y, z, t) and 1/R=(1/R,,,,) are the Lagrange parameters in the
extremum problem. The Euler-Lagrange variational equations corresponding to (40) are found
to be

div (iq) +—I%curl curl i —(grad i) - G — Aj(grad 8) - &

Ay

—% Ayjv grad 6 — (n1n2n7 + ) curl § —grad P =0, 42)

4
2A2n4
R

ny

grad (div §) + 2'\13

div (Ayjiap) — curl curl 9

—(mnan, + /\zmﬂz) curl 7 — (2)\znsjll* _4)l2"2> ]

—2A;ngj07 =0, (43)
% Ag div (]VIZ) "‘2%5 V20 —ZAzngjﬁ . 5
320+ 1¥)0 +%’5’50 ~0. (44)

Scalar multiplication of (42) with & and integration of the result over the domain R(¢) yields the
result

—2fﬁ - (grad @) - q—(n1n2n7+A2:'n2)J’5 ~curl
7
. _ 3 .
—Azf]u-(grad 3)- v——z-Agfjvu -grad @
2 2
ts J' (curl @7 =0. 45)

From (43) we can derive the result below after scalar multiplication by & and integration of the
product over the domain R(?).

- (n1n2n7+ Az:"”) j §-curlii—A, fjli -(grad 9) - v
7

—2A,ng J' (8P —2Asng f oy - 9

+% (2)«2;:2 f () + Ayny f (curl §)

+ g f (div 6)2) 0. (46)
Multiplication of (44) by 8 and integration of the product over the domain R(¢) yields

-2A2ngjj017- 5—%)\;]1’1&2 -grad @
- 3A3ns f jv*ﬂz - 6)¢3n3 f jll02

+% (ms f (grad 8)* + Asng f 02) =0. 7
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The sum of eqns (45)-(47) is recognized to be
14, )+ Aol 8,0)+ MIx(@, 6~ DU&, 5,6)=0 )

whence, it follows that any solution (4, §, ) of the Euler-Lagrange variational eqns (42)-(44)
for the variational problem (36)-(40) is such that

1

RAzJ\s

I(@, 8,6)= (49)

X | e

It is known from the calculus of variations (Courant and Hilbert[10]) that the variational
problem

maximum {I(4, &, 8)} (50)
divi=0 in R()X(0,r] (51
D(i, 8,0)=1 (52)
Ilory=0, Firy=0, Blorcr="0 (53

possesses maximizing solution functions (#, 3, 6). These functions are also eigenfunctions of
the variational eqns (42)-(44) (Courant and Hilbert[11]) corresponding to the eigenvalue
(1/R,,»,); further it is seen that

1 I(4, §, 8) = maximum {I(&, 8, )}. (54)
Ry,

From (49) we know that for any solution (&, 8, 8) of the E-L variational eqns (42)~(44) we have

1

I(a,43,0)= 5
(&, 0) Ron (55)

and comparison of (54) and (55) shows that
Iél\z.}g = Ry, ap (56)

The variational problems (50)~(53) generates a complete set of eigenfunctions (i, 3, 6;) and a
corresponding set of eigenvalues (RY),)"'[10]. This set of functions has the orthogonal
property
I(ﬁh 51" ol; ﬁlo 1§k’ Gk) =

fﬁ;-(gradﬁk)-q+f&k~(gradﬁ;)-é

+ nnyng J'(li - curl @ + 9y - curl &)

+ Ay {%n_g f(zi - curl @ + 9 - curl &)

7
+ [ - @rad 8- 5+ [t grad ) 5
+2ng J' ;- B+ 2ng [ 7 (0, &+ 6:5)

+ A} {%f}lf div (9,-:2;( + 8&&;)

+ 3nsfjv* 0,0, +6ng jjuo,ﬂk}} =0 (i#k) 63)]
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D, 9, 6;; iy, O, 0k)=f(curl ;) - (curl 12,()+)\2{2n2f1§,~ -
+ mf(curl &) - (curl 9+ mf(div 9,) div 5,()}
+ A;{mf(grad 6;) - (grad 6,) + ng f 0,~0k} =0 (i#k). (58)
For any admissible function (i, 3, ) of the maximization problems (36)-(39) we have

I(&, 3, 0)< Lu.b. <(—l,) (59)

@ R,

The left side expression in (59) can be made arbitrarily close to its maximum value by a suitable
combination of the complete and orthonormal set of eigenfunctions (&, ¥;, 6;) and we have the
result

L. (—(—l)—) (60)

Ry, i AR,

Theorem. Let (i, 3, 6) be any solution of the variational problems (36)-(39) for fixed values
of n,, ny, ng, ns, ne, n; and ng, and positive values of A, and A3, and let

max I(d, 9, 8) = 1 61)

A3.A3

The eigenvalue problem defined by (42)-(44) has a least eigenvalue and the primary flow is
stable if its Reynolds number Re is less than the least eigenvalue R,,,,. Further, given a
complete set of eigenfunctions (i, 9;, 8;) corresponding to the eigenvalues R‘QM we have

R\ =2 Lb R} (62)

The above assertion follows on noting that for a suitably normalized solution (4, 9, 8) we
have from (21)-(23), (28) and (30)

d

ET=I(IZ, 4,60)—n (63)

and for any admissible solution (i, 8, 8), eqn (54)

dT 1

—_———<

dt = Riyn,

- m (64)

Since n7' = Re is the Reynolds number of the primary flow, the result follows in view of (29).

The least eigenvalue Ié,\m involves the two parameters A, and A; both positive and arbitrary
otherwise. One may seek the maximum of this eigenvalue over the first quadrant of the
(A, A)—plane and this gives a sharp estimate of the critical value of the Reynolds number of
the primary flow. Flows with Reynolds number Re less than this critical value are stable.
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