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Abstract-The flow of incompressible microstretch fluids is governed by a coupled system of differential 
equatians involving the velocity vector 4, microrotation vector i and the scalar Y representing the 
microstretch of the fluid element. The paper employs the energy method for obtaining criteria for the 
universal stability of microstretch fluid ffows and provides an algorithm for the determination of the critical 
Reynolds number. It is seen that the Reynolds number can be detined in terms of the rna~~rnurn speed of the 
primary flow. 

1. INTRODUCTION 
THETHEORY of simple microfluids developed by Eringen[l] takes note of the effects arising from 
the local structure of fluid elements and their intrinsic motions consequent to these effects. 
Apart from the us& translatory defers-of-freedum reckoned by the velocity vector 4 the fluid 
efement has additionat degrees-of-freedom enabhng it to undergo intrinsic rotation as welt as 

deformation and the fatter features are reckoned by the three gyration vector fields &. Even the 
linear model of a simple microfluid poses difficulties in theoretical investigations as it involves 
twenty two material constants in its constitutive relations, A simplified version of the model 
leads to the class of micropolar fluids121 in which the local motion of a fluid element is a rigid 
rotation. Another simple version is the case of a micros&etch fluidf3,4] in which the local 
motion of a fluid element involves both rotation and stretch. In this case the gyration tensor ZQ 
and the tensor of first stress moment A k.,,, are expressible in the form 

~/cl = f's&1 + l klrh (1) 
f 

bsi7 = Mf(? - 2 Qmf%r c-4 

and the vector V, represents microrotation while the scalar denotes microstretch. The class of 
microstretch fluids is wider obviously than that of micropolar fluids and both the two fluid 
models depart from the classical Navier-Stokes theory in the two important features: the 
sustenance of couple stress and the non-symmetry of the stress tensor_ 

fn this paper we examine the stability of m~crostretch ffuid motions with the aim of 
obtaining a variational algorithm that enables the determination of the critical Reynolds 
number. The method employed is the energy criterion introduced earlier by Serrin[S] for the 
investigation of the stability of viscous fluid motions governed by the Navier-Stokes equations. 
This powerful method has been extended by Joseph&] for the discussion of the stability of 
Boussinesq equations. Serrin’s method has been employed by the authors{?, 8] to obtain criteria 
for the stability of micro~olar as weI1 as microstretch fluid flows and by Shahinpoor and 
Ahmadi[Y] in the case of Cosserat fluid flows. 

2. EQUATIONS GOVERNING THE FLOW OF INCOMPRESSIBLE MICROSTRETCH FLUID 

We consider the motion of an incompressible micro&retch f&rid in an arbitrary time- 
dependent domain R(t). The equations governing the flow are[3,4] 

div s” = 0, (3) 

2 + (4 * grad) j - 2~j = 0, (41 

p $-g‘xcurlQ+grad 
c 

=#-gradp+hograd y+kcurlC 

-(p + k) curl curl 4 + (A, + 2~ + k) grad (div 41, 
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I 
=pi-2k;+kcurlq 

- y curl curl F + (a + p + y) grad (div F), (6) 

=pl -taJ*u-(q)-hO)V. 

In the above muster of equations p is-the density of the fluid, j denotes the gyration 
parameter, p is an undetermined pressure, f and r are, respectively, the body force and body 
couple per unit mass and 1 in eqn (7) is one third of the trace of the first body moment per unit 
mass. The vectors 4 and V are the velocity and microtation vectors and the scalar v denotes the 
microstretch of the fluid elements. The viscosity coefficients A,, CL, k, q. and ho and the 
gyroviscosity coefficients (Y, p, y and czo are constant and are subject to the following 
restrictions[3,4]. 

3A,+2ptkaO, 2p+kaO, ka0, TO-AoaO, 

The density p and the gyration parameter j are positive and the former is a constant. 
Boundary conditions. We assume that on the boundary aR(t) the field variables 4, V, Y are 

prescribed. If ff is a boundary point and t is the time and o@, t), N(L t) and No@, r) are the 
velocity, microrotation and microstretch of the element at ff and at time t, we have 

4(1?, t = U(.f, t), $2, t = N(f, t), v(.f, t) = N&f, t). (9) 

These conditions reflect a sort of super adherence of the fluid to the solid boundary. 

3.ENERGY EQUATION 

The flow ((r, V, V) of an incompressible microstretch flow in the domain R(t)-referred to 
henceforth as the primary motion-is altered at some instant (t = 0, say) to the starred flow 

(F, i*, v*) and both the flows have the same density and gyration parameter j. The body force, 
body couple and the body moment trace are omitted. On the boundary JR(t) both the flows 
conform to the adherence condition. The difference flow defined by (a = 4* - 4, I? = C* - i;, 
0 = v* - u) satisfies the conditions 

a=& &=6, B=O on dR(t) (9) 

and the parameters p, j are the same for the primary, starred and the difference flows. To 
analyze the stability of the primary flow we may introduce the Liapunoff function T represent- 
ing the kinetic energy of the difference flow (ti, 8, e) and study the time-rate of variation of T 
and also its limit when t + m. The Liapunoff function 

(10) 

and each volume integral extends over the domain R(t). The field quantities and the domain 
R(t) are assumed smooth enough for the validity of the divergence theorem. In the sequel the 
volume infinitesimal dR in the volume integrals over the domain R(t) is omitted. Since the 
primary as well as the starred flows satisfy the governing eqns (3~(7) we see that 

div U = 0, (11) 

(ii + grad)j - 20j = 0, (12) 
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p ~+frl**grad)n+(s~grad)41=-grad(pL-p)+4grad8 
t 

+ k curl 8 - (,s f k) curl curl ii, 

pj ~+(q*.grad)d+{fr-grad)2i 
c I 

=-2k&+kcurlii-ycurlcurl6 

+ fru + pt + y) grad (div 8),, 

* grad)Bf(U * grad)v 
I 

= aoV26-(~~-ho)8. 

(13) 

(14) 

(15) 

We can use the relations (1 l)-(S) and the sundae ~o~diti~~s (9) to evaluate the time-rate of 
change of each of the energy functio~a~s T,, T2 and T3 defined in (IO). These are given below in 
a form suitable for later deduction of the variational algorithm for the critical Reynolds number 

dG_ 
dt- pjti * (grad 8) * ;i; -f- 

J 
pjv*(&* 

(17) 

+3lpiv8’-3abl(~radBY-3(~~-~~)182. (18) 

We define the quantities V, M,, and M as the maximum modulus value of the speed, 
microrota& and microstretch over the domain R(t) and over an arbitrary but fixed time 
interval (0,7] so that 

and d = diameter of the domain R(t), for 0 it I 7. We adopt the scheme of non-dimen- 
sional&ion shown below in (20) and delete the primes over the ~o~~irne~sio~al~~ quantities 
thereafter 

ii = VW), 4 = v(q), 6 = Mo(tiP), 17 = MO(?), 6 = M(q), 

I = M( v’), I/* = M( Y*‘), t -$*‘), f = d(P), j = d2u). 

The time-rates of change of the energy functionrtfs are given by 
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~/f82=Slj,~.(gradB)lv+~1iv*8' 

+3Md 
I/ 

'v,+ 3oo p 
I 

(grad 0)’ - 3(TLdAo) 119~. (23) 

The stability criteria can be obtained by seeking conditions that ensure the decay of the 
Liapunoff energy function T to zero as time t+=. Since the paper aims to develop an 
algorithm for the determination of the critical parameter that ensures stability, we have to select 
the parameter whose role is to be accentuated in comparison with that of others. Let us define 
the parameters 

n =a+P+Y 3ao 3(770 - Ao) Mod n =!!I@ 4 (P+,#’ n5=(p+k)d2' &= (p++) ' n7=v' *, v' (24) 

Each of the above eight parameters is positive and we have 0 < n2 < 2. The number Re = n;’ 
is the Reynolds number of the primary flow and the algorithm to be obtained below is derived 
by accentuating the role of this parameter in the stability criteria. The time rate of energy eqns 
(21)-(23) can now be written in the form 

-w4 
I 

(div a)‘, 

$I~jtJ2=~/i[B~(gradB)Jv+~ns/ju*B2 

+3n8_/juB2-nln5/(gradB)*-nln6_/B2. 

(26) 

(27) 

We now define a two-parametered energy functional 

T = T, + h*Tz+ AjT, = 
I 

(Q2/2 

+-A2 
I 

kj(8)2+ Al 
I 

ijo (28) 

where the two parameters A2 and A3 are positive and observe that to achieve the universal 
stability of the primary flow it is essential that 

$T<O 

for all t > 0 and every positive pair (AZ, A3). From (25)-(28) we see that 

(2% 

$ = I,(& 6) + A212(n, I?, 0) + A&(& 0) - n,D(ii, I?, e), (30) 
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and the functionals I,, I,, 1, and D are given by 

1415 

I, = I,(& 8) = 
I 

ti . (grad a). cj t nln2n7 
I 

8. curl C, 

I, = I,(& $0) = 
I 

jE . (grad 8) . V t n8 
I 
jv*Gi)' 

t 2n8 
I 

jh. 4-t? 6.curl C, 
I 

I,(li.S)=i j[i.(gradB)]vttns 
f f 

jv*#t3ng 
f 
jd2, 

(31) 

(32) 

(33) 

D( 0, 8, e) = f (curl a)’ t A2(2n2 f (S)2 

+ n3 f (curl S)* t n4 f (div S)2) + A3(n5 f (grad e)2 f n6 f e?. (34) 

The condition (29) is true if and only if we have 

I, t h212 t A& - n,D(U, 8, e) < 0. (35) 

We can connect the problem of finding the critical value of Reynolds number Re for universal 
stability of the primary flow to the variational problem of finding the maximum of 

r(a, 8, e) = z,(n, 8) + A,~~(c, 8, e) t ~,z~(n, e) (36) 

among the class of the functions I, 8, 0 which satisfy (i) the constraint 

divC=O in R(t)x(O,~l (37) 

(ii) the normalization condition 

o(n, 8, e) = i (38) 

and (iii) the boundary conditions 

a=& a=& 8=0 on @R(t) (39) 

for prescribed values of the parameters n 2, n3, n4, n5, n6r n7 and n8 as well as A2 and A3. We 
consider the variational problem 

where 

f(& &,0) = C * (grad 0). 4 t nln2n7&. curl ii 

t A2 
( 
jij - (grad 8) * V t nsjv*(&)’ 

t2n8jh’8t~6’cudii 
> 

t A3 
( 
i j[k - (grad e)ly ti n8jv*8* 

+ 3n8j# 
> 

- P div ii -i D( Q, a,@). (41) 
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The parameters P = P(x, y, z, t) and l/R = (l/R,,,+) are the Lagrange parameters in the 
extremum problem. The Euler-Lagrange variational equations corresponding to (40) are found 
to be 

(42) 

div (a@ + f curl curl n - (grad 0) . ij - h&grad 8) * C 

-i A3jv grad 8 - 
( 

h2w2 nln2n7 + - 
n7 > 

curl 8 - grad P = 6, 

2h2n4 - 2A2nx 
div (hjti;) -R grad (div 6) t R curl curl 6 

-hn2n7+ *)curlP-(2A2nJP*-?)a 

- 2A2nsjtG = 6, 

i A3 div (jr@ - - 2A3n5 2 R V 8--2A2nsjC. 8 

- 3Agz8j(2v + v*)O t R 2A& 0 = 0 . (44 

Scalar multiplication of (42) with ii and integration of the result over the domain R(t) yields the 
result 

(43) 

- 2 
I 

bw2 ti - (grad a) + cj - (nln2n, t - 
)I 

S *curlC 
n7 

- A2 
I 

jti‘. (grad 19) * Y-i A3 
I 

jvU . grad 0 

t f 
I 

(curl a)’ = 0. (45) 

From (43) we can derive the result below after scalar multiplication by 8 and integration of the 
product over the domain R(t). 

( 
A2nlnz - nln2n7t- 

n7 >I 
8 * curl ti - A2 

I 
jri * (grad 8) . C 

- 2A2n8 
I 

iv*(s)’ - 2A2ns 
I 

j&j . 8 

+~(2A2n2~(8)2tA2n~~(curl&)2 

tA2n~~(div~)2)=0. (6) 

Multiplication of (44) by 8 and integration of the product over the domain R(t) yields 

- 2A2n8 
I 

jtG . 8 -t A3 
I 

jvP . grad 8 

- 3Ag8 
I 

jv*B’ - 6A3n8 
I 
jve2 

(grad fl)2 + A& (47) 
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The sum of eqns (45~47) is recognized to be 

1417 

z,(~,6)+A*z*(~,~,e)tAlb(P,e)-~n(n,~,e)=o (48) 

whence, it follows that any solution (a, 8,8) of the Euler-Lagrange variational eqns (42)-W) 
for the variational problem (36 j(40) is such that 

1 1 
m,w)=~=R,,,,. (4% 

It is known from the calculus of variations (Courant and HilbertUO]) that the variational 
problem 

maximum {I(@, 9, e)) (50) 

div ii = 0 in R(t) x (0, r] (51) 

~(fz, 8, e) = i (52) 

ihRltf = 6, &Rtij = ii, ehtt = 0 (53) 

possesses maximizing solution functions (&a, $I. These functions are also eigenfunctions of 
the variational eqns (42)-W) (Courant and Hilbert[ll]) corresponding to the eigenvalue 
(1/RA22,); further it is seen that 

1 
- = I(& 8, ol> = maximum {I( &, 8, e)). 
&?,A, 

(54) 

From (49) we know that for any solution (a, 8, i3) of the E-L variational eqns (42)-(44) we have 

I (ii, 8, e) = & 
A+3 

and comparison of (54) and (55) shows that 

&,*, 1 &.A3’ (56) 

The variational problems (50~(53) generates a complete set of eigenfunctions (iii, #i, ei) and a 
corresponding set of eigenvalues (R!&,)-‘[lOI. This set of functions has the orthogonal 
property 

I( iii, &, ei ; 4, I&, e,) = 

I 
iii * (grad iz,) + cj 4 

I 
z& * (grad rli) - ij 

+ fllfl@y 
I 

(l?i * curl & + l?k ’ curl tici) 

+A, y 
1 I 

(& * curl i& + & * curl !iJ 

+ 
f 

jlsi . (grad &) * i; + 
I 

j& * (grad ai) * i; 

t 2Q 
I 

jV*8i * 7_$ -4 2&r jzj * (S,$k + f?ki$) 

+ 3n8 ju* @I, + 6ns =o (i# k) (57) 
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D(fij, 8i, 0i; ok, 8/f, ok) = (Curl pi) ’ (Curl ik,) + A* hi ’ i?j( 

+ n3 (curl pi). (curl 8k) + n4 (div &i) div Jkk) 

(grad 0i) * (grad 0,) t n6 (i# k). 

For any admissible function (0, 6, (3) of the maximization problems (36~(39) we have 

(58) 

(59) 

The left side expression in (59) can be made arbitrarily close to its maximum value by a suitable 
combination of the complete and orthonormal set of eigenfunctions (&, &it 0,) and we have the 
result 

(60) 

Theorem. Let (ri, 6, f3) be any solution of the variational problems (36~(39) for fixed values 
of n2, n3, n4, n5, n6, n7 and ns, and positive values of A2 and A3, and let 

max I( C, S, e) = A-. 
RW, 

(61) 

The eigenvalue problem defined by (42)-(44) has a least eigenvalue and the primary flow is 
stable if its Reynolds number Re is less than the least eigenvalue l?AI,s. Further, given a 
complete set of eigenfunctions (Ui, &iv 0,) corresponding to the eigenvalues R!&,, we have 

The above assertion follows on noting that for a suitably 
have from (21~(23), (28) and (30) 

and for any admissible solution (U, I.?, e), eqn (54) 

dT,_L.__ 
dt - &A, n’ 

(62) 

normalized solution (fi, &e) we 

(63) 

(64 

Since n;’ = Re is the Reynolds number of the primary flow, the result follows in view of (29). 

The least eigenvalue I?,,,,*, involves the two parameters AI and A3 both positive and arbitrary 
otherwise. One may seek the maximum of this eigenvalue over the first quadrant of the 
(A2, A+plane and this gives a sharp estimate of the critical value of the Reynolds number of 
the primary flow. Flows with Reynolds number Re less than this critical value are stable. 
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