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ABSTRACT: The problem of finite torsion of a cylindrically aeolotropic hollow circular cylinder
18 considered. An approximate solution of the governing differential equation is obtained.
Results are compared with those of earlier work.

Introduction

Seth (1, 2) solved the problem of finite torsion of a solid circular cylinder
when the material is either isotropic or transversely isotropic. Solution of the
governing differential equation was obtained in the form of a convergent series.
In this paper we apply the method of Seth for the torsion of a hollow cylinder
when the material is cylindrically aeolotropic. As the governing differential
equation attains complexity, its solution approaches that indicated by Mitra
(3) up to a desired power of 72, where 7 is the angle of twist.

Components of Displacement

Let the cylinder whose internal radius ry, and external radius r, in the de-
formed state be subjected to a finite twist 7. From considerations of symmetry,
we assume the displacement components are given as (1)

u =xz(l —Becostz) —yBsinrz
v =y(1 — Bcosrz) + z8sinrz
w = az (1)

where 8 is a function of r (= \/2? + »?) and « is a constant to be determined.
In cylindrical coordinates these components are given as

u, = r(l — Bcos 12)

Uy = rpsinrz

U, = az. (2)
Stresses, Strains and Stress-Strain Relations

In the theory of finite deformation strain components are described as em-
ploying the coordinates of the particle either in the strained state as independent
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variables or in the unstrained state as independent variables. The former is the
Eulerian method and the latter is the Lagrangian method. For actual applica-
tions of the theory the importance of using the Eulerian method is stressed by
Seth (1) and Murnagan (4). In terms of displacement vector u;, the compo-
nents of finite strain in the Eulerian coordinates are given as

2ei; = Ui; + Uji — Uk, U s 3)

In the Lagrangian coordinates the latter term in Eq. 3 is positive.
From Egs. 2 and 3, we obtain

Err = %[1 - (TBl + B)z:]

Cog = %(1 “/32)
€; = a — 3o — 1132
eg; = T13*
Ces = 1'1‘/32
erg = €5 = 0 4)
where
dg
, —— e
F= dr’

When the material is cylindrically aeolotropic, the stress—strain relations
are given as
= Cnerr + C2€00 + C13€1s
= Cnerr + C2€00 -+ C23€zs
= Cneyr + 082520 -+ C33€:s
= Css6re; 19 = Cosro (5)

IR ID

~~
20 = Cubay;
where ¢;; = c¢ji.

Equations of Equilibrium
The only equation which is not identically satisfied is
arr | r — 09

ar T

=0 (6)
which gives
cn(rB’ + B) (28" + r8”") + c1B8’ + cur?(r8® + r288")

- 51; [(Cu —en) (1 — 6% — (en — en)r? (B” + '2_32’)

+(cl;,—c23)(2a—a2—1'2/3‘2)]=0. (7)
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Adopting the method of Mitra (3) we assume that
B =DBy+ B2+ Byr* + Bor® + -+ (8)
where By, B, By« -+« ete., are functions of r only. Then substituting this in Eq. 7

we must solve the problem of retaining the terms which contain up to the desired
powers of 7% Here, we only take the first two terms. Hence,

ﬂ = BO + B‘Tz- (9)
We see from Eq. 1 that
By =1 (10)
and Eq. 7 gives
1B + 3B’ + cBy = cn® + & (i)
where
Ciy — Cp o — 3eis
A" =2
cn Cu

_ (o — cu) (20 — %)
2 = .

26111‘2 (12)
Therefore, by integrating Eq. 11, we obtain
011'2 C2
B = gqr1 4 brm — 13
@ b+ 8+ ¢ Co ( )
where a; and o, are the roots of the equation
24+2r+¢=0 (14)

and a and b are the integration constants.

Boundary Conditions
a) The boundaries r = r; and r = 7. should be free from tractions. This is
satisfied if

=0 when r=n and r =17 (15)
which gives

Kiarer 4+ Kpbre: + Ks(]. - a)2 =K; + K;Tz; T =1y, (16)
where

Ki = ?[en(l + o) + cna]
Ks = [en(l + as) + 2]

Ks =3 [(611 + cn) (o — o) cm]

€11 — Cx2

(17)
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and

_ (Beu — cn)a Cs
K, = ["——“8+00 +2]12.

b) The tractions on any cross section are statically equivalent to a single
couple whose axis is the Z-axis. This is satisfied if

fz?;dxdy=o fgjsdxdy=o (18)
/xédedy=O fyz’%dxdy=o (19)
and
rs
fr?zdr=0. (20)

r1

Since the Z-axis passes through the center of the circular cross section, we
see that Eqs. 18 and 19 are identically satisfied and Eq. 20 gives

Lia+ Lb 4+ Ly(1 — a)? = Ly 21
where '

TeTItE . pialtd

Ly = ?[en(1 4+ a1) + 032][

0142 _

o1 — pasta]

L, = 12[632(1 + 012) + 032][

a2 |

I r? — 1 [ (es1 + cm) (12 — €23) ]
3= —— | Cs—
4 cun — Cx2 i
_ ca? — 0;22] rel — g , (et =) [ (3cn + c) Csa]
L4—[033 on — on n T 1 1 8+ o +2 . (22)

Solving Egs. 16 and 21 for a, b, and «, we obtain

Da = KoL Kara®3(r? — r?) — (K3 + Kir?) (122 — 1) ]
+ K[ KsLy(r1®* — 19*2) — Kuls(r® — 1%)] (23)
Db = KW\L;j[ (K3 + Kars?) (1™t — 12%1) — Kyro®'(r2 — 132) ]
+ K[ LKy (r® — r8?) — LK (r®t — )] (24)
D(1 — a)? = LiKe[ (Ks + Kori*t — (Kz + Kari?)reot]
+ LKy (Ks + K rs®t — (K + Karg?) 2]
+ LK Ka[ry®irg®r — riorg]  (25)

142 Journal of The Franklin Institute



Torsion of an Aeolotropic Cylinder
where

D = K\KoLg[re*2(r2t — rp™1) — 1%1(r22 — ry21) ]
+ Ki[L Ko (12 — 1223) — LKy (r*t — r®%) ], (26)

Components of the Stress and the Torsional Couple

The components of stress are given by

= —Kiar — Kobrer — Ki(1 — )2 + Ka¥r? + K, 27)
8 = —ar’reifea(l + a1) + en] — brearfen(l + a2) + ea]
_ (3car + cm) 0_2_3]_[@_3_ (012+022)(0n—3cu)] Y
,,z,z[ 8+ co +2 2 cn — Cn (1=
+ 0_;; _ (e + em) (can — 3cn) 28)
Cu — Cx2
;2 = —ar“lr”[cn(l + al) —+ 632] - br’r""[cm(l + Otz) + Cna]
_ [ Bea — em)er gzg] 02 [C_as o — cu’] Y
[ st T2l T2 w9
Cs3 cu? — cig
+ 2 C11 — Cs (29)
B: = cur [1 + 27%(ar*! 4- bra) + o + 93] M=r=0 (30)
84+ Co '

The torsional couple is given by
2% Ty —~ re
N=/ f zﬂrzdrd0=21rcm-[ B2r® dr
0 r1 r1

2‘r’c¢> ret — 1t 27%, rd — i
= 2 1
"”“"[( t ) 4 T8¥a s

a —_— ass
+ 2a7"’(1‘2‘"“ - Tlal+l) + 2br? (1‘2_’“—1'1__:)] . (31)

[+ 7AW

Observe that only when the first power of r is retained, we get

4 __ 4
N = 21!'6447 I:Tz b ]

This tallies with the results of Murnagan (4), Riz (5) and Rivlin (6).
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