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ABSTRACT: The problem of $nite torsion of a cykkically aeolotropic hollow ciwxlar cylinder 
is conside-red. An approximate solution of the governing di$zwntial equation is obtained 
Ree& are compared wìth those of earlier werk. 

Introduction 

Seth (1, 2) solved the problem of finite torsion of a solid circular cylinder 
when the material is either isotropic or transversely isotropic. Solution of the 
governing differential equation was obtained in the form of a convergent series. 
In this paper we apply the method of Seth for the torsion of a hollow cylinder 
when the material is cylindrically aeolotropic. As the governing differential 
equation attains complexity, its solution approaches that indicated by Mitra 
(3) up to a desired power of 9, where T is the angle of twist. 

Components of Displacement 

Let the cylinder whose internal radius ~1, and external radius r2 in the de- 
formed state be subjected to a finite twist r. From considerations of symmetry, 
we assume the displacement components are given as (1) 

24 = ~(1 - /3cos72) - yDsin72 
v = y(l -Bcos~z) +@sin72 

w = CYZ (1) 

where /3 is a function of T ( = dm) and CY is a constant to be determined. 
In cylindrical coordinates these components are given aa 

UT = r(1 - /3 cos 72) 
240 = r/3 sin 72 
U. = oz. (2) 

Stresses, Strains and Stress-Struin Relations 

In the theory of finite deformation strain components are described as em- 
ploying the coordinates of the particle either in the strained state as independent 
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variables or in the unstrained state as independent variables. The former is the 
Eulerian method and the latter is the Lagrangian method. For actual applica- 
tions of the theory the importante of using the Eulerian method is stressed by 
Seth (1) and Murnagan (4). In terms of displacement vector ui, the compo- 
nents of finite strain in the Eulerian coordinates are given as 

2ejj = ui,j + uj,i - uk.&k,j. (3) 

In the Lagrangian coordinates the latter term in Eq. 3 is positive. 
From Eqs. 2 and 3, we obtain 

where 

er, = x1 - w + Wl 
eet3 = 3(1 -Bl 
e,, = ff - &2 - $r”r2~ 
eth = rrp 
eth = Tip 
e+.0 = e., = 0 (4) 

When the materid is cylindrically aeolotropic, the skess-strain relations 
are given as 

rr = cneW + cmee + cl8e,. 
ée = czIen + C22eee + caak 
zz = c8ieW + catiee + ca8& 

Ze = cp4ee,; rZ = c56G.; Te = wed (5) 

where cij = cji. 

Equations of Equilibrium 

The only equation which is not identically satisfied is 

which gives 

(6) 

- ; [ (Cl1 - c3!2> (1 - 0”) - (Cl1 - Cld1’2 (013 + 2+) 

+ (Cl3 - q3) (2a - cx2 - 982) = 0. (7) 
1 
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Adopting the method of Mitra (3) we assume that 

,~=B~+BT~+B~~‘+B&+**- (8) 

where Bo, B, Bl-*- etc., are functions of T only. Then substituting this in Eq. 7 
we must solve the problem of retaining the terms which contain up to the desired 
powers of 9. Here, we only take the first two terms. Hence, 

We see from Eq. 1 that 

and Eq. 7 gives 

/5 = Bo + Br2. (9) 

Bo = 1 (10) 

where 

r2B” + 3rB’ + c,B, = cg2 + cz (11) 

Cl1 - Qa ha 
ca’ -; Cl = 

- ai? . 

Cl1 Cl1 
> 

(cl8 - Q8> (2a - a2) 
cz= 2c119 

Therefore, by integrating Eq. 11, we obtain 

(12) 

B = ar-‘* + br=s + zO+; 

where CYI and at are the roots of the equation 

a++2x+co=o 

(13) 

(14) 

and a and b are the integration constants. 

Boundmy Conditions 

a) The boundaries T = r1 and T = r2 should be free from tractions. This is 
satisfied if 

G=o when T = r1 and T = r2 (15) 
which gives 

where 
Klap1 + K&P~ + Ks( 1 - (Y)’ = & i- IQ2; 

Kl = fl[cn(l + al) + CIS] 
Kz = P[o21(1 + ~~21 + aal 

Ks = # 

[ 

(Cl1 + Cd (Cs0 - Cl81 
- Cl8 

91 - a!z 1 

r = Tl, r2 (16) 

(17) 
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and 

ch - CldCl + 2 

B+co 1 72 

2 * 

b) The tractions on any cross section are statically equivalent to a single 
couple whose axis is the Z-axis. This is aatisfied if 

J axay = 0 
/ 

&ixay=o (18) 

xaxdy =o / y&xdy = 0 (19) 

and 

(20) 

Since the Z-axis passes through the center of the circular cross section, we 
see that Eqs. 18 and 19 are identically satisfied and Eq. 20 gives 

where 
Lia + Lab + L8(1 - a)” = L4 (21) 

L2 = ?[caz(l + a2) + c22-J 
[ 

r2=2+* - w+’ 
al+2 1 

r22 - r12 
La= ~ 

4 [ 
(CSI + 6!4) (Cl2 - cas) c33 - 

Cl1 - c22 1 
L4 = 

Cd - c222 1 ra2 - Tl2 - - 72 (rs4 - fÌ4) @Al + cl2) 
ca, - 

Cl1 - c22 4 4 Cl 8+co 
+ f 1 . (22) 

Solving Eqs. 16 and 21 for a, b, and CX, we obtain 

Da = K&[KJw(T? - Tz2) - (Ka + K4?.22) (?‘I”’ - T29] 

+ K~[KJI&Y’ - na’) - KJlsh* - ra2>l (23) 
Db = KlLp[(Ks + K4~2~) (W - r2=9 - Klrz=l(r~~ - ~2~11 

+ K2CLJC4h2 - Te21 - LXl(W - 9-291 (24) 
D(l - CY)~ = LIK& (Kt + K4)rla’ - (Ka + KBI~)TP] 

+ L&[ (Ks + K4~i~)f.n~’ - Wc + Ka2hu11 
+ L&Kn[r~~‘rz=’ - TP’T~~‘] (25) 

142 Jour4 of The Franklin Instkute 



Tortion of an Aeolotropào Cylànder 

where 

D = K1Kw5a[r~~~(r~u’ - rf’) - r2=‘(r1~2 - r29] 
+ &[~5lKa(rP - ~2~‘) - LXl(rl=’ - r,“‘)]. (26) 

Components of the Stress and the Torsional Couple 

The components of stress axe given by 

i$ = -Klar"' - K&ra* - Ka(1 - CY)” + K&~Y~ + Ka 
éè = -u&y’[cz* (1 + LYI) + cz - k=72cc¶I (1 + a2) + oal 

07) 

_*2 (3czl+Gd +m 
[ 

c2a (Cl2 + Q2) (cop - 3cl2) 

t3+co 2 - 2- 1 I 1 (1 - a)2 
Cl1 - Qz 

c18 
+2- 

(cl2 + ;)f28&- hl (28) 

zz = -ur+2[c21( 1 + CYI) + Cs21 - bPP*[c22(1 + (Y2) +c221 

+ ; 
1 [ 

727.2 _ cf _ c2a2 - 
cu’ 

Cl1 - c22 1 (1 - CY)’ 

& = ~~3 1 + 2T2(aF + bP2) + 
[ 

__&+; re=G=o. 
0 1 

W) 

The torsional couple is given by 

+ 2u7+2”l+a - QU”‘) + 2b? 
r2a2+4 - ( Tl-+* >l ?? (31) 

Q2+4 

Observe that only when the first power of T is retained, we get 

r24 - r14 N = 2~~447 - 
[ 1 4 * 

This tallies with the results of Murnagan (4), Ris (5) and Rivlin (6). 
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