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Abstract 
The problem of optimum design of mechanisms for minimum mechanical and structural 
error is formulated as a stochastic programming problem. The nominal link lengths, the 
tolerances on link lengths and the clearances in joints are considered as design 
parameters. The constraints are also stated in probabilistic terms, i.e., each constraint is 
required to be satisfied with certain minimum specified probability. The techniques of 
chance constrained programming are applied to solve the optimization problem. The 
optimum design of a simple 4-bar function generating mechanism is considered to 
illustrate the efficiency of the proposed method. 

Introduction 
CONSIDERABLE progress has been made in the field of optimum design of mechanisms using 
nonlinear programming techniques[I, 2]. In most of the reported literature, the minimization of 
structural error has been taken as the objective [3-6]. Due to the existence of play in the joints 
and tolerances on the link lengths, mechanical error of appreciable magnitude will also be 
introduced. Unless care is taken to assign proper clearances and tolerances to the members of 
linkage, the value of mechanical error may be much higher than that of the structural error. 
Some work has been done regarding the allocation of tolerances and clearances in mechanisms 
for minimum cost[7]. It can be seen from the available literature that no systematic effort has 
been made for the design of mechanisms for minimum structural and mechanical error. 

It has been recognized that the very nature of clearances and tolerances makes the function 
generating process probabilistic[8]. Hence a more realistic procedure for the optimization of 
linkages would be to formulate the problem as a stochastic programming problem. A stochastic 
programming problem is an optimization problem in which some or all of the parameters are 
described by random variables rather than by deterministic quantities. The basic idea of all 
stochastic programming methods is to convert the probabilistic nature of the problem into an 
equivalent deterministic model. In this work, the idea of employing deterministic equivalence 
by applying the techniques of chance constrained programming due to Charnes and Cooper[91 
is used. The design of a simple planar ,l-bar function generating mechanism, for minimizing 
structural and mechanical errors, is considered for illustration. The nominal link lengths and 
tolerance widths of link lengths are considered as deterministic design variables (thus the actual 
link lengths would become probabilistic) and the clearances (locations of pin centers in their 
respective hinge joints) as probabilistic design variables. The behavioural constraints are also 
stated in probabilistic terms. 
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Deterministic formulation of the problem 
When a linkage with n design parameters x~, x~, . . . .  x, transforming a motion defined by the 

input variable 0 into another motion defined by the output variable 0 is to be designed 
optimally, the objective function for minimization can be taken as 

f ( .~ )  = ~ [~ . , (g ,  o,) - ~,, l 2 ¢I) 
i - t  

where the range of the input angle (AO) is assumed to have been divided into q - I parts so that 
0~ and 0q indicate the starting and the final angular positions of the input link. Here d),,, and d),, 
denote the actually generated (with structural and mechanical errors) and the required values of 
the output angle corresponding to the input angle E respectively. The q points considered in 
Eq. (1) can be treated as some sort of accuracy points since the error between the generated 
and the required values of the output angle is minimized at these points. Normally the link 
lengths Ii, l., . . . .  are restricted to lie within certain limits as 

ly  ~ <- I i _< li ~"~ (2) 

where t.he superscripts I and u indicate the lower and upper bounds respectively. The 
transmission angle of the mechanisms at any accuracy point, 3', is restricted as 

y(t~<~ 7i ~< yluJ (3) 

For the four bar linkage shown in Fig. I, the input--output relation can be expressed as 

( Ai +- D~ "~ 
6"'()( '  OA = 2 tan-~ \ B ~ + C , ]  

where 

Ai = sin 0i, 

Bi = cos Oi - Idl,., 

II z+12 2-13  2+14 2 It 
Ci = 21214 - I-4 cos O, 

Di (Ai 2+Bi 2 C,2) If2 

and the transmission angle is given by 

7i = cos. J [ _ (lz2-132-14Z + l12 - 21tl'- cos Oi ) l 
21~14 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

~3 04 

14 

~ / / 4 / / / ~ r /  

O z l I Ot 

Rgure 1. A planar 4-bar linkage, 
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for i = 1,2 . . . . .  q. In order to avoid imaginary values for D~ in eqn (8), one has to impose the 
constraints 

Ai2+Bi2-Ci2>-O, i = 1,2 . . . . .  q. (10) 

The design vector )( may represent the parameters like Ii, 12, I~ and 14. Thus the above 
mechanism optimization problem, according to the deterministic design philosophy, can be 
stated in the form of a standard nonlinear programming problem as 

Find ~" to minimize f ( ) ( )  / 
subject to gjO() -> O, j = I, 2 . . . . .  m J (11) 

where 

is as n-dimensional vector of design variables and m is the number of constraints. 

Stochastic formulation of the problem 
When some of the parameters involved in the objective function and constraints vary about 

their mean values, the problem has to be formulated as a stochastic programming problem, 
which can be stated in standard form as: 

Find )( to minimize/'(15) (12) 

subject to 

PIgi(~')>-Ol>-pj, j = 1,2 . . . . .  m (13) 

where .~ is the vector of n design variables (some or all of them may be random) and 15 is the 
vector of N random variables (may contain some or all of the design variables x~), the symbol 
P [ . . . ]  indicates the probability of occurrence of the event [.. .],  and eqns (13) denote that the 
probability of realizing gj(l ~) greater than zero must be greater than or equal to the specified 
probability p/. The problem stated in eqns (12) and (13) can be converted into an equivalent 
deterministic programming problem by applying the chance constrained programming tech- 
niques as follows. 

Objective function 
If F represents the objective function in terms of the random variables y, i = 1,2 . . . . .  N, 

F ( !  5) can be expanded about the mean values of y, yi, as 

• ~= ~ ~ ,;." (Y~ - Y3 + higher order derivative terms (14) 

If the standard deviations of y~ are small, F(15) can be approximated by the first two terms of 
eqn (14): 

F(15)= F(~)+ ~ OF I N I i=, ~Y/ i"Yi+/-~-i (OF]Oyi) "Yi---~b(15) (15) 

If all y/s are assumed to follow normal distribution, ~b also follows normal distribution. The 
mean and the variance of ~ are respectively given by 

= ~(Y)=  F(Y) (16) 
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and 

N 

Var [g,] = ~ = ~ [(OF/OyAM" • 0 -2 
i - I  

since all y~ ' s  are independent. Notice that 0-. has been used to denote the standard deviation of 
(). For the purpose of optimization, a new objective function Ft(Y) is constructed as 

F,(¢¢) = a, • ,/,(?) + a.~. o - j ( ? )  (18) 

where a~->0 and (*2-->0, and their numerical values indicate the relative importance of ~ and 
o',2 for minimization. Another way of dealing with the standard deviation of ¢ is to minimize 
F, -= ~ subject to or, <_ a~. ~ where a~ is a constant, along with the other constraints. 

C o n s t r a i n t s  
If some parameters are random in nature, the constraints will also be probabilistic and one 

would like to have the probability that a given constraint is satisfied to be greater than a certain 
value. This is precisely what is stated in eqn (13) also. 

The Constraint inequality (13) can be written as 

f f  .re,(&) • d& >- P1 (19) 

where [~j(g~) is the probability density function of the random variable & (a function of several 
random variables is also a random variable) whose range is assumed to be 0 to ~c. The constraint 
function gfl Y) can be expanded around, say, the vector of mean values of the random variables 

~' as 

N 

g~(9) --- gd~') + ~ [(ag.Jay,.)M(y~ - y,) (2o) 
i=1 

From this equation, the mean value, gi, and the standard deviation, 0-,,, of gi can be obtained as 

and 

gj = &(~') (21) 

~ ,  = [ ( a g i l a x ~ ) ( v l  2 • < C j  'j: 

With the transformation of variable 

0 = &7--~ 
o'gj 

and noting that 

f 1 ,:;2 ~ f ~ ) e  .dr = 1, 

eqn (19) can be expressed as 

~j/o~,~ V ( 2 r r )  e 
8:/2.  dO -> f ~  I e - : / 2  • dt 

,,,,,, v'g2 ~)  J_  

1221 

123) 

c24) 

(25) 
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where ej(pj) depends upon the specified probability level pj. Thus 

- g|l¢g~ <- - e/(pj) (26) 

i.e., 

- gi + ~i(Pi) "crgi <- 0 (27) 

Equation (27) can be rewritten as 

Gj(~[) = g~(Y) - ~i(PJ) [OgjlOy~)[~l 2 . o'yi 2 >- 0 (28) 

Thus the optimization problem in eqns (12) and (13) can be stated in its equivalent deterministic 
form as: 

minimize F~ given by eqn (18) subject to m 
constraints of the type shown in eqn (28). 

The expressions of @(~'), ~,(Y) and gj(Y) can be derived from the known equations of F and gj 
by using the standard techniques of probability theory. 

Stochastic formulation of the 4-bar linkage problem 
In the present work, the nominal link lengths 12, 13 and/4, the starting angular position of the 

input link, 0~, the tolerance widths on the link lengths, t~, i = 1 . . . . .  4 and the clearances in joints 
r~2, r23, r34 and r4~ (strictly speaking, the locations of pin centers in respective hinge joints) are 
considered as the design variables x~, x2 . . . . .  xl2 respectively (Figs. l and 2). The nominal link 
length I~ is taken as unity. It is to be noted that the first eight design variables are deterministic 
(the link lengths with tolerances would, however, be probabilistic) and the remaining four are 
probabilistic. 

X~.3 

L:R, y~, 

X 1 2 ~  

04 

o, 

(o) Equivokmt 4-Bor Linkooe 
With "ro~.onces And 
Cleocances 

X41 

Y,I 

(b) Exo~eroted View Of 
The Joi~t Between 
i th And jth Links 

x H 

i *h L'mk 

~y j~h Link (c) Li~e Diogrom Of The 
Jol t  Between i th And 

Pin jth Links 

Xii i TM Link 

Rgure 2. A 4-bar linkage with tolerances and clearances. 
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The link lengths with tolerances and the clearances in the joints are treated as random 
variables and are collectively represented by the vector Y. The vector of mean values of the,,e 
random variables is given by 

XI 

XZ 

X~ 

~ , =  X4 

0 
0 
O 

0J 

The expressions 

and 

,/,(,;,) = 

of ~(¢/) and o'~(¢/) can be obtained as (from Appendix A): 

q 

T. [~,~,(8. o,)1~ - ~ . , ] :  
i - I  

sum of the squares of error at the mean values of the random variables 

sum of the squares of differences between the curvesA,B~ and 
A:B, in Fig. 3 

= structural error 

o - , I d ' )  ~ • ' 

;= r \ t~Yi I ~/ " 

-- sum of the squares of standard deviation of the total error 
= sum of the squares of difference between the curves A4B4 and A:B~_ 
= mechanical error 

(29) 

( 30 

where ~., indicates the standard deviation of Yi, J = I . . . . .  8. If the tolerances and clearances are 
assumed to correspond to 3-sigma band[10], o'v, = (tj/3) if Yi denotes link lengths with tolerances 
and o'>. = (rid3) if yj denotes clearance. Since tolerance widths and clearances are taken as 

design variables x, i -- 5 . . . . .  12, eqn (30) can be rewritten as 

tr~-(Y) ~ i- I ~- ~ \ c~>'.i ~ 9 
(31) 

In the stochastic formulation, the constraints given by eqn (2) for j = 2, 3. 4 remain 
deterministic as Ij are assumed to be the nominal link lengths. However.  the constraints of eqns 

~(e) i- StruCturol ErrOr 
• / B 4  

' ~ |  t BZ 
/'"1"x I/ " e 

i / "  "Mechonical - 3 - 0 "  Bond 
/-- Error I 

A5 
! 

el ez e~ el eq 

AI B~ -" Requir~l Curve 

A2B2; C~l~rated Curve Without roleroncel And Cleora~:es 

[i.e. When x,=O,= = 5 , 6 ,  12) 

A 3 B~: ActuOJly Generoted Curve With Tokeronces And 

Cleoronces 

A4B4~ ASBS: Define T:.e Elond Width In Which The Curve 

A 3 ~  FOIII 99.73% Of The Time 

Rgure  3. Required and generated outputs. 
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(3) and (10) can be expressed probabilistically as 

p [ y i - y  "~_>0]>pi, i = 1 , 2  . . . . .  q 

p [ y ~ ) - y i  > 0]_> pi, i = 1 , 2  . . . . .  q 

(32) 

(33) 

p[Ai2+Bi2-Ci2>_O]>_pi, i = 1,2 . . . . .  q (34) 

where 

[ (L2"--L~'~-L42+L~2-2LjL2c°sO~)] (35) 
y~=cos ' - 2L~L4 

with L~ given by eqn (A2) and A. B~ and C~ by eqns. (A4), (As) and (A0, respectively, in 
appendix A. By comparing eqns (32) to (34) with eqn (13), gi can be identified to be y i -  y") in 
eqn (32), y~) -  y~ in eqn (33) and A~+ B~ ~ - C~ 2 in eqn (34). Thus g~ = g~(~') and (OgJayj)lq can be 
evaluated readily at the vector of mean values of the random variables, 

XI 

X2 

X3 

X4 

~ ' - ' 0  
0 
0 
0 

Solution procedure 
The equivalent deterministic optimization problem that resulted from the application of 

chance constrained programming techniques has been solved using nonlinear programming 
techniques. The interior penalty function method, coupled with a variable metric method of 
unconstrained minimization and cubic interpolation method of one-dimensional search, is used 
to solve the constrained problem [.I I]. The composite objective function (/3) to be minimized in 
this method is given by 

(36) 

where F~ is given by eqn (18) and Gj by eqn (28), and s~ is called the penalty parameter. The 
minimization of/3 starts from an interior feasible point, Xo. A number of minimizations with 
successively reduced values of the penalty parameter sk leads to the desired solution. In the 
present work, the initial value of sk is chosen such that 

s, ~ I =0.5 F,(X0, ~') (37) 
,-, G;(~o, ~') 

at the starting design vector ,~0. The subsequent values of sk are found as sk+l =0.1 sk, 
k = l, 2 . . . . .  A proper choice of the termination criterion is very important. For the results given 
in this paper, the algorithm is terminated whenever the decrease in the value of the/3 function 
in two successive iterations is less than a predetermined small number. This varies from 
0.000001 to 0.001 in the present work. 

Example problems 
To illustrate the application of chance constrained programming techniques to mechanism 

design, the design of a planar 4--bar linkage, for generating function y = sin x in the range 
0 ° <~ x < 90 °, is considered. The ranges of input and output angles are taken as A0 = Ad~ = 90 ° 
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and the nominal link length I~ is taken as unity, il accuracy points (q = 11) are considered in the 
range of the independent variable for the minimization of F~. The transmission angle at any of 
the accuracy points is required to lie between 30 ° and 150 ° with a probability of Pi = 0.9973. The 
same probability value is taken in the constraint of eqn t34). The minimum and maximum 
permissible nominal lengths of any link are taken as 0.0 and 10.0 respectively. To reduce the 
scale disparities between the two terms of eqn 118), eqn (18) is modified as 

F I ( Y I  = a l '  w l ' ~ b ( ' V J + a 2 "  W '0. , /2(~) (38) 

where the weights w, and w, are selected so that 

w ,  • t~(Y) = w ~ -  ~r~2(~ ') 

at the starting point ,,~o. The optimization results obtained by giving different values to the 
weights a~ and ae are given below. 

Case (ij When a~ = a, = I: 
In this case, the optimum design vector, given in the third column of Table I, corresponds to 

~(~') = 0.1352 and cr,2(¢/) = 0.0736 × 10 -6. The required and mean generated angular positions of 
the output link, the structural error, the mean value of transmission angle and the 3-0. value of 
the mechanical error at various positions of the input link corresponding to the initial and 
optimum designs are shown in Table 2. It can be seen that the mean transmission angle at the 
first three accuracy points is very near to its lower bound of 30 ° at the optimum point. The 
maximum value of structural error has been increased from 12.19 ° to 13.05 ° (although the total 
structural error was reduced) and the 3-0- value of mechanical error decreased from 3.29 ° to 
1.46 °. The progress of optimization is shown in Fig. 4 as a plot between the values of the 
objective function and the number of one-dimensional minimization steps. The computer time 
taken on IBM 7044 computer to obtain the optimum point (65 optimization steps} is about 
15 rain. 

Case (it) When a~ = 1 and a2 = 10s: 
In this case the minimization of mechanical error is assumed to be 105 times more important 

than that of structural error. The required and the mean generated angular positions of the 
output link, the mean transmission angle and the 3-0- values of the mechanical error at various 
positions of the input link are shown in Fig. 5. The optimum design vector is shown in Table 1. 

Table 1. Optimization results 

Optimum value 

Quantity' Initial value Case (i) Case (it) Case lilt) 

Link lengths 

Starting position 
of the input 
link: 
(radians) 
Tolerances: 

Clearances: 

r. 1.90 3.9449 2.2955 1.9665 
~ 2.70 4.3398 3.1487 2.4897 

x, 0.85 4.9697 1.0807 0.6614 

x~ 2.(1283 0.2550 1.7293 2.0193 
r ,  0.0002 0.0004235 0 . 0 0 0 1 0 0 1  0.0004830 
x,. 0.0002 0.0027189 0 . 0 0 0 1 0 1 1  0.0005001 
x- 0.0002 0.0003635 0.0001174 0.0001874 
x~ 0.0002 0.0004439 0.0001076 0.0006389 
x., 0.0002 0.0004273 0 . 0 0 0 1 0 0 1  0.0001486 
x=,, 0.0002 0.002621 0.0001008 0.0004762 
r.,  0.0002 0.0003576 0 . 0 0 0 1 0 0 5  0.0001572 
~, : 0.0002 0.0004428 0 . 0 0 0 1 0 7 6  0.0006943 

Structural 
error ~(Y) 
Mechanical 
error: ~e,~(Y) 

0.2463 0.1352 0.0280 0.001 I 

0.37% × 10 ~ 0.0736 x 10 ~ 0.0672 x 10 " 0.1123 × 10 " 
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Rgure 4. Progress of optimization process in case (i). 
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It can be seen that all the tolerances and clearances assumed their min imum permissible values 
at the opt imum point. The maximum structural error has been reduced from 12.19 ° to 4.69 ° and 

the maximum 3-o" value of the mechanical  error from 3.29 ° to 0.015 °. 

Case  (iii) When a, : IO s and a2 = 1: 
Here the minimizat ion of structural error is considered to be lOs times more important  

compared to that of mechanical  error. The optimizat ion results are shown in the last co lumn of 
Table 1. It can be seen that the mean  t ransmission angle at accuracy points 8 and 9 approached 
its upper bound  value. The maximum structural error reduced from 12.19 ° to 1.00 ° and the 3-o" 
value of mechanical  error from 3.29 ° to 2.12 ° . As expected, the structural error is very low and 

the mechanical  error is very large at the opt imum design. 

Conclusion 
The application of chance constrained programming techniques to the opt imum design of 

mechanisms is presented.  Although the design of a simple 4-bar funct ion generat ing mechanism 
is considered for illustration, the method presented is quite general and is applicable for the 
design of any mechanism. Since the probabilistic nature of manufac tur ing  tolerances and 
clearances is a practical reality, the present  method is expected to be a more realistic approach 

for the opt imum design of funct ion generating mechanisms.  
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Appendix A 

Derivation of the expressions for t~(Y) and ~r,(Y) 
The link lengths of the equivalent 4-bar mechanism with a consideration of tolerances on link lengths and clearances in 

joints (shown by dotted lines in Fig. 2c) can be expressed as 

L,' =(I, ±t, +x,j):+y~ (AI) 

where t, is the tolerance width on link i and x, i and Y~i are the coordinates of the axis of the pin between the links i and j as 
shown in Fig. 2a. By assuming that (L +- t, + x,) ~, Yii. eqn (A I) can be reduced to 

L, : I, + t, + x, i (A2) 

By denoting y,  = I t _+ ti, j : 1 .. . . .  4 and y~ : x~-,.k, J = S ... . .  8; k : j - 3 for ./:  5, 6, 7 and k = I for j - 8, eqn (4) can be 
expressed as 

~o,(?, 0,) : 2 tan L ~  T- C-( ~,' J (A3) 



4 2 4  

with 

,4,(?) = sin O, 1~4) 

B,( ' /)  = cos O, - L,/I.~ (.\5) 

[L," + L,: - L$ + L~"\ L, 
~---- - -- Cos O, I ~6) C,(~') = ~ 2L..L~ ] L~ 

D,(';') = [A,:(?) + B~:(Y) - C,"(Y)I"= (A7) 

Derivation o /@(Y)  
If the link lengths with tolerance and clearances are assumed to be random variables, the generated output angle at the 

mean values of the random variables (%') will be the curve A~B2 in Fig. 3. Thus the function ~%') in eqn (16) can be 
expressed as 

,t 

~,(#) = Y. [d,.,(v. 0,) - 4,,,12 (A~) 
) - I  

where 4,.,(?, 0,) can be obtained by setting ? = ~' in eqn (A3). Thus 4,(¢/) can be seen to be the sum of the squares of 
structural error at the accuracy points 0,. 0.. . . . . .  0,. 

Derivation of #,(#) 
Since 4,, is a constant at any O,, the differentiation of the error term (4, , , -  4,,) gives (~4°,/~y,). Thus eqn (17) can be 

expressed as 

4 ,,,9, ,. \ B~-', I I ", ' 

where 

a,o, 2[ +°l(°B' 
Oyj (A, -+ D;): + (K + CA' 

and the partial derivatives of A. B,, C; and D, can be obtained from eqns (A2) and (A4) to (A7). 

(AIO) 

Etude de m~canisr~s par la technique du programme aux contraintes al~atoires 

S.S. Rao et C.P. Reddy 

R~sum~ -Dans cet article on formule le probl~me de la synth~se optimale dee m~canismes aux erreurs 

minimales ~ l'aide d'un programme stochastique. On consid~re comme param~trem lee longueurs noml- 

nales des membres et lee jeux dans lee articulations. Lee contraintes sont sp~cifi~es pour eatls- 

faire le crit~re d'une certaine probabilit~e mlnimale. La technique de prograotnation al~atoire a 

~t~ d~velopp~e pour r~soudre le probl@me de l'optimisation. On pr~sente l'exemple d'un ~canleme 

quatre barres g~n~rateur de fonction pour illustrer l'efficacit~ de la m~thode. 


