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Abstract

The problem of optimum design of mechanisms for minimum mechanical and structural
error is formulated as a stochastic programming problem. The nominal link lengths, the
tolerances on link lengths and the clearances in joints are considered as design
parameters. The constraints are also stated in probabilistic terms, i.e., each constraint is
required to be satisfied with certain minimum specified probability. The techniques of
chance constrained programming are applied to solve the optimization problem. The
optimum design of a simple 4-bar function generating mechanism is considered to
illustrate the efficiency of the proposed method.

Introduction

CoNSIDERABLE progress has been made in the field of optimum design of mechanisms using
nonlinear programming techniques(1, 2]. In most of the reported literature, the minimization of
structural error has been taken as the objective {3-6]. Due to the existence of play in the joints
and tolerances on the link lengths, mechanical error of appreciable magnitude will also be
introduced. Unless care is taken to assign proper clearances and tolerances to the members of
linkage, the value of mechanical error may be much higher than that of the structural error.
Some work has been done regarding the allocation of tolerances and clearances in mechanisms
for minimum cost[7]. It can be seen from the available literature that no systematic effort has
been made for the design of mechanisms for minimum structural and mechanical error.

It has been recognized that the very nature of clearances and tolerances makes the function
generating process probabilistic[8]. Hence a more realistic procedure for the optimization of
linkages would be to formulate the problem as a stochastic programming problem. A stochastic
programming problem is an optimization problem in which some or all of the parameters are
described by random variables rather than by deterministic quantities. The basic idea of all
stochastic programming methods is to convert the probabilistic nature of the problem into an
equivalent deterministic model. In this work, the idea of employing deterministic equivalence
by applying the techniques of chance constrained programming due to Charnes and Cooper[9]
is used. The design of a simple planar 4-bar function generating mechanism, for minimizing
structural and mechanical errors, is considered for illustration. The nominal link lengths and
tolerance widths of link lengths are considered as deterministic design variables (thus the actual
link lengths would become probabilistic) and the clearances (locations of pin centers in their
respective hinge joints) as probabilistic design variables. The behavioural constraints are also
stated in probabilistic terms.
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Deterministic formulation of the problem

When a linkage with n design parameters x,, x; ..., x, transforming a motion defined by the
input variable @ into another motion defined by the output variable @ is to be designed
optimally, the objective function for minimization can be taken as

f(X) = 2 (6a(X. 6) - 6, I M

where the range of the input angle (A@) is assumed to have been divided into g — 1 parts so that
6, and 8, indicate the starting and the final angular positions of the input link. Here ¢, and ¢,,
denote the actually generated (with structural and mechanical errors) and the required values of
the output angle corresponding to the input angle 6; respectively. The g points considered in
Eq. (1) can be treated as some sort of accuracy points since the error between the generated
and the required values of the output angle is minimized at these points. Normally the link
lengths [, I-. .., are restricted to lie within certain limits as

l,'“,S l,‘ < ’j(u) (2)

where the superscripts | and u indicate the lower and upper bounds respectively. The
transmission angle of the mechanisms at any accuracy point, v, is restricted as

‘Y“)Sv.'S)'“” 3)

For the four bar linkage shown in Fig. 1, the input-output relation can be expressed as

C 91— o (A D;) 4
éa,(Xt 0,)-2[3" (Bi+C, ( )
where
A,' =sin 0,’, (5
B,' =CO0S 0,'_11“3, (6)
R+ -0+ 12
C TR I cos 8, (M
Di = (A,'z + B,‘2 - C,‘z)llz, (8)
and the transmission angle is given by
Y2 32412 ]
‘)’i=COS'I [_(11 =1+ 21,15 cos 0,)] 9)
24,

13

02 I O

Figure 1. A planar 4-bar linkage.
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fori=1,2,..., q. In order to avoid imaginary values for D; in eqn (8), one has to impose the
constraints

A+ B} -C?=0, i=12,...,q (10

The design vector X may represent the parameters like [y, I, Iy and [;. Thus the above
mechanism optimization problem, according to the deterministic design philosophy, can be
stated in the form of a standard nonlinear programming problem as

Find X to minimize f(X) }
subject to g{(X)=0,j=1,2,....m (11

where

is as n-dimensional vector of design variables and m is the number of constraints.

Stochastic formulation of the problem

When some of the parameters involved in the objective function and constraints vary about
their mean values, the problem has to be formulated as a stochastic programming problem,
which can be stated in standard form as:

Find X to minimize f(Y) (12)
subject to
Plg(Y)=0]2p,j=12,....m (13)

where X is the vector of n design variables (some or all of them may be random) and Y is the
vector of N random variables (may contain some or all of the design variables x;), the symbol
P[...] indicates the probability of occurrence of the event [...], and eqns (13) denote that the
probability of realizing g,~(f’) greater than zero must be greater than or equal to the specified
probability p; The problem stated in eqns (12) and (13) can be converted into an equivalent
deterministic programming problem by applying the chance constrained programming tech-
niques as follows.

Objective function
lf F represents the objective function in terms of the random variables y, i =1,2,..., N,
F(Y) can be expanded about the mean values of y;, y;, as

F(Y)=F(Y)+>

 9F , o
Tl (y; —y;) + higher order derivative terms (14)

If the standard deviations of y; are small, F(Y) can be approximated by the first two terms of
eqn (14):

- - N N .
F<Y>=F(Y)+;%£L'y.-+§](aﬁay.~) S Y=y (15)

If all y;’s are assumed to follow normal distribution, ¢ also follows normal distribution. The
mean and the variance of ¢ are respectively given by

¥ = ¢(Y)= F(Y) (16)
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and
Y
Var(y] =0, = 2. [(3Fay |5 - o2, am

since all y;'s are independent. Notice that ¢, has been used to denote the standard deviation of
(). For the purpose of optimization, a new objective function F\(Y) is constructed as

F(Y)=a -¢(Y)+a oY) (18)
where a, =20 and a, =0, and their numerical values indicate the relative importance of ¢ and

o, for minimization. Another way of dealing with the standard deviation of ¢ is to minimize
F> =¥ subject to o, < ai. ¥ where a. is a constant, along with the other constraints.

Constraints

If some parameters are random in nature, the constraints will also be probabilistic and one
would like to have the probability that a given constraint is satisfied to be greater than a certain
value. This is precisely what is stated in eqn (13) also.

The constraint inequality (13) can be written as

fn fe;(8) - dg; = p; (19)

where f, (g;) is the probability density function of the random variable g; (a function of several
random variables is also a random variable) whose range is assumed to be 0 to =. The constraint
function g;(Y) can be expanded around, say, the vector of mean values of the random variables
Y as

- - N
g(Y)=g(Y)+ 21 [(3gd 3y)¥ )y — v (20)

From this equation, the mean value, g;, and the standard deviation, o,, of g; can be obtained as

g = &(Y) 20N

and
N , s 1122
Oy, = {ZI(nglaxi)Ivl‘ : U.\',‘} (22
it
With the transformation of variable

~8~8i (23)
og;

and noting that

f' \ﬁe"’”-dt=l. 124)

eqn (19) can be expressed as

* l 822 * l —122
s-do = c-d 25)
f--(x,laﬂ,] \/(2") ¢ de —€i(p;) \/(277) ¢ t (
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where ¢;(p;) depends upon the specified probability level p;. Thus

- gilog; = —€(p;) (26)

—8ite(p)-og;=0 27

Equation (27) can be rewritten as

1

N
Gi(Y) = g(Y)~ e;(p;){?:‘.] (dgilayle)’ - cryf} =0 (28)

Thus the optimization problem in eqns (12) and (13) can be stated in its equivalent deterministic
form as:

minimize F, given by eqn (18) subject to m

constraints of the type shown in eqn (28).
The expressions of o(Y), zn(?) and g,(?) can be derived from the known equations of F and g,
by using the standard techniques of probability theory.

Stochastic formulation of the 4-bar linkage problem

In the present work, the nominal link lengths 5, [; and L4, the starting angular position of the
input link, 8,, the tolerance widths on the link lengths, t, i =1,.. ., 4 and the clearances in joints
a2, o, rie and ry) (strictly speaking, the locations of pin centers in respective hinge joints) are
considered as the design variables x,, xa,.. ., x2 respectively (Figs. 1 and 2). The nominal link
length [, is taken as unity. It is to be noted that the first eight design variables are deterministic
(the link lengths with tolerances would, however, be probabilistic) and the remaining four are
probabilistic.

(0) Equivolent 4-Bor Linkoge
With Tolerances And
Cloorances

(b) Exaggeroted View Of
The Joint Between
ith And M Links

Y j Link
(c) Line Diogrom Of The
) Joint Batween i'™ And
Pin Center. jm Links
%ij i™ Link

Figure 2. A 4-bar linkage with tolerances and clearances.

MMT Vol. 14, No. 6—E
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The link lengths with tolerances and the clearances in the joints are treated as random
variables and are collectively represented by the vector Y. The vector of mean values of these
random variables is given by

Xy
X

-y
]

The expressions of ¢(Y) and o,(Y) can be obtained as (from Appendix A):

Ww(Y) = Z. [6a(X, 8)lv~ &, )

= sum of the squares of error at the mean values of the random variables
= sum of the squares of differences between the curvesA, B, and
A_']B: in Flg 3

= structural error (29)
q 8 2
Uwz(y) ~ {2 (%% ) . inz}
i=t U= yi Iy
= sum of the squares of standard deviation of the total error
= sum of the squares of difference between the curves A4B, and A,B:
= mechanical error (30)

and

where o, indicates the standard deviation of v, j = 1... .. 8. If the tolerances and clearances are
assumed to correspond to 3-sigma band[10], o, = (£/3) if y; denotes link lengths with tolerances
and g, = (ry/3) if y; denotes clearance. Since tolerance widths and clearances are taken as
design variables x;. i = 5, ..., 12, eqn (30) can be rewritten as

2 S 3o : qu
Y) = (—"‘ ) e (k1))
a, (Y) ,2—::,'—1 v v 9

In the stochastic formulation, the constraints given by eqn (2) for j =2, 3. 4 remain
deterministic as I; are assumed to be the nominal link lengths. However. the constraints of eqns

LG
rS"uc'uro' Error /B.
-~ B,
d

A; B, ¢ Required Curve
ABz: Generated Curve Without Tolerances And Cleoronces

(ie.When x =0,1:5,6, 12)
AyBsi Actually Generoted Curve With Toleronces And
Cleorances

A4BqeB AgBg: Define T.e Bond Width in Which The Curve
AyBy Falls 99.73% Of The Time

Figure 3. Required and generated outputs.
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(3) and (10) can be expressed probabilistically as

Plyi—-y"=z0lzp; i=12,....9 (32)
Py -v=z0=zp, i=12,...9 (33)
PIA}+B*-C*=01=p;, i=1.2,....q (34)

where
[ L:Z-ng—L42+L|2—2L,L2cosoi)] as
¥i= o8 [ ( L, )

with L; given by eqn (A;) and A;, B; and C; by eqns. (Ay), (As) and (Ay), respectively, ‘in
appendix A. By comparing eqns (32) to (34) with eqn (13), g can be ideptiﬁed to be 5, — " in
eqn (32), y*' - v; in eqn (33) and A?+ B?— C? in eqn (34). Thus g; = g(Y) and (9g/dy))v can be

evaluated readily at the vector of mean values of the random variables,

It

Y=

Solution procedure

The equivalent deterministic optimization problem that resulted from the application of
chance constrained programming techniques has been solved using nonlinear programming
techniques. The interior penalty function method, coupled with a variable metric method of
unconstrained minimization and cubic interpolation method of one-dimensional search. is used
to solve the constrained problem[11]. The composite objective function (8) to be minimized in
this method is given by

- ' v 3 l
- + — = =
B(X. si) = F(X.Y) s*gc,(x,Y)

(36)
where F) is given by eqn (18) and G; by eqn (28), and s, '..S called the penalty parameter. The
minimization of B starts from an interior feasible point, Xo. A number of minimizations with
successively reduced values of the penalty parameter s, leads to the desired solution. in the
present work, the initial value of s, is chosen such that

m I - -
s — === 0SF X N Y (37)
t ,Z| GI(XO, Y) I( 0 )

at the starting design vector X,. The subsequent values of s, are found as sy, =0.1 s,
k=1.2,.... A proper choice of the termination criterion is very important. For the results given
in this paper, the algorithm is terminated whenever the decrease in the value of the 8 function
in two successive iterations is less than a predetermined small number. This varies from
0.000001 to 0.001 in the present work.

Example problems

To illustrate the application of chance constrained programming techniques to mechanism
design, the design of a planar 4-bar linkage, for generating function y =sinx in the range
0°< x =90°, is considered. The ranges of input and output angles are taken as Af = A¢ = 90°
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and the nominal link length /, is taken as unity. 11 accuracy points (g = 11) are considered in the
range of the independent variable for the minimization of F\. The transmission angle at any of
the accuracy points is required to lie between 30° and 150° with a probability of p; = 0.9973. The
same probability value is taken in the constraint of eqn (34). The minimum and maximum
permissible nominal lengths of any link are taken as 0.0 and 10.0 respectively. To reduce the
scale disparities between the two terms of eqgn (18). eqn (18) is modified as

FiY)=a,-wy - ¢(Y)+azr- w2 0, 3(Y) (38)
where the weights w, and w- are selected so that
wi - W(Y) = wy - o, (Y)

at the starting point Xo. The optimization results obtained by giving different values to the
weights a, and a, are given below.

Case (i) Whena, = a>=1:

In this case, the optimum design vector, given in the third column of Table 1, corresponds to
¥(Y) =0.1352 and o, %(Y) = 0.0736 x 10°°. The required and mean generated angular positions of
the output link. the structural error, the mean value of transmission angle and the 3-o value of
the mechanical error at various positions of the input link corresponding to the initial and
optimum designs are shown in Table 2. It can be seen that the mean transmission angle at the
first three accuracy points is very near to its lower bound of 30° at the optimum point. The
maximum value of structural error has been increased from 12.19° to 13.05° (although the total
structural error was reduced) and the 3-o value of mechanical error decreased from 3.29° to
1.46°. The progress of optimization is shown in Fig. 4 as a plot between the values of the
objective function and the number of one-dimensional minimization steps. The computer time
taken on IBM 7044 computer to obtain the optimum point (65 optimization steps) is about
15 min.

Case (ii) When a, =1 and a, = 10%:

In this case the minimization of mechanical error is assumed to be 10° times more important
than that of structural error. The required and the mean generated angular positions of the
output link, the mean transmission angle and the 3-¢ values of the mechanical error at various
positions of the input link are shown in Fig. 5. The optimum design vector is shown in Table 1.

Table 1. Optimization results

Optimum value

Quantity [nittal value Case (i) Case (1) Case {in)
Link lengths X 1.90 3.9449 2.2955 1.9665
1 270 4.3398 3.1487 14897
X 0.85 4.9697 1.0807 0.6614
Starting position
of the input
link:
(radians) X3 2.0283 0.2550 1.7293 2.0193
Tolerances: < 0.0002 0.0004235 0.0001001 0.0004830
X 0.0002 0.0027189 0.0001011 0.0005001
x- 0.0002 0.0003635 0.0001174 0.0001874
Xx 0.0002 0.0004439 0.0001076 0.0006389
Clearances: X 0.0002 0.0004273 0.0001001 0.0001486
X 0.0002 0.002621 0.0001008 0.0004762
X 0.0002 0.0003576 0.0001005 0.0001572
T 0.0002 0.0004428 0.0001076 0.0006943
Structural
error $(¥) 0.2463 0.1352 0.0280 0.0011
Mechanical

error: 0,°(Y) 0.3796x 10 ° 0.0736x 10 © 0.0672x 10 * 0.1123x 10 *
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Figure 4. Progress of optimization process in case (i).
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Figure 5. Characteristics of the optimum design in case (ii).
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It can be seen that all the tolerances and clearances assumed their minimum permissible values
at the optimum point. The maximum structural error has been reduced from 12.19° to 4.69° and
the maximum 3-o value of the mechanical error from 3.29° to 0.015°.

Case (iii) When a,=10° and g, =1:

Here the minimization of structural error is considered to be 10° times more important
compared to that of mechanical error. The optimization results are shown in the last column of
Table 1. It can be seen that the mean transmission angle at accuracy points 8 and 9 approached
its upper bound value. The maximum structural error reduced from 12.19° to 1.00° and the 3-o
value of mechanical error from 3.29° to 2.12°. As expected, the structural error is very low and
the mechanical error is very large at the optimum design.

Conclusion

The application of chance constrained programming techniques to the optimum design of
mechanisms is presented. Although the design of a simple 4-bar function generating mechanism
is considered for illustration, the method presented is quite general and is applicable for the
design of any mechanism. Since the probabilistic nature of manufacturing tolerances and
clearances is a practical reality, the present method is expected to be a more realistic approach
for the optimum design of function generating mechanisms.
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Appendix A

Derivation of the expressions for @(Y) and a,(Y)
The link lengths of the equivalent 4-bar mechanism with a consideration of tolerances on link lengths and clearances in
joints (shown by dotted lines in Fig. 2c) can be expressed as

Li=(h 2t +x,) +y; (A1)

where ¢, is the tolerance width on link i and x,; and y; are the coordinates of the axis of the pin between the links i and j as
shown in Fig. 2a. By assuming that (I; = ¢, + x;,) > y;;. eqn (A1) can be reduced to

Li=l*t+x,; (A2)

By denoting y; = =1, j=1,....4 and Yi= X4 J=5....8 k=j-3for j=5,6,7 and k =1 for j -8, eqn (4) can be
expressed as

¢a(7.6)=2tan ' [M (A3)

B(V)+C(Y,
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with
AAY) =5sin8, 1Ad)
B(Y)=cos8 - L:/L, 1AS)
o _ L.’+L;’—LG+L£)_5
C(Y)= (—2[‘:[‘4 i cos 6, 146)
D«Y) = [A(Y) + BT - D)7 (A7)

Derivation of w(Y)

If the link lengths with tolerance and clearances are assumed to be random variables, the generated output angle at the
mean values of the random variables (Y) will be the curve A 2B, in Fig. 3. Thus the function ¢(¥) in eqn (16) can be
expressed as

WV =D 8.V, 8)-o,F (A8)
el

where d&u,(?‘ 8,) can be obtained by setting Y=Yin eqn (A3). Thus ¥(Y) can be seen to be the sum of the squares of
structural error at the accuracy points 8,. 8-,.. .. 8,

Derivation of ou(Y)
Since ¢,, is a constant at any 6, the differentiation of the error term (., - &,,) gives (34.,/dy,). Thus egn (17} can be

expressed as
a oy
=33 ()]

. (,3'} (A9)

where

4, oD, ac,
[(B +C)("—+ ) (A x D)(——+ )]
3, _ 3y 9 9% (A10)

3y, (A =DY+(B +C)

and the partial derivatives of A, B, C; and D, can be obtained from eqns (A2) and (A4) to (A7).

Etude de mécanismes par la technique du programme aux contraintes aléatoires
S.S. Rao et C.P. Reddy

R&sumé - Dans cet article on formule le probl2me de la synth®se optimale des mécanismes aux erreurs
minimales 3 1'aide d'un programme stochastique. On considdre comme paramitres les longueurs nomi-
nales des membres et les jeux dans les articulations. Les contraintes sont spécifiées pour satis-
faire le critdre d'une certaine probabilitée minimale. La technique de programmation aléatoire a
&t& développée pour résoudre le probl®me de l'optimisation. On présente l'exemple d'un mécanisme

3 quatre barres générateur de fonction pour illustrer 1l'efficacité de la méthode.



