

Rapid Communication

Photohalogenation of 3-acetylcoumarins: Facile synthesis of 3-(2-amino-4-thiazolyl)coumarins and their conversion into 3-[2,5-dimethylpyrrol-1-yl] thiazol-4-yl]-coumarins

V Aditya Vardhan & V Rajeshwar Rao*

Department of Chemistry, Regional Engineering College, Warangal 506004, India

Received 28 July 1997; accepted (revised)
14 November 1997

3-Acetylcoumarins react with thiourea in the presence of N-bromosuccinimide using benzoyl peroxide as radical initiator to furnish 3-(2-amino-4-thiazolyl)coumarins **1**. Compounds **1** can also be obtained by reacting 3-acetylcoumarin with bromine in the presence of trichloro-(N,N-ethylene-bis-aminobenzamide)-lanthanum (III) or samarium (III) as catalyst followed by treatment with thiourea. These compounds (**1**) have been converted into pyrrole derivatives **2** by reacting with acetonylacetone.

Thiazoles are generally synthesized by Hantzsch thiazole synthesis from α -halogenoketones and thioureas or thioamides^{1,2}. Later, King *et al.*^{2,4} and other workers⁵ synthesized aminothiazoles by replacing α -halogenoketones with ketone and halogen. Despite this modification, the method still remains cumbersome and time consuming (24-25 hr).

We report herein a facile synthesis of 3-(2-amino-4-thiazolyl)coumarins **1** by reacting 3-acetylcoumarins with thiourea in the presence of N-bromosuccinimide and benzoyl peroxide in a single step. Compounds **1** were also prepared by a photohalogenation process involving ketones (3-acetylcoumarins) with bromine in the presence of lanthanum (III) and samarium (III) catalysts⁶. The photohalogenation was carried out on a 300 watt tungsten lamp. Reaction of 3-acetylcoumarins using

NBS and benzoyl peroxide or bromine in the presence of catalyst is known to proceed through a free radical mechanism. The bromine free radical formed abstracts the hydrogen atom from the acetyl group of 3-acetylcoumarin to give 3-coumarinacyl free radical. Both the radicals combine to yield 3-(ω -bromoacetyl)coumarin which in turn reacts with thiourea in *in situ* to give 3-(2-amino-4-thiazolyl)coumarins **1**. In contrast to King's method, the present methods are less time consuming, involve simple work-up procedures and are of general applicability. The yields of the products are better to those of previous method⁷. The structures of aminothiazoles **1** were supported by their elemental analyses (cf. Table I) and mixed melting point determination.

A number of 3-(2-aminothiazolyl) coumarins with open chain functionalities and heterocyclic systems at 2-position of thiazole ring have been studied exhaustively⁸. In continuation of our studies in this area⁹, we thought it would be of interest to incorporate a heterocyclic moiety like pyrrole. 3-(2-Amino-4-thiazolyl)coumarins **1** were chosen as starting materials owing to high reactivity of the amino group of these compounds towards

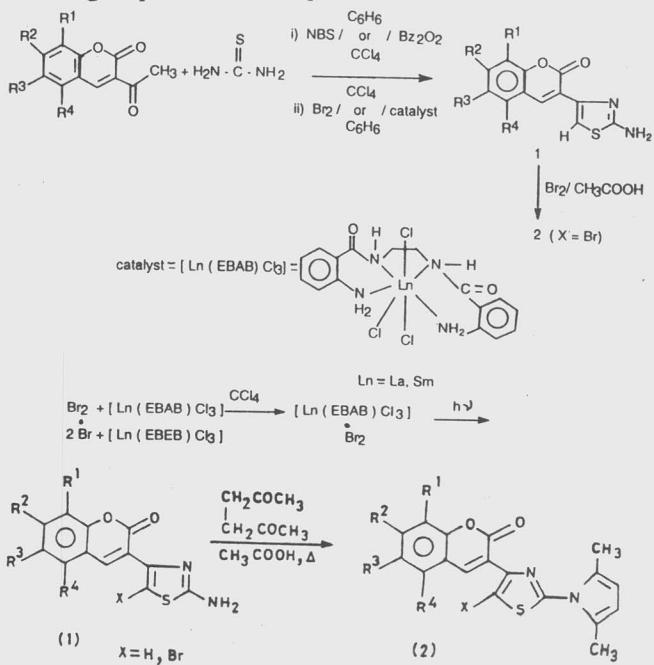


Table I — Physical data of compounds 1 and 2

Compd*	R ¹	R ³	X	m.p Found (reported) ¹⁰ °C	Recrystallized from	Mol. formula	Found (Calcd) (%)			
	R ²	R ⁴					C	H	N	S
1a	H	H	H	222-25 (225-27)	Alcohol	C ₁₂ H ₈ N ₂ O ₂ S	--	--	--	--
	H	H	H							
1b	OCH ₃	H	H	235-37	MeOH	C ₁₃ H ₁₀ N ₂ O ₃ S	56.90 (56.93)	3.62 3.64	10.00 10.20	11.63 (11.69)
	H	H	H							
1c	H	Br	H	204-6 (204-6)	MeOH	C ₁₂ H ₇ BrN ₂ O ₂ S	--	--	--	--
	H	H	H							
1d	Br	Br	H	220-22 (220-22)	MeOH	C ₁₂ H ₆ Br ₂ N ₂ O ₂ S	--	--	--	--
	H	H	H							
1e	H	Cl	H	176-78 (176-78)	MeOH	C ₁₂ H ₇ ClN ₂ O ₂ S	--	--	--	--
	H	H	H							
1f	Cl	Cl	H	190-92 (192)	MeOH	C ₁₂ H ₆ Cl ₂ N ₂ O ₂ S	--	--	--	--
	H	H	H							
2a	H	H	H	148-50	MeOH	C ₁₈ H ₁₄ N ₂ O ₂ S	67.00 (67.08)	4.31 4.34	8.61 8.69	9.90 (9.93)
	H	H	H							
2b	H	H	Br	>300	DMF+MeOH	C ₁₈ H ₁₃ BrN ₂ O ₂ S	53.81 (53.86)	3.21 3.24	6.92 6.98	7.93 (7.98)
	H	H	Br							
2c	H	CH ₃	H	282-84	Aq.DMF	C ₁₉ H ₁₆ N ₂ O ₂ S	67.81 (67.85)	4.71 4.76	8.30 8.33	9.48 (9.52)
	H	H	H							
2d	H	CH ₃	Br	247-49	Aq.DMF	C ₁₉ H ₁₅ BrN ₂ O ₂ S	54.90 (54.93)	3.60 3.61	6.70 6.74	7.68 (7.71)
	H	H	Br							
2e	OCH ₃	H	H	259-61	Aq.DMF	C ₁₉ H ₁₈ N ₂ O ₃ S	64.71 (64.77)	4.50 4.54	7.92 7.95	9.00 (9.09)
	H	H	H							
2f	OCH ₃	H	Br	234-36	DMF+MeOH	C ₁₉ H ₁₇ BrN ₂ O ₃ S	52.88 (52.90)	3.43 3.48	6.46 6.49	7.40 (7.42)
	H	H	Br							
2g	H	5,6-Benzo	H	163-64	AcOH	C ₂₂ H ₁₆ N ₂ O ₂ S	70.92 (70.96)	4.28 4.30	7.49 7.52	8.57 (8.60)
	H	5,6-Benzo	H							
2h	H	5,6-Benzo	Br	215-17	DMF+alcohol	C ₂₂ H ₁₅ BrN ₂ O ₂ S	58.51 (58.53)	3.30 3.32	6.00 6.20	7.00 (7.09)
	H	5,6-Benzo	Br							
2i	H	Br	H	170-71	MeOH+C ₆ H ₆	C ₁₈ H ₁₃ Br ₂ N ₂ O ₂ S	53.83 (53.86)	3.21 3.24	6.92 6.98	7.94 (7.98)
	H	Br	H							
2j	H	Br	Br	233-35	Aq.DMF	C ₁₈ H ₁₂ Br ₂ N ₂ O ₂ S	44.95 (45.00)	2.48 2.50	5.80 5.83	6.61 (6.66)
	H	Br	Br							
2k	Br	Br	-	>300	Aq.DMF	C ₁₈ H ₁₂ Br ₂ N ₂ O ₂ S	44.96 (45.00)	2.48 2.50	5.81 5.83	6.62 (6.66)
	H	Br	-							
2l	Br	Br	Br	257-59	Aq.DMF	C ₁₈ H ₁₁ Br ₃ N ₂ O ₂ S	38.61 (38.64)	1.93 1.96	4.97 5.00	5.70 (5.72)
	H	Br	Br							
2m	H	Cl	-	215-17	MeOH+CHCl ₃	C ₁₈ H ₁₃ ClN ₂ O ₂ S	60.53 (60.58)	3.61 3.64	7.81 7.85	8.95 (8.97)
	H	Cl	-							
2n	H	Cl	Br	283-85	Aq.DMF	C ₁₈ H ₁₃ ClBrN ₂ O ₂ S	49.56 (49.59)	2.71 2.75	6.40 6.42	7.30 (7.34)
	H	Cl	Br							
2o	H	H	H	>300	Aq.DMF	C ₁₈ H ₁₄ N ₂ O ₃ S	63.87 (63.90)	4.10 4.14	8.25 8.28	9.44 (9.46)
	OH	H	H							

Table I — Contd

Table I—Physical data of compounds **1** and **2**—*Contd*

Compd*	R ¹	R ³	X	m.p Found (reported) ¹⁰	Recrystallized from	Mol. formula	Found (Calcd) (%)			
							C	H	N	S
2p	H OH	H H	Br	261-63	Aq.DMF	C ₁₈ H ₁₃ BrN ₂ O ₃ S	51.76 (51.79)	3.10 3.11	6.67 6.71	7.64 7.67

* All the compounds were obtained in 80-90% yields.

electrophilic reagents. 3-(2-Amino-4-thiazolyl)-coumarins on reaction with bromine in acetic acid gave the corresponding 3-(2-amino-5-bromo-4-thiazolyl)coumarins. The 5th position of the thiazole is highly reactive towards electrophilic substitution reaction. Condensation of **1** with acetylacetone in the presence of acetic acid yielded the pyrrole derivatives **2**.

Experimental Section

Melting points are uncorrected. IR spectra were recorded on a Perkin-Elmer 282 instrument, ¹H NMR spectra on a Varian 90-MHZ spectrometer using TMS as internal standard, and mass spectra on a Jeol-JMS-D300 (Japan) mass spectrometer at 70 eV.

3-(2-Amino-4-thiazolyl)coumarins 1: Method-a. A mixture of 3-acetylcoumarin (0.02 mole), thiourea (0.02 mole), N-bromosuccinimide (0.02 mole) and a small amount of benzoyl peroxide in dry benzene (30-40 mL) or in dry carbon tetrachloride was heated under reflux on a 300 watt tungsten lamp for 6 hr, the solvent distilled off and the resultant hydrobromide treated with water. The solid separated was filtered and neutralized with 10% Na₂CO₃ solution to yield the free base **1** which was recrystallized from a suitable solvent using charcoal.

The aminothiazoles **1a-1f**, thus prepared, are recorded in Table I. The yields are 60-70%.

La³⁺ and Sm³⁺ catalysed bromination of 3-acetylcoumarins followed by *in situ* cyclization to thiazolylcoumarins 1: Method-b. A mixture of appropriate 3-acetylcoumarin (0.01 mole), bromine (0.01 mole) and lanthanum or samarium catalyst (2 mg) either in dry carbon tetrachloride (40 mL) or

in dry C₆H₆ was refluxed on a 300 watt tungsten bulb for 5 min. whereupon the red colour of bromine had disappeared. To this thiourea (0.01 mole) was added and the mixture refluxed further for 5 min. The yellow solid, thus obtained, was filtered and washed with methanol and then with dilute solution of ammonia to liberate the free base **1**. The yields of the products were 80-90% (cf. Table I).

5-Bromo-3-(2-amino-4-thiazolyl)coumarins (1; X= Br) were prepared according to our earlier procedure¹⁰.

3-[2-(2,5-Dimethylpyrrol-1-yl)thiazol-4-yl] coumarins 2: A mixture of 3-(2-amino-4-thiazolyl)coumarin (0.01 mole), acetylacetone (0.005 mole) and acetic acid (10 mL) was refluxed for 6 hr and the reaction mixture placed in an ice-cold water. The solid thus separated was filtered and recrystallized from a suitable solvent to give **2** (Table I) in 80-90% yields.

2a: m.p. 148-50°, yield 80%; IR (KBr): 1605 (C=N) and 1725 cm⁻¹ (lactone carbonyl); ¹H NMR (CDCl₃): δ 2.3 (s, 6H, 2xCH₃), 5.9 (s, 2H, pyrrole-H), 8.5(1H,s, C₅-H of thiazole) 8.7(s,1H,C₄-H of coumarin) and 7.2-7.6 (m,4H, Ar-H); MS:m/z 322 (100%) 309(4.2), 307(57.0), 280(5.1), 229(8.2), 177(6.2), 175(3.1), 174(6.0), 173(5.5), 172(5.7), 171(21.4) and 94(50).

2e: IR(KBr): 1605(-C=N-), 1720 cm⁻¹ (lactonic carbonyl); ¹H NMR (DMSO-*d*₆ +CDCl₃): δ 2.1 (s,6H, 2xCH₃), 4.0(s,3H,OCH₃), 6.3(s,2H, pyrrole-H), 7.05-7.4 (m,3H, Ar-H), 7.6(s,1H, thiazole-H) and 8.5 (s,1H, C₄-H of coumarin); MS: m/z 352 (12.5%), 337(111), 275(12.5), 274(100), 246(10.0), 241(10), 203(15.7) and 133(10).

2i: IR(KBr): 1600 (-C=N-), 1720 cm^{-1} (lactonic carbonyl); ^1H NMR (CDCl_3): δ 2.2 (s, 6H, $2 \times \text{CH}_3$), 6.0 (s, 2H, pyrrole-H), 7.2-7.4 and 7.7-7.8 (m, 3H, Ar-H and 1H-thiazole) 8.5 (s, 1H, $\text{C}_4\text{-H}$ of coumarin); MS: m/z 402(45%), 388(30), 387(30), 324(80), 322(70), 269(50), 268(48), 253(90), 251(100), 223(15), 198(10), 167(10) and 145(10).

2h: IR(KBr): 1610(-C=N-), 1720 cm^{-1} (lactonic carbonyl); ^1H NMR (CDCl_3): δ 2.3 (s, 6H, $2 \times \text{CH}_3$), 6.0 (s, 2H, pyrrole-H), 7.3 (s, 1H, thiazole-H), 7.5-8.1 (m, 5H, Ar-H) and 9.6 (s, 1H, $\text{C}_4\text{-H}$ of coumarin); MS: m/z 374(26%), 372(95), 357(50), 294(62), 266(20), 221(20), 195(20), 152(20) and 139(10).

Acknowledgement

One of the authors (V R R) is thankful to the Principal, R E C, Warangal for providing grant under 'Centre of Excellence'. UGC, New Delhi is also acknowledged for providing junior research fellowship to V A V.

References

- 1 Hantzsch A & Weber H J, *Ber dt chem Ges*, 20, **1887**, 3118.
- 2 Hantzsch A, *Leibig's Ann*, 1, **1888**, 249.
- 3 Dadson R M & King L C, *J Am Chem Soc*, 67, **1945**, 2242.
- 4 King L C & Hlavacek R J, *J Am Chem Soc*, 72, **1950**, 3722.
- 5 Rajeswar Rao V, Mohan Rao G, Ravikumar V & Aditya Vardhan V, *Phos Sulf and Silicon*, 47, **1996**, 113.
- 6 Rajeswar Rao V, Ramanna S, Surya Kumari T, Padmanabha Rao T V, Swamy S J & Kishore Kumar B, *Indian J Chem*, 35B, **1996**, 581.
- 7 Koelsch C F, *J Am Chem Soc*, 72, **1950**, 2993.
- 8 Veerabhadraiah V, Rajeswar Rao V & Padmanabha Rao T V, *Colln Czech Chem Commun*, 55, **1990**, 535.
- 9 Veerabhadraiah V, Rajeswar Rao V & Padmanabha Rao T V, *Sulfur Lett*, 9, **11989**, 167.
- 10 Ramanna S, Rajeshwar Rao V, Surya Kumari T & Padmanabha Rao T V, *Phos Sulf and Silicon*, 107, **1995**, 197.