
ELSEVIER Microprocessing and Microprogramming 40 (1994) 537-552

Microprocessing
and
Microprogramming

Genetic algorithm for embedding a complete graph
in a hypercube with a VLSI application

R. Chandrasekharam a'*, V.V. Vinod b, S. Subramanian b
aDepartment of Computer Science & Engineering, Regional Engineering College, Warangal 506004, India

b Department of Computer Science & Engineering, Indian Institute of Technology, Kharagpur 721302, India

Abstract

The embedding of a complete graph in a minimum sized hypercube is an important problem which models the classical
state encoding problem of Finite State Machines (FSMs). As this problem is an NP-hard optimization problem,
acceptable final solutions are generally obtained by employing heuristic methods or Simulated Annealing (SA). In this
paper the efficacy of a Genetic Algorithm (GA) for this problem is studied. This study includes a comparison of three
different crossover methods of GA along with their implementation details and their suitability for this embedding
problem. The experimental results on a number of MCNC benchmark FSMs indicate the superiority of GA in finding
a better (near optimal) solution than a heuristic solution. These results experimentally establish the time efficiency of GA
over SA for this embedding problem.

Keywords: Genetic algorithm; Hypercube; VLSI

1. Introduction

The general graph embedding problem is defined
as follows. Let Gg(Vg, Eg) and Gh(Vh, E,) be the guest
and host graphs described by their vertex sets Vg, Vh
and edge sets Eg, Eh respectively. It is assumed that
the guest graph has at most as many vertices as that
of the host graph. Let u, v be any two vertices of Gg

* Corresponding author. Fax: 91 8712 76547.

0165-6074/94/$7.00 © 1994 Elsevier Science B.V. All rights reserved
SSDI 0165-6074(94)00015-3

and an embedding function F: Vg ~ Vh be such that
F(u) # F(v) ifu # v. With respect to the embedding
two factors namely dilation factor and expansion
factor are defined. The term dilation (u, v) for u # v
is defined as

dh(F(u), F(v))
dilation (u, v) =

dg(u, v)

where dh and dg are distances in Gg and Gh respec-
tively. The distance between two nodes is the min-
imum path length between the two nodes. The

538 R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552

dilation factor 1;): is given by

1): = max {dilation (u, v)} for all u ~ v.

The expansion factor E: is defined as IV h~ V~[and in
general embedding is attempted with expansion
factor E: >/1 only. The embedding problem is to
obtain a one-to-one embedding function F such
that 1): is minimized. It may be observed that
D: = 1 means that the embedding preserves the
adjacency properties of G o in Gh. This dilation fac-
tor essentially represents the largest of the ratio of
the distances in the guest and host graphs. Hence,
when dilation minimization is attempted for an
embedding problem that models a real world prob-
lem, it results in the optimization of some objective
with reference to that problem. The importance of
the embedding problem can be explained by the
real world problems modelled by it. Some such
problems are briefly given below.

We encounter different embedding problem in-
stances while porting some algorithms designed on
one architecture onto another architecture [14]. In
case of such embedding instances the vertices cor-
responds to the processors, and edges to the com-
munication links. The dilation minimization in this
case minimizes the inter processor communication
delay, there by resulting in better time efficiency for
the ported algorithm.

Embedding has been used to model the problem
of processor allocation in a distributed system [10].
In this case a number of tasks are to be handled by
different processors available in a distributed sys-
tem. The problem of deciding which processor is to
do which task is modeled as embedding problem.
Dilation minimization results in minimization of
inter-task communication overhead.

The problem of placing processors on a printed
circuit board which form a hypercube architecture
is addressed in [13]. The objective is minimization
of the length of the longest wire used for intercon-
nection of a pair of processors. This problem is
modeled as embedding a hypercube in a mesh.

A method of embedding is given for which the
lower bound on the dilation is obtained.

Embedding a binary tree into a square grid [7]
has been pointed out to be an important require-
ment of many VLS1 circuits. In [7] using a building
block U-tree it has been shown that the problem of
determining whether a unit length (dilation) em-
bedding of a tree in a square grid is possible, is
a NP-complete problem.

The above mentioned instances of embedding
are examples in which the host and guest graphs
are different types. The general embedding problem
in which the guest and host graphs are any arbi-
trary graphs is known to be NP-complete [-12].
Imposing a restriction of host being a hypercube is
of practical importance, since many parallel com-
puters are being made available with hypercube
architecture. Attempting problem solving on such
machines would lead to the embedding with the
above restriction. But, even this instance of embed-
ding has been shown to be NP-complete [12]. In
this work this specific instance of embedding is
addressed since it models the important problem of
encoding the states of a Finite State Machine. For-
mulation of this embedding instance and its equiva-
lence with state encoding problem are presented in
the following section.

2. Formulation of the specific embedding problem

The specific embedding we consider is the one in
which the host is a minimum sized hypercube. A k-
dimensional hypercube is a graph having 2 k vertices
labeled from 0 to 2 k - 1, and in which two vertices
are joined by an edge is their labels (as binary
numbers) differ in one bit position only. In this
formulation we consider the guest graph as a com-
plete graph in which there is an edge between every
pair of vertices. Such a graph of n vertices is de-
scribed by a symmetric matrix a(i,j) where each a(i,
j) is the weight associated with the edge between

R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552 539

vertex i and vertex j. It may be noted that this
description restricts to only undirected graphs. In
case of embedding arbitrary graphs into a hyper-
cube, the same description may be used with edge
weight made zero if there is no edge in the guest
graph. It may be observed that the edge weight of
an edge in the guest graph corresponds to a prob-
lem specific quantity (such as the communication
cost) and the problem is modeled by the embed-
ding.

Let the vertices of the guest graph be labeled
by {Vol , Vg2, .-. Vgn}. Since the embedding is at-
tempted with expansion factor E: >~ 1, the size of
the hypercube is assumed to be k such that
k = Vlog2 n-]. This corresponds to the embedding
into a minimum sized hypercube. The problem of
embedding the complete graph Gg of size n into
a k-cube with k = Vlog2 n-] is now formulated as
determining a mapping function F:Vg ~ Vh. The
embedding is done with an objective of minimising
the cost function given by

Embedding cost = ~ ~ a(i,j)*dh(Ci, Cj) (1)
i = l j = i + l

where a(i, j) is the weight of the edge between nodes
Vgi, Vgj. In other words, each node of the guest
graph is encoded with a k-bit binary number by this
embedding. With such encoding, let the codes given
to the nodes Vgi, Vg~ be Ci and C~ respectively. The
distance dh(Fgi, Vgj) represents the dilation itself
since the distance dg(Vgl, Vgj) is unity as Gg is a com-
plete graph. The minimization of the embedding
cost given by Eq. (1) may be observed to be equiva-
lent to dilation minimization.

This embedding problem is explained with an
example of guest graph with 5 nodes with edge
weights as given in Fig. 1. Since guest graph has
5 nodes the host graph is a hypercube with 8 nodes.
Each node of host graph is labeled with a 3 bit
binary number. Let the nodes of guest graph be
indicated by A, B, C, D, E. Consider the three

D

Guest Graph

Hast Graph

A B C D E

A 0 8 4 3 2

B 8 0 2 3 6

C 4 2 0 4 5

D 3 3 4 0 2

E 2 6 5 2 0
Edgeweightsofgucstgraph

Fig. 1. Example embedding.

encodings corresponding to the embeddings de-
noted by EBD-1, EBD-2, and EBD-3.

EBD-1 = (A-000, B-001, C-010, D-011, E-100)

EBD-2 = (A-ill, B-110, C-100, D-000, E-001)

EBD-3 = (A-001, B-000, C-101, D-010, E-100)

The cost of these three embeddings are 59, 71, and
56 respectively. The embedding problem is to deter-
mine the encoding that results in the minimum cost.
It may be easily observed that the encoding ob-
tained by reversing the three bit code assigned to
each node will have the same cost. Hence, multiple
optimal solutions may exist for a specific embed-
ding problem.

The above mentioned specific embedding formu-
lation models the problem of encoding the states of
a FSM. Consider an FSM with n states. The behav-
iour of such FSM is described by its state transition
table. Each row of such table contains a list of
primary inputs, a present state, a next state, and
a list of outputs. With the specified input combina-
tion the FSM transits from the present state to the
next state and asserts the specified outputs. Thus
each row describes a transition of the FSM. From
the description of all the transitions of the FSM
given in its state transition table, a static estimation
of the encoding affinity between all pairs of states
can be computed. The encoding affinity between

540 R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552

two states is defined as the advantage gained by
encoding these two states with minimum distant
codes.

Let a(i, j) denote the encoding affinity between
the states & and s~. The corresponding matrix with
entries a(i, j) may be treated as the description of
a complete graph. In this complete graph each
vertex corresponds to a state of the FSM. The
resulting embedding of the above formulation ends
up in mapping each state si of the FSM to a vertex
of the hypercube labeled by the k-bit binary num-
ber Ci. When such embedding is done with an
objective of minimizing the cost function given by
Eq. (1) it is equivalent to finding the encoding of the
states of the FSM with minimum encoding cost.
The distance dh(Ci, Cj) denotes the Hamming dis-
tance between Ci and Cj. As the cost of embed-
ding depends on a(i, j) also, determination of these
encoding affinities from the FSM description
becomes another important part of the state assign-
ment problem. Many researchers [1-5, 8, 17] have
taken different approaches to come out with
encoding of the states of FSM. Some of the early
methods [8] employed algebraic methods based on
partition theory. The later approaches have been in
the lines of the above mentioned graph embedding
instance.

A common feature of all the state assignment
algorithms such as MUSTANG [4] and NOVA
[17] is that they all make static estimations of the
encoding affinity between states, based on the lit-
eral savings. These literal savings are obtained by
the logic minimizers that are generally employed
after the state assignment. Thus a proper modeling
of the targeted logic circuit, and the various
boolean and algebraic techniques that are em-
ployed in the logic minimizers influence the literal
saving cost estimates. For example literal savings
due to boolean merge and consensus operations
cannot be taken into account unless the encodings
differ by unit distance. A comprehensive picture of
literal saving estimates is presented by the authors

of MUSE [5]. A closed form expression for the
literal saving is obtained in terms of the FSM's
symbolic cubes (one row of the state transition
table is a symbolic cube) containing two parts. One
part corresponds to the encoding affinity of the
present state and the other to the next state. The
part of present state encoding affinity is indepen-
dent of the targeted structure of the logic circuit of
the FSM. The approximations made by other
methods like MUSTANG while computing this
part of encoding affinity have been pointed
out by the authors of MUSE. A better cost
estimate for state assignment (encoding affinity) is
presented by them which takes into account the
present 'state as well as the next state encoding
affinity.

The above mentioned methods have mainly ad-
dressed the issue of computing encoding affinity, so
that the eventual realization of the FSM circuit is in
minimum area. It may be pointed out here that
whichever way the encoding affinity is computed, the
later step of determining the codes assigned to the
symbolic states is very important. With a given
encoding affinity, this encoding problem turns out
to be the problem of embedding a complete graph
in a hypercube. This embedding instance is shown
to be NP-complete and hence, we find only greedy
heuristic methods or Simulated Annealing being
employed. In our work the efficacy of GA for
this embedding problem is addressed. In the
following section all these three approaches
namely the greedy, SA, and GA approaches for
this specific embedding instance are presented in
detail.

3. Solution methods

3.1. The Greedy methods

This method is based on the adjacency properties
of the vertices in the hypercube. Since the label of

R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552 541

this vertex is a k bit binary number, for every vertex
there are k vertices with unit distance. This prop-
erty motivates the selection of a cluster of k + 1
nodes with a central node nc and k nodes around
it in the guest graph for embedding at a time.
Iteratively such clusters are identified and assigned
with minimum distance codes. In each iteration
the center of the cluster is deleted from the guest
graph. A pseudocode given below explains the
procedure.

Procedure Greedy
begin
while Gg is not empty do

{
Select the central node nc and the cluster
nodes nl such that ~ a(c, i) is maximum
Assign nc and all the other ni possibly
minimum distance codes.
Delete nc such that G 9 becomes Gg - nc
}

end {Greedy}

This algorithm has been proposed by S. Devadas
and its optimality property has been discussed in
his paper on MUS TANG algorithm [4]. One may
observe that this method may end up with an
encoding which is suboptimal. It is because in every
iteration we encounter some states to be encoded
with possible minimum distant codes. It is possible
that we have many choices in the early iterations
and less or no choices in later iterations. Hence,
the resultant encoding may turn out to be subopti-
mal. This can be illustrated by the following
example.

Consider the example embedding given in the
Fig. 1. The first cluster can be identified with center
at node B and other nodes being A, D, and E. In the
first iteration let the codes assigned to these four
nodes be B-000, A-001, D-010, and E-100. After
deleting the center of the cluster, we get the next

cluster with center at C and nodes being A, D, and
E. The code to be assigned to node C to be unidis-
tant to the codes of A, D, and E. It may be noted
that there is no code available which satisfies this
requirement, as it is assigned to the node B. Among
the available codes there are multiple choices which
are unidistant to any two nodes in the cluster. Thus
a proper choice of code for C determines the cost of
encoding. I fC is encoded with 101 the cost is 56 and
if C is encoded with 110 the cost is 52. This example
illustrates the possibility of the greedy approach
leading to a suboptimal solution. Even though op-
timality is not ensured by this method, it is very fast
and shown to have a worst case time complexity of
O(n 2 log n).

3.2. Simulated annealing

This is a probablistic hill climbing relaxation
algorithm proposed by Kirkpatrick et al. [11] as
a general tool for solving hard optimization
problems of NP-complete class. The method
emulates the chemical process of annealing.
In terms of optimization the energy of the
object corresponds to the cost function. Starting
from a random initial solution, in every iteration
a new solution is obtained by a suitable perturba-
tion. If the new solution is at least as good as the
initial solution, then the new solution becomes the
current solution. If not the new solution is accepted
as the current solution with a probability P given
by

P = exp (6c/T)

where 6c is the cost difference and T is the temper-
ature. The canonical form SA is given in Procedure
SA as follows.

Procedure SA
begin
Initialize a random current solution S
Initialize the temperature as To

542 R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552

While (temperature ~ 0) do
begin
for (some number of perturbations) do
begin

obtain the new solution S, by perturba-
tion of the current solution S
compute the difference cost 6c
compute the acceptance probability P
compute a random number R in the
range 0.1
if R ~< P new solution becomes the cur-
rent solution

end {for}
update (temperature = ~ • temperature)
end {while}

end {Procedure SA}

From the canonical form given above it can be
observed that the final solution obtained by SA
method essentially depends on the starting solution
and the cooling schedule employed for updating
the temperature. Any random initial solution can
be easily generated for the embedding problem. An
integer string of length n would suffice as the solu-
tion. The binary code of the integer in the position
i is the code assigned to the vertex i of the complete
graph. Exchange of the codes assigned to two
vertices or changing the code assigned to a vertex
to some other unassigned code can be employed for
the perturbation. A probabilistic selection of any of
these perturbations may also be employed. The
number of perturbations per temperature is deter-
mined experimentally. However, the choice
must ensure some minimum number of down hill
moves.

Though SA offers a general paradigm for solving
hard optimization problems, it is observed to be
critically dependent on the initial solution, the
number of perturbations per temperature and the
temperature schedule. The required slow cooling
schedule may cause SA to become prohibitively
slow for some hard problems.

3.3. Genetic algorithm

GA has been proposed as a paradigm modeled
on the lines of adaptation in biological
systems. The genetic structure of biological
organisms goes through many changes in a number
of generations due to the genetic operators
like crossover and mutation. In the process,
a population of species gets enriched in
certain genetic order over number of generations.
The outcome of this is generally a population
well adapted to the environment. Holland [9]
proposed that a simulation of such adaptation
process under controlled conditions can be an
efficient approach for solving complex opti-
mization problems. The pseudo-code for Procedure
GA given below describes the canonical form of
genetic algorithm.

Procedure GA
begin

1. Initialize the GA parameters.
2. Initialize a population of candidate solu-

tion strings.
3. Evaluate the objective function value for

all solutions.
4. Evaluate the fitness value for all solu-

tions.
5. Select the parent strings as per a chosen

reproductive plan.
6. Perform operations and produce new off-

spring.
7. Evaluate the objective function values for

the offspring.
8. Evaluate the fitness of the offspring.
9. Select the next generation population.

10. If the processing of generations still re-
mains, then go to 5.

11. Select the best fit solution in the current
population as final solution.

end {Procedure GA}.

R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552 543

From the Procedure GA, one may identify the
components of GA to be
(1) A chromosomal representation of solution to

the problem,
(2) A way to create some random initial population

of the solutions,
(3) An evaluation function that plays the role of

environment, rating the solutions in terms of
their fitness,

(4) Genetic operators that alter the genetic struc-
ture of the solutions and

(5) Values for the GA parameters namely the
population size, the number of generations,
crossover rate, and the mutation rate.

These components of GA for the embedding prob-
lem are explained in the following section.

4. GA components

4.1. Solution representation

The embedding problem requires the mapping of
one node of Go on to a node of Gh to be expressed as
a solution. An integer string of length n would
suffice for this purpose. The same representation
holds good for the SA method also. Hence, we
choose an integer string for solution in which the
binary code corresponding to the integer in the
position i is the code assigned to the state i. Such
a gene string solution is a natural requirement for
the effectiveness of the adaptive search by GA.

4.2. Objective function and fitness of a solution

The objective of the assignment is to minimize
the cost of encoding (embedding) given by Eq. (1).
This cost can be computed for any given solution.
The cost of a solution in a population of one gen-
eration is the basis to determine the fitness of that
solution. The lowest cost solution is the best fit
solution and the highest cost solution is the least fit

solution. All other solutions that are processed in
a single generation thus can be ordered relatively
according to their fitness. Any solution with a bet-
ter cost than that of the best fit solution pushed into
the current population would change the fitness of
each of the solutions in that population. Conse-
quently improvement in fitness corresponds to
lower cost.

4.3. Initial population

The FSM considered may have n states which
are less than the available 2 k codes. In such a case
seed groups as suggested by Mitra [15] may be
formed. An example of 5 states and 8 codes illus-
trates this. In this case the seed groups may be (0, 7)
(1, 6) (2, 5) (3) (4). Thus, all possible solutions con-
tain one code from each seed group. Such seed
groupings would restrict the total search space.
But, considering the fiat nature of the objective
function it has been observed that the approxima-
tion by seed groupings would not seriously effect
the area of the targetted logic circuit of the FSM.
These permissible codes of seed groupings are ar-
ranged in a seed table and a random permutation
of one column of the seed table gives a valid solu-
tion. Using any permutation generation scheme
iteratively the required initial population of solu-
tions can be obtained. Such population is expected
to have a good measure of diversity for an efficient
search by GA. The diversity in case of this problem
is a measure by which the gene structure differs. In
other words, an equal distribution of all permissible
codes for any single state is desirable and this
ensures good diversity in the initial population.
Hence, the initial population is generated with uni-
form distribution of all possible codes.

4.4. Crossover and mutation operations

The purpose of crossover is to obtain the off-
spring solution that inherits the genetic features of

544 R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552

Random cut point

1 2 4 1 8 x 7 6 5 3
I

1 2 4 8 6 7 5 3

Order crossover

Random cut point

1 2 4] 8 × 7 6 5 3
Parents

I
8 6 7] 5 1 2 3 4

7 6 3 5 1 2 8 4 Offspring

Partially mapped crossover

in each position to the right of the cut point in both
parents are noted. These are exchanged in the off-
spring. Care is taken not to exchange any gene with
a specific allele value if it is already exchanged once.
It may be observed that partially mapped crossover
results in an offspring that preserves large number
of allele values from parent 1 in the left cut segment,
and from parent 2 in the right cut segment.

cycle 1 = 1,35
cyce2=468
cyc e 3 = z) '

1 6 3 2 8 7 2 4

1 4 3 2 6 7 5 8 Offspring

Cycle crossover

Fig. 2. Different crossover operations when the gene string is
a permutation.

both parent solutions. Three types of crossover
operations are reported in the literature [-16] and
these operations are illustrated in Fig. 2.

Order crossover. In this method the offspring in-
herits all genes from parent 1 up to the random cut
point. Since the remaining genes are to be given
distinct allele values, the offspring can be construc-
ted by observing an order for these allele values in
the parent 2. All genes that are present to the right
of the cut point are given the allele values in the
order they appeared in the parent 2.

Partially mapped crossover. All the genes of parent
1 are copied into the offspring first. A random cut
point is chosen as in the case of order crossover.
The segments to the right of the cut point in both
the parents are considered for a partial mapping of
the allele values to be exchanged inthe parent 1 to
generate the Offspring. The allele values of the genes

Cycles crossover. In this case every allele value of
the gene in the offspring is inherited from one of the
parents in its position and hence, results in no
conflicts. We start with the gene with a specific
value in the first position of parent 1 and copy it
into the offspring. Consider the gene (possibly with
some other allele value) in the same position of
parent 2. Since it cannot be inherited in this posi-
tion of the offspring, it is searched for in parent 1.
When its position is found, this gene from parent
1 is copied into the offspring at this position. Since
the allele value of the gene of parent 2 in this new
position cannot be inherited by the offspring, once
again the search may be conducted. This cycle of
search and copy is continued until the cycle is
complete. It may be noted that the cycle completes
when the allele value of the gene in parent 2 be-
comes same as that of the first gene inherited by the
offspring in the cycle. The process of inheritance is
switched to parent 2 for the next cycle. The cycles
are alternated between the two parents until all
allele values are assigned to different genes.

Mutation. In the process of search by GA it is
possible that all solutions in a population of one
generation may turn out to be same. In such a case,
the search is impaired since crossover cannot ex-
plore any more new solutions. GA gets trapped in
a local minimum under these conditions. Mutation
i.e. altering the genetic structure of few solutions by
a small amount, is employed for surmounting this
local optimum. However, the mutation level is
kept low. Random selection of codes of few states

R. Chandrasekharam et al./Microprocessing and Microprogramrning 40 (1994) 537-552 545

(decided by the mutation rate) and changing to new
values is chosen as mutation operation.

4.5. Selection policies

Parents are selected based on their fitness in
a conventional GA. With a view of saving the time
taken for parent selection, in our work we adopted
a policy of parents being completely at random, but
with a restriction of no solution reproduces twice in
a generation. The offspring replace the parents and
form the next generation population in a conven-
tional GA. With such strategy it is likely that a cur-
rent best solution may not survive to the next
generation. To enforce the elitism in which the
current best solution survives into the next genera-
tion, we adopted a policy of replacing the worst
o-number of solutions in the current population by
the o-number of offspring that are generated. This
policy ensures the survival of every new solution
generated by the crossover operation for at least
one generation. Such a policy is experimentally
observed to yield a good efficiency for GA, since it
permits maintaining a good amount of diversity in
the population.

The above mentioned GA components explain
the implementation aspect of GA. However, the
question 'How GA works' still remains to be an-
swered. Also the suitability of GA for the embed-
ding problem needs to be explained. These are
considered in the following section.

5. 'How GA works' - A qualitative picture

In the process of adaptation by GA, the succes-
sive rearrangements of smaller building blocks over
a number of generations causes the construction of
optimal or near optimal solution in the current
population. In this context the similarities between
the solution strings in a population become impor-
tant. Holland introduced the framework of Schema

I-I-I A
I I

n

Fig. 3. Schema example.

as a tool to explain the building block concept. The
Schema is a similarity template describing a subset
of strings with same genes at some string positions.
In other words Schema is a pattern matching tool.
Schema can be viewed as a partial solution also.
For example a schema H illustrated in Fig. 3 ex-
pressed as **A • BC ****** has the specified values
A, B, and C for three genes and nine unspecified
genes indicated by * in those positions. A number
of such Schema can be defined, and a set of such
partial solutions are referred to as Schemata. The
population of solutions may be viewed as a collec-
tive representation of Schemata.

In the process of the artificial adaptation the
population gets enriched in some schemata and
gets diminished in some alleles. To understand
which Schema grows in the population over the
generations, we need to consider the properties of
that Schema. The important properties or at-
tributes of any Schema are its order and the defin-
ing length. The order of a Schema H denoted by
O(H) is defined as the number of specified positions
in the Schema H. The defining length 6(H) is de-
fined as the length of the string between the first
and last specified genes in the Schema H. It may be
observed that for the given example Schema O(H) is
3 and 6(H) is 4. As pointed out earlier the Schema
may be viewed as a partial solution structure, or
a building block of the solution. Schemata and
their properties give a basic means for analyzing
the GA method of arriving at optimal or near
optimal solution from successive juxtapositions of

546 R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552

a number of low order and short defining length
Schemata.

The process of adaptation by GA in the popula-
tion and the eventual construction of optimal or
near optimal solution is primarily dependent on the
effect of reproduction, crossover and mutation on
the survival of better fit Schema in successive gen-
erations. A mathematical framework explaining
these effects is given below. Let the membership of
Schema H in the population A at a time t be
denoted by m(H,t). First we consider the effect of
reproduction.

Reproduction. A solution participates in the pro-
cess of reproduction depending on its fitness which
is the method of natural selection. This means that
a candidate solution in the population Ai(t) gets
selected with a probability Pr where

P, = f l / E f ~

in which f~ is the fitness of the ith solution. The
membership of the Schema H in two consecutive
generations is thus given by

m(U, t + 1) = m(H,t) * N *f(H)/~_Ji

where f(H) is the average fitness of the solutions
containing the Schema H in the population of size
N. If the average fitness of the total population is fay
the growth of membership of a Schema H in suc-
cessive generations is given by Eq. 2 as follows.

m(H, t + 1) = m(H, t) * f (H)/fav (2)

Eq. 2 indicates that any Schema present in solu-
tions with above-average fitness will grow over
number of generations. It can be observed that
a Schema with fitness as c *fay where c is a constant,
will grow exponentially, i.e. at a rate of (1 + c)'.

Crossover and mutation. The solution being repre-
sented by an integer string, we may employ some
suitable crossover selected from the order, partially
mapped and cycle crossover operations. If the

suitability of these crossover operations is to be
quantified, we need to consider the probability of
survival of an arbitrary Schema in the next genera-
tion after any of these crossover operation. A quali-
tative analysis of these three crossover operations
in this regard is presented below.

Consider the example Schema given in Fig. 3.
The order and the defining length of the Schema
are indicated in the Fig. 3. To obtain an expression
for the net survival factor for such Schema we need
to consider the probability of survival of this
Schema after the specific crossover operation. Let
P1 and P2 be the probabilities that a Schema sur-
vives from the parent 1 and parent 2 respectively.

Order crossover. The probability that the given
Schema survives from the parent 1 (P1) is nearly
equal to the probability that the cut occurred only
from Ir to n -- 1. Hence

PI = (n - l,)/(n - 1).

The probability that the given Schema survives
from parent 2 (/2) is nearly equal to the probability
that no specified gene has occurred before the cut
and all the gene string of the defining length has
occurred in that order in the parent 2. Hence

P2 ~ (1 - - 1 /n) °* (1 /n) ~.

The net survival probability can be obtained from
P1 and P2 as

Net survival probability = P1 + P2

= (n -- lO/(n -- 1)

+ (l -- l/n) ° * (l/n) ~.

Partially mapped crossover. It can be observed that
by this method of crossover many genes from par-
ent 1 get preserved in the left cut segment, and
many remaining genes from parent 2 get preserved
in the right cut segment. Hence, the survival of
a Schema in the offspring can be approximately

R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552 547

taken as its survival in the left, or right cut seg-
ments.

The probability of survival in the left cut segment
,~ l l / (n - 1)

The probability of survival in the right cut segment
(n - 1 - l O / (n - 1).

From these two the net survival probability can be
approximated as (n - 1 - 5) / (n - 1).

C y c l e c r o s s o v e r . By this method of crossover every
gene is inherited in place from one of the parents.
Let p be the number of genes inherited from the
parent 1. Hence (n - p) genes are inherited from the
parent 2. The net survival probability of the
Schema is given by

Net survival probability = (p /n) ° • (1 - p / n) °

In the approximate analysis given above, the sur-
vival of a Schema after the crossover operation
is considered. If mutation operation is also taken
into consideration the survival probability gets
modified as follows. The Scheme gets disrupted by
mutation only if a specified gene of the Schema is
selected in course of mutation operation. The prob-
ability of such disruption is approximately given by
(l /n) °.

Hence, the survival probability after mutation is
(1 - (l / n) °) . The overall survival factor associated
with the Schema may be approximated as the sum
of the survival probability after crossover and the
survival probability after mutation. It is known
that the rate of growth of better fit Schema depends
on this survival factor.

A closer look is necessary at what type of Schema
need to survive in the eventual construction of
a near optimal solution for this embedding prob-
lem. A low order Schema means that we have only
a few genes with specified values. Consider a cluster
of k + 1 consecutive nodes of the guest graph. If

these are assigned with adjacent codes they occupy
different gene positions separated by small values.
This makes the Schema to have a small defining
length. For example a Schema described by (*
0 1 2 4 * * •) of 8 genes has a defining length of 4.
The Schema has a cluster of { Vo2 , V03 , Vo4 , Vo5 }
and these nodes are assigned with adjacent codes.
Clusters of such nodes with adjacent codes, can be
observed to correspond to low order small defining
length Schema. Growth of such Schema would lead
to some high order and long defining length
Schema over some generations, ultimately leading
to the optimal or near optimal solution. One may
note that the order in which the codes are assigned
to the nodes of the guest graph is not important.
Only the adjacent codes given to the clusters of
nodes is important. Hence, the order and partially
mapped crossovers are more suitable for this prob-
lem than the cycle crossover. It may be noted that
the cycle crossover preserves the inplace inheri-
tance of genes, and depends only on the order of
Schema. Comparatively the partially mapped
crossover gives rise to a better survival probability
for an arbitrary Schema. Let us consider an
example Schema with n = 12, Ir = 8, and ll = 4
resulting in o = 2 and 6 = 4. The net survival prob-
ability after the order crossover may be observed to
be 4/11 where as it is nearly 8/11 after the partially
mapped crossover. This shows that partially map-
ped crossover performs better than the order cross-
over for this embedding problem. Experimentally
the same has been observed. However, a good mix
of some better fit low order and small defining
length Schema in the initial population is essential.
The above presented qualitative analysis does not
prove that GA would lead to the optimal solution.
It only reiterates the building block concept pre-
sented by John Holland. In this work, our aim is to
study the efficacy of GA for embedding problem.
This can be established only by experimentation.
The details of the experimentation conducted is
presented in the following section.

548 R. Chandrasekharam et al. / Microprocessing and Microprogramming 40 (1994) 537-552

Table 1
MCNC Benchmark FSMs and their characteristics

FSM name States Inputs Outputs

bbra 10 4 2
bbsse 16 7 7
bbtas 6 2 2
cse 16 7 7
dkl4 7 3 5
dkl6 27 2 3
dkl7 8 2 3
dk27 8 1 2
dk512 15 1 3
donfile 24 2 1
exl 20 9 19
ex2 19 2 2
ex3 10 2 2
ex4 14 5 9
ex5 9 2 2
ex6 8 5 8
lion9 9 2 1
markl 15 5 16
planet 48 7 19
shiftreg 8 1 1
sla 20 8 6
train 11 11 2 1

6. Experimental results

The problem of encoding FSM symbolic states is
considered, for conducting the required experi-
mentation. All the three solution methods are em-
ployed to get an embedding solution on a number
of M C N C benchmark FSMs. The features of these
FSMs such as the number of the states, pr imary
inputs and outputs are listed in Table 1. In case of
each FSM the encoding affinity between every pair
of states is computed using the M U S T A N G
F A N I N and F A N O U T approaches. As the aim of
the experimentation is to test the efficacy of GA for
embedding, encoding affÉnity is computed by these
simple methods. It may be noted that which ever
way the encoding affinity is computed the encoding

procedure that determines the codes assigned to the
symbolic states needs the solution for the embedding
problem.

The embedding solution is first obtained using
the greedy heuristic method. This embedding may
leave some codes unassigned to any state. These
unassigned codes are considered for grouping with
some assigned codes to form a seed group. The seed
groups placed in a seed table help the generation of
the initial population in the GA formulation. From
the pool of the unassigned codes each code
is grouped with an assigned code of the greedy
solution, such that they are k-distant to each
other. These seed groups are placed in the seed
table. A random shuffling of one column of the seed
table is employed for the generation of a random
solution.

Since partially mapped crossover is shown to be
more suitable for this problem the same is em-
ployed to obtain the embedding solution by the
GA. A population of 40 candidate solutions, cross-
over rate of 25%, mutat ion of one gene or at most
2% of genes are employed as GA parameters. The
GA required processing of at least 500 generations
to reach the final solution. To understand how
these parameters influence the quality of the GA
solution, the performance of GA with variations in
population size, crossover rate and mutation rate
have been tested. A few test runs confirmed that the
above choice of the GA parameters is adequate to
give good performance by GA.

The embedding solution by SA for the same data
sets of the benchmark FSMs are also obtained. In
the SA formulation the starting temperature is
chosen as 105 , and choice of smaller initial temper-
ature resulted in poor final solutions. The number
of perturbations per temperature are chosen as 20.
It was observed that a choice of less number of
perturbations degraded the SA performance, and
a choice of more did not improve the performance.
A value of 0.99 for ~ has been used for the temper-
ature schedule. Any faster cooling resulted in poor

R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552

Table 2

Comparision of greedy, SA, and GA methods - Encoding affinity by MUSTANG-P

549

Benchmark Greedy GA SA
FSM C o s t

C o s t T ime C o s t Time

bbara 530 520 0 m.25 sec. 520 2 m.45 sec.

bbsse 4976 4906 1 m. 17 sec. 4943 7 m. 16 sec.

bbtas 30 24 0 m.7 sec. 25 0 m.48 sec.

cse 9505 9332 1 m.21 sec. 9343 6 m . 5 6 sec.

d k l 4 1631 1547 0 m . 1 0 sec. 1547 1 m.6 sec.

d k 16 3607 3473 5 m. 13 sec. 3347 23 m.38 sec.

d k l 7 330 316 0 m . 1 4 sec. 316 1 m.31 sec.

d k 2 7 21 19 0 m . 1 3 sec. 21 1 m.27 sec.

d k 5 1 2 143 131 I m.6 sec. 147 6 m . 2 1 sec.

donf i le 11908 11876 3 m.53 sec. 11888 19 m.15 sec.

ex 1 33982 32246 2 m.25 sec. 32254 12 m.50 sec.

ex2 12018 11796 2 m . 2 sec. 11840 11 m.16 sec.

ex3 2316 2246 0 m.24 sec. 2246 2 m.38 sec.

ex4 124 120 0 m . 5 5 sec. 131 5 m.16 sec.

ex5 1582 1456 0 m. 18 sec. 1460 2 m.7 sec.

ex6 1136 1125 0 m . 1 4 sec. 1125 1 m.27 sec.

lion9 272 264 0 m.20 sec. 266 2 m.7 sec.

m a r k 1 4582 4532 1 m.6 sec. 4528 6 m.3 sec.

planet 79873 76292 25 m. 16 sec. 76292 2 h. 13 m.53 sec.

shiftreg 48 40 0 m.13 sec. 40 1 m.27 sec.

s la 4314 4132 2 m.29 sec. 4142 12m.14 sec.

trainl 1 585 585 0 m . 3 1 sec. 589 3 m . 1 2 sec.

final solutions. It may be reiterated that these para-
meters decide the time efficiency of SA.

The cost of the solution by GA, SA, and the
greedy methods in case of each MCNC benchmark
FSM is presented in Tables 2 and 3. The time taken
by GA as well as SA is presented in these tables. It
may be observed that the greedy method gives
a suboptimal solution in a very short time and
hence, this time is not presented in the results of
Tables 2 and 3.

The following may be observed from the results
presented in the Tables 2 and 3. In case of each
FSM, GA terminated with a solution of lower cost
value than that by the greedy method. The cost of
the final solution by GA is better than that by SA in

case of many benchmark FSMs. However, for two
instances SA final solutions are found to be better.
The improvement obtained by GA over the greedy
method is in the range of 1 to 10 percent in case of
each of the FSM tested. The ratio of the time taken
by SA to that by GA for each instance is nearly 6 to
1. These results experimentally establish the effi-
cacy of GA for the embedding problem.

7. Conclusions

The formulation of the problem of embedding
a complete graph in a minimum sized hypercube
is presented. The practical importance of this

550 R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552

Table 3
Comparision of greedy, SA, and GA methods - Encloding affinity by MUSTANG-N

Benchmark Greedy GA SA

FSM cost
Cost Time Cost Time

bbara 4258 4177 0m.26 sec. 4166 2 m.39 sec.
bbsse 2262 2241 1 m.18 sec. 2260 6 m.56 sec.

bbtas 436 429 0 m.8 sec. 429 0 m.58 sec.

cse 8605 8443 1 m.20 sec. 8477 7 m.2 sec.
dk 14 3634 3472 0 m. 10 sec. 3472 1 m.8 sec.

dk 16 14503 13371 5 m. 14 sec. 13706 22 m.59 sec.
dk l7 773 773 0m.12 sec. 773 1 m.27 sec.
dk27 74 74 0 m. 13 sec. 75 1 m.28 sec.

dk512 416 402 1 m.9 sec. 426 6 m.8 sec.

donfile 11730 10144 3 m.51 sec. 10942 18 m.3 sec.
ex I 33569 30685 2 m.22 sec. 30962 12 m.13 sec.

ex2 4628 4406 2 m.24 sec. 4463 11 m. 17 sec.

ex3 1054 1030 0 m.25 sec. 1040 2 m.39 sec.

ex4 29 27 0 m.50 sec. 34 5 m.17 sec.

ex 5 806 806 0 m. 19 sec. 806 2 m.7 sec.
ex6 704 652 0 m.13 sec. 656 1 m.26 sec.
lion9 633 573 0m.19 sec. 591 2 m.8 sec.

m a r k l 587 550 1 m.7 sec. 563 6 m.6 sec.
planet 5090 5070 25 m.51 sec. 5145 2 h. 13 m.9 sec.
shiftreg 88 88 0 m. 13 sec. 100 1 m.27 sec.

sla 10730 10652 2 m.22 sec. 10906 12 m.24 sec.
t ra in l 1 590 550 0 m.34 sec. 562 3 m.13 sec.

problem is explained. The way to extend this for-
mulation of embedding arbitrary graphs into hy-
percubes is pointed out. A comparative study of
three different solution methods for this problem is
conducted.

The different components of the SA, and GA
solution methods, and their design aspects are ex-
plained. In case of GA formulation, three different
crossover operations are compared. An approxi-
mate analysis of Schema survival after each of these
crossovers, is presented. The specific embedding
problem considered in this work is pointed out to
be equivalent to the problem of encoding the sym-
bolic states ofa FSM. Greedy, SA, and GA solution

methods for this application problem have been
compared.

The experimental results show that the GA para-
digm is more time efficient than SA for this embed-
ding problem. It is also shown that using GA
paradigm, better solutions (closer to optimal solu-
tion) than the solutions by greedy methods can be
obtained. The improvement obtained by GA
method when compared with the greedy method is
about 1 to 10 percent in cases of various bench-
mark FSMs that have been tested. For large sized
and more complex FSMs even, the time taken by
the GA method is within reasonable limits. More
importantly this time is observed to be much less

R. Chandrasekharam et al. / Microprocessing and Microprogramming 40 (1994) 537-552 551

than the t ime taken by the SA method . The ra t io of
the t imes taken by SA and G A methods is between
5 and 6 in var ious cases of FSMs .

The p a r a m e t e r tuning of G A is a much s impler
process than that of f inding a sui table cool ing
schedule in case of SA. It m a y be po in ted out tha t
any well designed t empera tu re schedule can reduce
the SA t ime by some percentage. However , such
design of t empera tu re schedule is cumber some and
more t ime consuming. Choice of s tar t ing so lu t ion
in case of SA also effects the end result of SA, but
this is e l imina ted by forcing the s tar t ing so lu t ion as
the greedy solut ion. To have the same advan t age
for GA, the greedy so lu t ion is chosen as one
cand ida te so lu t ion in the s tar t ing pool of the
solut ions.

The exper imenta l results reveal the efficacy of the
G A p a r a d i g m for the i m p o r t a n t p rob l em of embed-
ding comple te g raph in a m i n i m u m sized hyper-
cube.

References

I-l] D.B. Armstrong, A programmed algorithm for assigning
internal codes to sequential machines, IRE Trans. Elec-
tronic Comput. EC-11 (Aug. 1962)466-472.

[2] R.K. Brayton, G.D. Hachtel, C.T. Mcmullen and A.
Sangiovanni Vincentelli, Logic Minimization Algorithms
for VLSI Synthesis (Kluwer Academic, Hingham, MA,
1984).

[3] G. DeMicheli, R.K. Brayton and A. Sangiovanni
Vincentelli, Optimal state assignment for finite state
machines, IEEE Trans. Comput. Aided Design 4 (July 1985)
269-284.

[4] S. Devadas, H.K. Ma, A.R. Newton and A. Sangiovanni
Vincentelli, MUSTANG: State asignment of finite
state machines targeting multilevel logic implementation,
IEEE Trans. Comput. Aided. Design. 7(12) (Dec. 1988)
1290 1299.

[5] Xuejun Du, G. Hachtel, B. Lin and A.R. Newton, MUSE:
A multilevel symbolic encoding algorithm for state assign-
ment, IEEE Trans. Comput. Aided Design, 10(1)(Jan. 1991)
28 38.

[6] M. Gary and D. Johnson, A Guide to the Theory of NP-
Completeness (Freeman, San Fransisco, 1979).

[7] A. Gregori, Unit length embedding of binary trees on
a square grid, Informat. Process. Letters 31(4) (May 1989)
167-173.

[8] J. Hartmanis, On the state assignment problem for sequen-
tial machines, IRE Trans. Electronic Comput. EC-10 (June
1961) 157-165.

[9] J.H. Holland, Adaptation in Natural and Artificial Systems
(University of Michigan Press, Ann Arbor, MI, 1975).

[10] Young Man Kim and Ten-Hwang Lai, The complexity of
congestion-1 embedding in a hypercube, J. Algorithms 12
(1991) 246-280.

[11] S. Kirkpatrick, M.P. Vecchi and C.D. Gellatt, Optimiza-
tion by simulated annealing, Science 220 (May 1983)
671-680.

[12] D.W. Krumme, K.N. Venkataraman and G. Cybenco,
Hypercube Multiprocessor (SLAM Publications, Philadel-
phia, 1986).

[13] Ten-Hwang Lai and A.P. Sprague, Placement of proces-
sors of a hypercube, IEEE Trans. Comput. 40(6) (June
1991) 714-722.

[14] S. Lakshmivarahan and S.K. Dhall, Analysis and Design of
Parallel Algorithms. (McGraw-Hill, New York, 1990).

[15] B. Mitra and P. Palchoudhuri, A simulated annealing
based state assignment approach for control synthesis.
Proc. 4th CSI/IEEE Int. Syrup. on VLSI Design, New
Delhi, India (1991) 45-49.

[16] K. Shahookar and P. Majumder, A genetic approach to
standard cell placement using meta-genetic parameter op-
timization, IEEE Trans. Comput. Aided Design 9(5) (May
1990) 500-512.

[17] Tiziano Villa and A. Sangiovanni Vincentelli, NOVA:
State assignment of finite state machines for optimal two
level logic implementation, IEEE Trans. Comput. Aided
Design 9(9) (Sep. 1990) 905-924.

R. Chandrasekharam received B.E and
M. Tech degrees from Andhra and
Kakatiya Universities of India respec-
tively. He has been working for Ph.D in
the Dept. of CSE, IIT, Kharagpur, In-
dia during 1990-93, and currently em-
ployed as Asst. Professor in the Dept.
of CSE Regional Engineering College,
Warangal, India. His interested areas
of research are Optimization, Graph
Algorithms, VLSI design, Neural Net-
works, Artificial Intelligence and Com-
puter Communications.

552 R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552

V.V. Vinod has received his B.Tech
(Hons), M. Tech and Ph.D degrees in
Computer Science and Engineering
from IIT, Kharagpur, India in 1988,
1990 and 1994 respectively. He has
worked as a Junior Scientific Officer at
liT, Kharagpur from 1989 to 1993.
From 1993 onwards he is working as
a Member Technical Staff at Elec-
tronics Research and Development
Centre, Trivandrum, India. His areas
of interest include Neural Networks,
Pattern Recognition, Machine Learn-

ing and Genetic Algorithms.

S. Subramanian has received M. Tech degree from PSG College
of Technology Coimbatore, and Ph.D from liT, Kharagpur. He
has been working as a Professor in the Dept. of CSE liT
Kharagpur and presently holding the post of Principal, KCT
Coimbatore India. His areas of research include Optimization,
Neural Networks, Genetic Algorithms, Pattern Recognition,
VLSI Design, Control Systems, Artificial Intelligence and Ma-
chine Learning.

