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Abstract 

The embedding of a complete graph in a minimum sized hypercube is an important problem which models the classical 
state encoding problem of Finite State Machines (FSMs). As this problem is an NP-hard optimization problem, 
acceptable final solutions are generally obtained by employing heuristic methods or Simulated Annealing (SA). In this 
paper the efficacy of a Genetic Algorithm (GA) for this problem is studied. This study includes a comparison of three 
different crossover methods of GA along with their implementation details and their suitability for this embedding 
problem. The experimental results on a number of MCNC benchmark FSMs indicate the superiority of GA in finding 
a better (near optimal) solution than a heuristic solution. These results experimentally establish the time efficiency of GA 
over SA for this embedding problem. 
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1. Introduction 

The general graph embedding problem is defined 
as follows. Let Gg(Vg, Eg) and Gh(Vh, E,) be the guest 
and host graphs described by their vertex sets Vg, Vh 
and edge sets Eg, Eh respectively. It is assumed that 
the guest graph has at most as many vertices as that 
of the host graph. Let u, v be any two vertices of Gg 
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and an embedding function F: Vg ~ Vh be such that 
F(u) # F(v) ifu # v. With respect to the embedding 
two factors namely dilation factor and expansion 
factor are defined. The term dilation (u, v) for u # v 
is defined as 

dh(F(u), F(v)) 
dilation (u, v) = 

dg(u, v) 

where dh and dg are distances in Gg and Gh respec- 
tively. The distance between two nodes is the min- 
imum path length between the two nodes. The 
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dilation factor 1;): is given by 

1): = max {dilation (u, v)} for all u ~ v. 

The expansion factor E: is defined as IV h~ V~[ and in 
general embedding is attempted with expansion 
factor E: >/1 only. The embedding problem is to 
obtain a one-to-one embedding function F such 
that 1): is minimized. It may be observed that 
D: = 1 means that the embedding preserves the 
adjacency properties of G o in Gh. This dilation fac- 
tor essentially represents the largest of the ratio of 
the distances in the guest and host graphs. Hence, 
when dilation minimization is attempted for an 
embedding problem that models a real world prob- 
lem, it results in the optimization of some objective 
with reference to that problem. The importance of 
the embedding problem can be explained by the 
real world problems modelled by it. Some such 
problems are briefly given below. 

We encounter different embedding problem in- 
stances while porting some algorithms designed on 
one architecture onto another architecture [14]. In 
case of such embedding instances the vertices cor- 
responds to the processors, and edges to the com- 
munication links. The dilation minimization in this 
case minimizes the inter processor communication 
delay, there by resulting in better time efficiency for 
the ported algorithm. 

Embedding has been used to model the problem 
of processor allocation in a distributed system [10]. 
In this case a number of tasks are to be handled by 
different processors available in a distributed sys- 
tem. The problem of deciding which processor is to 
do which task is modeled as embedding problem. 
Dilation minimization results in minimization of 
inter-task communication overhead. 

The problem of placing processors on a printed 
circuit board which form a hypercube architecture 
is addressed in [13]. The objective is minimization 
of the length of the longest wire used for intercon- 
nection of a pair of processors. This problem is 
modeled as embedding a hypercube in a mesh. 

A method of embedding is given for which the 
lower bound on the dilation is obtained. 

Embedding a binary tree into a square grid [7] 
has been pointed out to be an important require- 
ment of many VLS1 circuits. In [7] using a building 
block U-tree it has been shown that the problem of 
determining whether a unit length (dilation) em- 
bedding of a tree in a square grid is possible, is 
a NP-complete problem. 

The above mentioned instances of embedding 
are examples in which the host and guest graphs 
are different types. The general embedding problem 
in which the guest and host graphs are any arbi- 
trary graphs is known to be NP-complete [-12]. 
Imposing a restriction of host being a hypercube is 
of practical importance, since many parallel com- 
puters are being made available with hypercube 
architecture. Attempting problem solving on such 
machines would lead to the embedding with the 
above restriction. But, even this instance of embed- 
ding has been shown to be NP-complete [12]. In 
this work this specific instance of embedding is 
addressed since it models the important problem of 
encoding the states of a Finite State Machine. For- 
mulation of this embedding instance and its equiva- 
lence with state encoding problem are presented in 
the following section. 

2. Formulation of the specific embedding problem 

The specific embedding we consider is the one in 
which the host is a minimum sized hypercube. A k- 
dimensional hypercube is a graph having 2 k vertices 
labeled from 0 to 2 k - 1, and in which two vertices 
are joined by an edge is their labels (as binary 
numbers) differ in one bit position only. In this 
formulation we consider the guest graph as a com- 
plete graph in which there is an edge between every 
pair of vertices. Such a graph of n vertices is de- 
scribed by a symmetric matrix a(i,j) where each a(i, 
j) is the weight associated with the edge between 
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vertex i and vertex j. It may be noted that this 
description restricts to only undirected graphs. In 
case of embedding arbitrary graphs into a hyper- 
cube, the same description may be used with edge 
weight made zero if there is no edge in the guest 
graph. It may be observed that the edge weight of 
an edge in the guest graph corresponds to a prob- 
lem specific quantity (such as the communication 
cost) and the problem is modeled by the embed- 
ding. 

Let the vertices of the guest graph be labeled 
by {Vol , Vg2, .-. Vgn}. Since the embedding is at- 
tempted with expansion factor E: >~ 1, the size of 
the hypercube is assumed to be k such that 
k = Vlog2 n-]. This corresponds to the embedding 
into a minimum sized hypercube. The problem of 
embedding the complete graph Gg of size n into 
a k-cube with k = Vlog2 n-] is now formulated as 
determining a mapping function F:Vg ~ Vh. The 
embedding is done with an objective of minimising 
the cost function given by 

Embedding cost = ~ ~ a(i,j)*dh(Ci, Cj) (1) 
i = l j = i + l  

where a(i, j) is the weight of the edge between nodes 
Vgi, Vgj. In other words, each node of the guest 
graph is encoded with a k-bit binary number by this 
embedding. With such encoding, let the codes given 
to the nodes Vgi, Vg~ be Ci and C~ respectively. The 
distance dh(Fgi, Vgj) represents the dilation itself 
since the distance dg(Vgl, Vgj) is unity as Gg is a com- 
plete graph. The minimization of the embedding 
cost given by Eq. (1) may be observed to be equiva- 
lent to dilation minimization. 

This embedding problem is explained with an 
example of guest graph with 5 nodes with edge 
weights as given in Fig. 1. Since guest graph has 
5 nodes the host graph is a hypercube with 8 nodes. 
Each node of host graph is labeled with a 3 bit 
binary number. Let the nodes of guest graph be 
indicated by A, B, C, D, E. Consider the three 

D 

Guest Graph 

Hast Graph 

A B C D E  

A 0 8 4 3 2  

B 8 0 2 3 6  

C 4 2 0 4 5  

D 3 3 4 0 2  

E 2 6 5 2 0  
Edgeweightsofgucstgraph 

Fig. 1. Example embedding. 

encodings corresponding to the embeddings de- 
noted by EBD-1, EBD-2, and EBD-3. 

EBD-1 = (A-000, B-001, C-010, D-011, E-100) 

EBD-2 = (A-ill,  B-110, C-100, D-000, E-001) 

EBD-3 = (A-001, B-000, C-101, D-010, E-100) 

The cost of these three embeddings are 59, 71, and 
56 respectively. The embedding problem is to deter- 
mine the encoding that results in the minimum cost. 
It may be easily observed that the encoding ob- 
tained by reversing the three bit code assigned to 
each node will have the same cost. Hence, multiple 
optimal solutions may exist for a specific embed- 
ding problem. 

The above mentioned specific embedding formu- 
lation models the problem of encoding the states of 
a FSM. Consider an FSM with n states. The behav- 
iour of such FSM is described by its state transition 
table. Each row of such table contains a list of 
primary inputs, a present state, a next state, and 
a list of outputs. With the specified input combina- 
tion the FSM transits from the present state to the 
next state and asserts the specified outputs. Thus 
each row describes a transition of the FSM. From 
the description of all the transitions of the FSM 
given in its state transition table, a static estimation 
of the encoding affinity between all pairs of states 
can be computed. The encoding affinity between 
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two states is defined as the advantage gained by 
encoding these two states with minimum distant 
codes. 

Let a(i, j) denote the encoding affinity between 
the states & and s~. The corresponding matrix with 
entries a(i, j) may be treated as the description of 
a complete graph. In this complete graph each 
vertex corresponds to a state of the FSM. The 
resulting embedding of the above formulation ends 
up in mapping each state si of the FSM to a vertex 
of the hypercube labeled by the k-bit binary num- 
ber Ci. When such embedding is done with an 
objective of minimizing the cost function given by 
Eq. (1) it is equivalent to finding the encoding of the 
states of the FSM with minimum encoding cost. 
The distance dh(Ci, Cj) denotes the Hamming dis- 
tance between Ci and Cj. As the cost of embed- 
ding depends on a(i, j) also, determination of these 
encoding affinities from the FSM description 
becomes another important part of the state assign- 
ment problem. Many researchers [1-5, 8, 17] have 
taken different approaches to come out with 
encoding of the states of FSM. Some of the early 
methods [8] employed algebraic methods based on 
partition theory. The later approaches have been in 
the lines of the above mentioned graph embedding 
instance. 

A common feature of all the state assignment 
algorithms such as MUSTANG [4] and NOVA 
[17] is that they all make static estimations of the 
encoding affinity between states, based on the lit- 
eral savings. These literal savings are obtained by 
the logic minimizers that are generally employed 
after the state assignment. Thus a proper modeling 
of the targeted logic circuit, and the various 
boolean and algebraic techniques that are em- 
ployed in the logic minimizers influence the literal 
saving cost estimates. For example literal savings 
due to boolean merge and consensus operations 
cannot be taken into account unless the encodings 
differ by unit distance. A comprehensive picture of 
literal saving estimates is presented by the authors 

of MUSE [5]. A closed form expression for the 
literal saving is obtained in terms of the FSM's 
symbolic cubes (one row of the state transition 
table is a symbolic cube) containing two parts. One 
part corresponds to the encoding affinity of the 
present state and the other to the next state. The 
part of present state encoding affinity is indepen- 
dent of the targeted structure of the logic circuit of 
the FSM. The approximations made by other 
methods like MUSTANG while computing this 
part of encoding affinity have been pointed 
out by the authors of MUSE. A better cost 
estimate for state assignment (encoding affinity) is 
presented by them which takes into account the 
present 'state as well as the next state encoding 
affinity. 

The above mentioned methods have mainly ad- 
dressed the issue of computing encoding affinity, so 
that the eventual realization of the FSM circuit is in 
minimum area. It may be pointed out here that 
whichever way the encoding affinity is computed, the 
later step of determining the codes assigned to the 
symbolic states is very important. With a given 
encoding affinity, this encoding problem turns out 
to be the problem of embedding a complete graph 
in a hypercube. This embedding instance is shown 
to be NP-complete and hence, we find only greedy 
heuristic methods or Simulated Annealing being 
employed. In our work the efficacy of GA for 
this embedding problem is addressed. In the 
following section all these three approaches 
namely the greedy, SA, and GA approaches for 
this specific embedding instance are presented in 
detail. 

3. Solution methods 

3.1. The Greedy methods 

This method is based on the adjacency properties 
of the vertices in the hypercube. Since the label of 
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this vertex is a k bit binary number, for every vertex 
there are k vertices with unit distance. This prop- 
erty motivates the selection of a cluster of k + 1 
nodes with a central node nc and k nodes around 
it in the guest graph for embedding at a time. 
Iteratively such clusters are identified and assigned 
with minimum distance codes. In each iteration 
the center of the cluster is deleted from the guest 
graph. A pseudocode given below explains the 
procedure. 

Procedure Greedy 
begin 
while Gg is not empty do 

{ 
Select the central node nc and the cluster 
nodes nl such that ~ a(c, i) is maximum 
Assign nc and all the other ni possibly 
minimum distance codes. 
Delete nc such that G 9 becomes Gg - nc 
} 

end {Greedy} 

This algorithm has been proposed by S. Devadas 
and its optimality property has been discussed in 
his paper on MUS TANG algorithm [4]. One may 
observe that this method may end up with an 
encoding which is suboptimal. It is because in every 
iteration we encounter some states to be encoded 
with possible minimum distant codes. It is possible 
that we have many choices in the early iterations 
and less or no choices in later iterations. Hence, 
the resultant encoding may turn out to be subopti- 
mal. This can be illustrated by the following 
example. 

Consider the example embedding given in the 
Fig. 1. The first cluster can be identified with center 
at node B and other nodes being A, D, and E. In the 
first iteration let the codes assigned to these four 
nodes be B-000, A-001, D-010, and E-100. After 
deleting the center of the cluster, we get the next 

cluster with center at C and nodes being A, D, and 
E. The code to be assigned to node C to be unidis- 
tant to the codes of A, D, and E. It may be noted 
that there is no code available which satisfies this 
requirement, as it is assigned to the node B. Among 
the available codes there are multiple choices which 
are unidistant to any two nodes in the cluster. Thus 
a proper choice of code for C determines the cost of 
encoding. I fC is encoded with 101 the cost is 56 and 
if C is encoded with 110 the cost is 52. This example 
illustrates the possibility of the greedy approach 
leading to a suboptimal solution. Even though op- 
timality is not ensured by this method, it is very fast 
and shown to have a worst case time complexity of 
O(n 2 log n). 

3.2. Simulated annealing 

This is a probablistic hill climbing relaxation 
algorithm proposed by Kirkpatrick et al. [11] as 
a general tool for solving hard optimization 
problems of NP-complete class. The method 
emulates the chemical process of annealing. 
In terms of optimization the energy of the 
object corresponds to the cost function. Starting 
from a random initial solution, in every iteration 
a new solution is obtained by a suitable perturba- 
tion. If the new solution is at least as good as the 
initial solution, then the new solution becomes the 
current solution. If not the new solution is accepted 
as the current solution with a probability P given 
by 

P = exp (6c/T) 

where 6c is the cost difference and T is the temper- 
ature. The canonical form SA is given in Procedure 
SA as follows. 

Procedure SA 
begin 
Initialize a random current solution S 
Initialize the temperature as To 
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While (temperature ~ 0) do 
begin 
for (some number of perturbations) do 
begin 

obtain the new solution S, by perturba- 
tion of the current solution S 
compute the difference cost 6c 
compute the acceptance probability P 
compute a random number R in the 
range 0.1 
if R ~< P new solution becomes the cur- 
rent solution 

end {for} 
update (temperature = ~ • temperature) 
end {while} 

end {Procedure SA} 

From the canonical form given above it can be 
observed that the final solution obtained by SA 
method essentially depends on the starting solution 
and the cooling schedule employed for updating 
the temperature. Any random initial solution can 
be easily generated for the embedding problem. An 
integer string of length n would suffice as the solu- 
tion. The binary code of the integer in the position 
i is the code assigned to the vertex i of the complete 
graph. Exchange of the codes assigned to two 
vertices or changing the code assigned to a vertex 
to some other unassigned code can be employed for 
the perturbation. A probabilistic selection of any of 
these perturbations may also be employed. The 
number of perturbations per temperature is deter- 
mined experimentally. However, the choice 
must ensure some minimum number of down hill 
moves. 

Though SA offers a general paradigm for solving 
hard optimization problems, it is observed to be 
critically dependent on the initial solution, the 
number of perturbations per temperature and the 
temperature schedule. The required slow cooling 
schedule may cause SA to become prohibitively 
slow for some hard problems. 

3.3. Genetic algorithm 

GA has been proposed as a paradigm modeled 
on the lines of adaptation in biological 
systems. The genetic structure of biological 
organisms goes through many changes in a number 
of generations due to the genetic operators 
like crossover and mutation. In the process, 
a population of species gets enriched in 
certain genetic order over number of generations. 
The outcome of this is generally a population 
well adapted to the environment. Holland [9] 
proposed that a simulation of such adaptation 
process under controlled conditions can be an 
efficient approach for solving complex opti- 
mization problems. The pseudo-code for Procedure 
GA given below describes the canonical form of 
genetic algorithm. 

Procedure GA 
begin 

1. Initialize the GA parameters. 
2. Initialize a population of candidate solu- 

tion strings. 
3. Evaluate the objective function value for 

all solutions. 
4. Evaluate the fitness value for all solu- 

tions. 
5. Select the parent strings as per a chosen 

reproductive plan. 
6. Perform operations and produce new off- 

spring. 
7. Evaluate the objective function values for 

the offspring. 
8. Evaluate the fitness of the offspring. 
9. Select the next generation population. 

10. If the processing of generations still re- 
mains, then go to 5. 

11. Select the best fit solution in the current 
population as final solution. 

end {Procedure GA}. 
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From the Procedure GA, one may identify the 
components of GA to be 
(1) A chromosomal representation of solution to 

the problem, 
(2) A way to create some random initial population 

of the solutions, 
(3) An evaluation function that plays the role of 

environment, rating the solutions in terms of 
their fitness, 

(4) Genetic operators that alter the genetic struc- 
ture of the solutions and 

(5) Values for the GA parameters namely the 
population size, the number of generations, 
crossover rate, and the mutation rate. 

These components of GA for the embedding prob- 
lem are explained in the following section. 

4. GA components 

4.1. Solution representation 

The embedding problem requires the mapping of 
one node of Go on to a node of Gh to be expressed as 
a solution. An integer string of length n would 
suffice for this purpose. The same representation 
holds good for the SA method also. Hence, we 
choose an integer string for solution in which the 
binary code corresponding to the integer in the 
position i is the code assigned to the state i. Such 
a gene string solution is a natural requirement for 
the effectiveness of the adaptive search by GA. 

4.2. Objective function and fitness of a solution 

The objective of the assignment is to minimize 
the cost of encoding (embedding) given by Eq. (1). 
This cost can be computed for any given solution. 
The cost of a solution in a population of one gen- 
eration is the basis to determine the fitness of that 
solution. The lowest cost solution is the best fit 
solution and the highest cost solution is the least fit 

solution. All other solutions that are processed in 
a single generation thus can be ordered relatively 
according to their fitness. Any solution with a bet- 
ter cost than that of the best fit solution pushed into 
the current population would change the fitness of 
each of the solutions in that population. Conse- 
quently improvement in fitness corresponds to 
lower cost. 

4.3. Initial population 

The FSM considered may have n states which 
are less than the available 2 k codes. In such a case 
seed groups as suggested by Mitra [15] may be 
formed. An example of 5 states and 8 codes illus- 
trates this. In this case the seed groups may be (0, 7) 
(1, 6) (2, 5) (3) (4). Thus, all possible solutions con- 
tain one code from each seed group. Such seed 
groupings would restrict the total search space. 
But, considering the fiat nature of the objective 
function it has been observed that the approxima- 
tion by seed groupings would not seriously effect 
the area of the targetted logic circuit of the FSM. 
These permissible codes of seed groupings are ar- 
ranged in a seed table and a random permutation 
of one column of the seed table gives a valid solu- 
tion. Using any permutation generation scheme 
iteratively the required initial population of solu- 
tions can be obtained. Such population is expected 
to have a good measure of diversity for an efficient 
search by GA. The diversity in case of this problem 
is a measure by which the gene structure differs. In 
other words, an equal distribution of all permissible 
codes for any single state is desirable and this 
ensures good diversity in the initial population. 
Hence, the initial population is generated with uni- 
form distribution of all possible codes. 

4.4. Crossover and mutation operations 

The purpose of crossover is to obtain the off- 
spring solution that inherits the genetic features of 
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Random cut point 

1 2 4 1 8 x 7 6 5 3  
I 

1 2 4 8 6  7 5 3  

Order crossover 

Random cut point 

1 2 4 ] 8 × 7 6 5 3  
Parents 

I 
8 6 7 ] 5 1 2 3 4  

7 6 3  5 1 2  8 4  Offspring 

Partially mapped crossover 

in each position to the right of the cut point in both 
parents are noted. These are exchanged in the off- 
spring. Care is taken not to exchange any gene with 
a specific allele value if it is already exchanged once. 
It may be observed that partially mapped crossover 
results in an offspring that preserves large number 
of allele values from parent 1 in the left cut segment, 
and from parent 2 in the right cut segment. 

cycle 1 = 1,35 
cyce2=468 
cyc e 3 = z) '  

1 6 3 2 8 7 2 4  

1 4 3 2 6 7 5 8  Offspring 

Cycle crossover 

Fig. 2. Different crossover operations when the gene string is 
a permutation. 

both parent solutions. Three types of crossover 
operations are reported in the literature [-16] and 
these operations are illustrated in Fig. 2. 

Order crossover. In this method the offspring in- 
herits all genes from parent 1 up to the random cut 
point. Since the remaining genes are to be given 
distinct allele values, the offspring can be construc- 
ted by observing an order for these allele values in 
the parent 2. All genes that are present to the right 
of the cut point are given the allele values in the 
order they appeared in the parent 2. 

Partially mapped crossover. All the genes of parent 
1 are copied into the offspring first. A random cut 
point is chosen as in the case of order crossover. 
The segments to the right of the cut point in both 
the parents are considered for a partial mapping of 
the allele values to be exchanged inthe parent 1 to 
generate the Offspring. The allele values of the genes 

Cycles crossover. In this case every allele value of 
the gene in the offspring is inherited from one of the 
parents in its position and hence, results in no 
conflicts. We start with the gene with a specific 
value in the first position of parent 1 and copy it 
into the offspring. Consider the gene (possibly with 
some other allele value) in the same position of 
parent 2. Since it cannot be inherited in this posi- 
tion of the offspring, it is searched for in parent 1. 
When its position is found, this gene from parent 
1 is copied into the offspring at this position. Since 
the allele value of the gene of parent 2 in this new 
position cannot be inherited by the offspring, once 
again the search may be conducted. This cycle of 
search and copy is continued until the cycle is 
complete. It may be noted that the cycle completes 
when the allele value of the gene in parent 2 be- 
comes same as that of the first gene inherited by the 
offspring in the cycle. The process of inheritance is 
switched to parent 2 for the next cycle. The cycles 
are alternated between the two parents until all 
allele values are assigned to different genes. 

Mutation. In the process of search by GA it is 
possible that all solutions in a population of one 
generation may turn out to be same. In such a case, 
the search is impaired since crossover cannot ex- 
plore any more new solutions. GA gets trapped in 
a local minimum under these conditions. Mutation 
i.e. altering the genetic structure of few solutions by 
a small amount, is employed for surmounting this 
local optimum. However, the mutation level is 
kept low. Random selection of codes of few states 
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(decided by the mutation rate) and changing to new 
values is chosen as mutation operation. 

4.5. Selection policies 

Parents are selected based on their fitness in 
a conventional GA. With a view of saving the time 
taken for parent selection, in our work we adopted 
a policy of parents being completely at random, but 
with a restriction of no solution reproduces twice in 
a generation. The offspring replace the parents and 
form the next generation population in a conven- 
tional GA. With such strategy it is likely that a cur- 
rent best solution may not survive to the next 
generation. To enforce the elitism in which the 
current best solution survives into the next genera- 
tion, we adopted a policy of replacing the worst 
o-number of solutions in the current population by 
the o-number of offspring that are generated. This 
policy ensures the survival of every new solution 
generated by the crossover operation for at least 
one generation. Such a policy is experimentally 
observed to yield a good efficiency for GA, since it 
permits maintaining a good amount of diversity in 
the population. 

The above mentioned GA components explain 
the implementation aspect of GA. However, the 
question 'How GA works' still remains to be an- 
swered. Also the suitability of GA for the embed- 
ding problem needs to be explained. These are 
considered in the following section. 

5. 'How GA works' - A qualitative picture 

In the process of adaptation by GA, the succes- 
sive rearrangements of smaller building blocks over 
a number of generations causes the construction of 
optimal or near optimal solution in the current 
population. In this context the similarities between 
the solution strings in a population become impor- 
tant. Holland introduced the framework of Schema 

I-I-I A 
I I 

n 

Fig. 3. Schema example. 

as a tool to explain the building block concept. The 
Schema is a similarity template describing a subset 
of strings with same genes at some string positions. 
In other words Schema is a pattern matching tool. 
Schema can be viewed as a partial solution also. 
For  example a schema H illustrated in Fig. 3 ex- 
pressed as **A • BC ****** has the specified values 
A, B, and C for three genes and nine unspecified 
genes indicated by * in those positions. A number 
of such Schema can be defined, and a set of such 
partial solutions are referred to as Schemata. The 
population of solutions may be viewed as a collec- 
tive representation of Schemata. 

In the process of the artificial adaptation the 
population gets enriched in some schemata and 
gets diminished in some alleles. To understand 
which Schema grows in the population over the 
generations, we need to consider the properties of 
that Schema. The important properties or at- 
tributes of any Schema are its order and the defin- 
ing length. The order of a Schema H denoted by 
O(H) is defined as the number of specified positions 
in the Schema H. The defining length 6(H) is de- 
fined as the length of the string between the first 
and last specified genes in the Schema H. It may be 
observed that for the given example Schema O(H) is 
3 and 6(H) is 4. As pointed out earlier the Schema 
may be viewed as a partial solution structure, or 
a building block of the solution. Schemata and 
their properties give a basic means for analyzing 
the GA method of arriving at optimal or near 
optimal solution from successive juxtapositions of 
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a number of low order and short defining length 
Schemata. 

The process of adaptation by GA in the popula- 
tion and the eventual construction of optimal or 
near optimal solution is primarily dependent on the 
effect of reproduction, crossover and mutation on 
the survival of better fit Schema in successive gen- 
erations. A mathematical framework explaining 
these effects is given below. Let the membership of 
Schema H in the population A at a time t be 
denoted by m(H,t).  First we consider the effect of 
reproduction. 

Reproduction.  A solution participates in the pro- 
cess of reproduction depending on its fitness which 
is the method of natural selection. This means that 
a candidate solution in the population Ai(t)  gets 
selected with a probability Pr where 

P, = f l / E f ~  

in which f~ is the fitness of the ith solution. The 
membership of the Schema H in two consecutive 
generations is thus given by 

m(U, t  + 1) = m(H,t )  * N *f(H)/~_Ji  

where f(H) is the average fitness of the solutions 
containing the Schema H in the population of size 
N. If the average fitness of the total population is fay 
the growth of membership of a Schema H in suc- 
cessive generations is given by Eq. 2 as follows. 

m(H, t + 1) = m(H, t) * f (H)/fav (2) 

Eq. 2 indicates that any Schema present in solu- 
tions with above-average fitness will grow over 
number of generations. It can be observed that 
a Schema with fitness as c *fay where c is a constant, 
will grow exponentially, i.e. at a rate of (1 + c)'. 

Crossover and mutation. The solution being repre- 
sented by an integer string, we may employ some 
suitable crossover selected from the order, partially 
mapped and cycle crossover operations. If the 

suitability of these crossover operations is to be 
quantified, we need to consider the probability of 
survival of an arbitrary Schema in the next genera- 
tion after any of these crossover operation. A quali- 
tative analysis of these three crossover operations 
in this regard is presented below. 

Consider the example Schema given in Fig. 3. 
The order and the defining length of the Schema 
are indicated in the Fig. 3. To obtain an expression 
for the net survival factor for such Schema we need 
to consider the probability of survival of this 
Schema after the specific crossover operation. Let 
P1 and P2 be the probabilities that a Schema sur- 
vives from the parent 1 and parent 2 respectively. 

Order crossover. The probability that the given 
Schema survives from the parent 1 (P1) is nearly 
equal to the probability that the cut occurred only 
from Ir to n -- 1. Hence 

PI = (n - l,)/(n - 1). 

The probability that the given Schema survives 
from parent 2 (/2) is nearly equal to the probability 
that no specified gene has occurred before the cut 
and all the gene string of the defining length has 
occurred in that order in the parent 2. Hence 

P2  ~ (1 - -  1 /n ) °* (1 /n )  ~. 

The net survival probability can be obtained from 
P1 and P2 as 

Net survival probability = P1 + P2 

= (n -- lO/(n -- 1) 

+ (l -- l/n) ° * (l/n) ~. 

Partially mapped crossover. It can be observed that 
by this method of crossover many genes from par- 
ent 1 get preserved in the left cut segment, and 
many remaining genes from parent 2 get preserved 
in the right cut segment. Hence, the survival of 
a Schema in the offspring can be approximately 
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taken as its survival in the left, or right cut seg- 
ments. 

The probability of survival in the left cut segment 
,~ l l / (n  - 1) 

The probability of survival in the right cut segment 
( n -  1 - l O / ( n -  1). 

From these two the net survival probability can be 
approximated as (n - 1 - 5 ) / ( n  - 1). 

C y c l e  c r o s s o v e r .  By this method of crossover every 
gene is inherited in place from one of the parents. 
Let p be the number of genes inherited from the 
parent 1. Hence (n - p) genes are inherited from the 
parent 2. The net survival probability of the 
Schema is given by 

Net survival probability = (p /n )  ° • (1 - p / n )  ° 

In the approximate analysis given above, the sur- 
vival of a Schema after the crossover operation 
is considered. If mutation operation is also taken 
into consideration the survival probability gets 
modified as follows. The Scheme gets disrupted by 
mutation only if a specified gene of the Schema is 
selected in course of mutation operation. The prob- 
ability of such disruption is approximately given by 
(l /n) °. 

Hence, the survival probability after mutation is 
(1 - ( l / n ) ° ) .  The overall survival factor associated 
with the Schema may be approximated as the sum 
of the survival probability after crossover and the 
survival probability after mutation. It is known 
that the rate of growth of better fit Schema depends 
on this survival factor. 

A closer look is necessary at what type of Schema 
need to survive in the eventual construction of 
a near optimal solution for this embedding prob- 
lem. A low order Schema means that we have only 
a few genes with specified values. Consider a cluster 
of k + 1 consecutive nodes of the guest graph. If 

these are assigned with adjacent codes they occupy 
different gene positions separated by small values. 
This makes the Schema to have a small defining 
length. For  example a Schema described by (* 
0 1 2 4 * * • ) of 8 genes has a defining length of 4. 
The Schema has a cluster of { Vo2 , V03 , Vo4 , Vo5 } 
and these nodes are assigned with adjacent codes. 
Clusters of such nodes with adjacent codes, can be 
observed to correspond to low order small defining 
length Schema. Growth of such Schema would lead 
to some high order and long defining length 
Schema over some generations, ultimately leading 
to the optimal or near optimal solution. One may 
note that the order in which the codes are assigned 
to the nodes of the guest graph is not important. 
Only the adjacent codes given to the clusters of 
nodes is important. Hence, the order and partially 
mapped crossovers are more suitable for this prob- 
lem than the cycle crossover. It may be noted that 
the cycle crossover preserves the inplace inheri- 
tance of genes, and depends only on the order of 
Schema. Comparatively the partially mapped 
crossover gives rise to a better survival probability 
for an arbitrary Schema. Let us consider an 
example Schema with n = 12, Ir = 8, and ll = 4 
resulting in o = 2 and 6 = 4. The net survival prob- 
ability after the order crossover may be observed to 
be 4/11 where as it is nearly 8/11 after the partially 
mapped crossover. This shows that partially map- 
ped crossover performs better than the order cross- 
over for this embedding problem. Experimentally 
the same has been observed. However, a good mix 
of some better fit low order and small defining 
length Schema in the initial population is essential. 
The above presented qualitative analysis does not 
prove that GA would lead to the optimal solution. 
It only reiterates the building block concept pre- 
sented by John Holland. In this work, our aim is to 
study the efficacy of GA for embedding problem. 
This can be established only by experimentation. 
The details of the experimentation conducted is 
presented in the following section. 
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Table 1 
MCNC Benchmark FSMs and their characteristics 

FSM name States Inputs Outputs 

bbra 10 4 2 
bbsse 16 7 7 
bbtas 6 2 2 
cse 16 7 7 
dkl4 7 3 5 
dkl6 27 2 3 
dkl7 8 2 3 
dk27 8 1 2 
dk512 15 1 3 
donfile 24 2 1 
exl 20 9 19 
ex2 19 2 2 
ex3 10 2 2 
ex4 14 5 9 
ex5 9 2 2 
ex6 8 5 8 
lion9 9 2 1 
markl 15 5 16 
planet 48 7 19 
shiftreg 8 1 1 
sla 20 8 6 
train 11 11 2 1 

6. Experimental results 

The problem of encoding FSM symbolic states is 
considered, for conducting the required experi- 
mentation. All the three solution methods are em- 
ployed to get an embedding solution on a number 
of M C N C  benchmark FSMs. The features of these 
FSMs such as the number  of the states, pr imary 
inputs and outputs are listed in Table 1. In case of 
each FSM the encoding affinity between every pair 
of states is computed using the M U S T A N G  
F A N I N  and F A N O U T  approaches. As the aim of 
the experimentation is to test the efficacy of GA for 
embedding, encoding affÉnity is computed by these 
simple methods. It  may be noted that which ever 
way the encoding affinity is computed the encoding 

procedure that determines the codes assigned to the 
symbolic states needs the solution for the embedding 
problem. 

The embedding solution is first obtained using 
the greedy heuristic method. This embedding may 
leave some codes unassigned to any state. These 
unassigned codes are considered for grouping with 
some assigned codes to form a seed group. The seed 
groups placed in a seed table help the generation of 
the initial population in the GA formulation. From 
the pool of the unassigned codes each code 
is grouped with an assigned code of the greedy 
solution, such that they are k-distant to each 
other. These seed groups are placed in the seed 
table. A random shuffling of one column of the seed 
table is employed for the generation of a random 
solution. 

Since partially mapped crossover is shown to be 
more suitable for this problem the same is em- 
ployed to obtain the embedding solution by the 
GA. A population of 40 candidate solutions, cross- 
over rate of 25%, mutat ion of one gene or at most 
2% of genes are employed as GA parameters. The 
GA required processing of at least 500 generations 
to reach the final solution. To understand how 
these parameters influence the quality of the GA 
solution, the performance of GA with variations in 
population size, crossover rate and mutation rate 
have been tested. A few test runs confirmed that the 
above choice of the GA parameters is adequate to 
give good performance by GA. 

The embedding solution by SA for the same data 
sets of the benchmark FSMs are also obtained. In 
the SA formulation the starting temperature is 
chosen as 105 , and choice of smaller initial temper- 
ature resulted in poor  final solutions. The number 
of perturbations per temperature are chosen as 20. 
It was observed that a choice of less number  of 
perturbations degraded the SA performance, and 
a choice of more did not improve the performance. 
A value of 0.99 for ~ has been used for the temper- 
ature schedule. Any faster cooling resulted in poor  



R. Chandrasekharam et al./ Microprocessing and Microprogramming 40 (1994) 537-552 

Table 2 

Comparision of greedy, SA, and GA methods - Encoding affinity by MUSTANG-P 

549 

Benchmark Greedy GA SA 
FSM C o s t  

C o s t  T ime  C o s t  Time 

bbara 530 520 0 m.25 sec. 520 2 m.45 sec. 

bbsse 4976 4906 1 m. 17 sec. 4943 7 m. 16 sec. 

bbtas 30 24 0 m.7 sec. 25 0 m.48  sec. 

cse 9505 9332 1 m.21 sec. 9343 6 m . 5 6  sec. 

d k l 4  1631 1547 0 m . 1 0  sec. 1547 1 m.6  sec. 

d k  16 3607 3473 5 m. 13 sec. 3347 23 m.38  sec. 

d k l 7  330 316 0 m . 1 4  sec. 316 1 m.31 sec. 

d k 2 7  21 19 0 m . 1 3  sec. 21 1 m.27  sec. 

d k 5 1 2  143 131 I m.6 sec. 147 6 m . 2 1  sec. 

donf i le  11908 11876 3 m.53 sec. 11888 19 m.15  sec. 

ex 1 33982 32246 2 m.25 sec. 32254 12 m.50  sec. 

ex2 12018 11796 2 m . 2  sec. 11840 11 m.16  sec. 

ex3 2316 2246 0 m.24  sec. 2246  2 m.38  sec. 

ex4 124 120 0 m . 5 5  sec. 131 5 m.16  sec. 

ex5 1582 1456 0 m. 18 sec. 1460 2 m.7 sec. 

ex6 1136 1125 0 m . 1 4  sec. 1125 1 m.27  sec. 

lion9 272 264 0 m.20  sec. 266 2 m.7 sec. 

m a r k  1 4582 4532 1 m.6  sec. 4528 6 m.3 sec. 

planet 79873 76292 25 m. 16 sec. 76292 2 h. 13 m.53  sec. 

shiftreg 48 40 0 m.13  sec. 40 1 m.27  sec. 

s la  4314 4132 2 m.29 sec. 4142  12m.14  sec. 

trainl 1 585 585 0 m . 3 1  sec. 589 3 m . 1 2  sec. 

final solutions. It may be reiterated that these para- 
meters decide the time efficiency of SA. 

The cost of the solution by GA, SA, and the 
greedy methods in case of each MCNC benchmark 
FSM is presented in Tables 2 and 3. The time taken 
by GA as well as SA is presented in these tables. It 
may be observed that the greedy method gives 
a suboptimal solution in a very short time and 
hence, this time is not presented in the results of 
Tables 2 and 3. 

The following may be observed from the results 
presented in the Tables 2 and 3. In case of each 
FSM, GA terminated with a solution of lower cost 
value than that by the greedy method. The cost of 
the final solution by GA is better than that by SA in 

case of many benchmark FSMs. However, for two 
instances SA final solutions are found to be better. 
The improvement obtained by GA over the greedy 
method is in the range of 1 to 10 percent in case of 
each of the FSM tested. The ratio of the time taken 
by SA to that by GA for each instance is nearly 6 to 
1. These results experimentally establish the effi- 
cacy of GA for the embedding problem. 

7. Conclusions 

The formulation of the problem of embedding 
a complete graph in a minimum sized hypercube 
is presented. The practical importance of this 
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Table 3 
Comparision of greedy, SA, and GA methods - Encloding affinity by MUSTANG-N 

Benchmark Greedy GA SA 

FSM cost 
Cost Time Cost Time 

bbara 4258 4177 0m.26 sec. 4166 2 m.39 sec. 
bbsse 2262 2241 1 m.18 sec. 2260 6 m.56 sec. 

bbtas 436 429 0 m.8 sec. 429 0 m.58 sec. 

cse 8605 8443 1 m.20 sec. 8477 7 m.2 sec. 
dk 14 3634 3472 0 m. 10 sec. 3472 1 m.8 sec. 

dk 16 14503 13371 5 m. 14 sec. 13706 22 m.59 sec. 
dk l7  773 773 0m.12 sec. 773 1 m.27 sec. 
dk27 74 74 0 m. 13 sec. 75 1 m.28 sec. 

dk512 416 402 1 m.9 sec. 426 6 m.8 sec. 

donfile 11730 10144 3 m.51 sec. 10942 18 m.3 sec. 
ex I 33569 30685 2 m.22 sec. 30962 12 m.13 sec. 

ex2 4628 4406 2 m.24 sec. 4463 11 m. 17 sec. 

ex3 1054 1030 0 m.25 sec. 1040 2 m.39 sec. 

ex4 29 27 0 m.50 sec. 34 5 m.17 sec. 

ex 5 806 806 0 m. 19 sec. 806 2 m.7 sec. 
ex6 704 652 0 m.13 sec. 656 1 m.26 sec. 
lion9 633 573 0m.19 sec. 591 2 m.8 sec. 

m a r k l  587 550 1 m.7 sec. 563 6 m.6 sec. 
planet 5090 5070 25 m.51 sec. 5145 2 h. 13 m.9 sec. 
shiftreg 88 88 0 m. 13 sec. 100 1 m.27 sec. 

sla 10730 10652 2 m.22 sec. 10906 12 m.24 sec. 
t ra in l  1 590 550 0 m.34 sec. 562 3 m.13 sec. 

problem is explained. The way to extend this for- 
mulation of embedding arbitrary graphs into hy- 
percubes is pointed out. A comparative study of 
three different solution methods for this problem is 
conducted. 

The different components of the SA, and GA 
solution methods, and their design aspects are ex- 
plained. In case of GA formulation, three different 
crossover operations are compared. An approxi- 
mate analysis of Schema survival after each of these 
crossovers, is presented. The specific embedding 
problem considered in this work is pointed out to 
be equivalent to the problem of encoding the sym- 
bolic states ofa FSM. Greedy, SA, and GA solution 

methods for this application problem have been 
compared. 

The experimental results show that the GA para- 
digm is more time efficient than SA for this embed- 
ding problem. It is also shown that using GA 
paradigm, better solutions (closer to optimal solu- 
tion) than the solutions by greedy methods can be 
obtained. The improvement obtained by GA 
method when compared with the greedy method is 
about 1 to 10 percent in cases of various bench- 
mark FSMs that have been tested. For large sized 
and more complex FSMs even, the time taken by 
the GA method is within reasonable limits. More 
importantly this time is observed to be much less 
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than  the t ime taken  by  the SA method .  The  ra t io  of  
the t imes taken  by  SA and  G A  methods  is between 
5 and  6 in var ious  cases of FSMs .  

The  p a r a m e t e r  tuning  of  G A  is a much  s impler  
process  than  that  of f inding a sui table  cool ing 
schedule in case of SA. It  m a y  be po in ted  out  tha t  
any  well designed t empera tu re  schedule can reduce 
the SA t ime by some percentage.  However ,  such 
design of  t empera tu re  schedule is cumber some  and 
more  t ime consuming.  Choice  of  s tar t ing so lu t ion  
in case of SA also effects the end result  of  SA, but  
this is e l imina ted  by forcing the s tar t ing so lu t ion  as 
the greedy solut ion.  To have the same advan t age  
for GA,  the greedy so lu t ion  is chosen as one 
cand ida te  so lu t ion  in the s tar t ing pool  of the 
solut ions.  

The  exper imenta l  results  reveal the efficacy of the 
G A  p a r a d i g m  for the i m p o r t a n t  p rob l em of  embed-  
ding comple te  g raph  in a m i n i m u m  sized hyper-  
cube. 
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