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Abstract-A direct formulation for the viscoelastic analysis of adhesively bonded joints using tinite 
element method is presented. A six-noded quadratic isoparametric element is developed. Two variations 
for the adhesive layer element are presented. Hereditary integrals are used to represent the stress-strain 
relations. Relaxation modulus, either experimentally obtained or theoretically generated, can be directly 
used. Memory load storage/use is minim&d using Prony series for the relaxation modulus. 

A usual eight-noded quadratic isoparametric plane strain element is used to idealise the adherends. As 
the adhesive layer element is a curved one it can be effectively employed for the analysis of curved 
adhesive-bonded joints. It is seen from the results that the stress distributions in the joints are accurately 
determined using both the adhesive layer element formulations. As the element formulation 1 is stiff and 
formulation 2 is Rexible, the average of these solutions using moderate mesh is an accurate solution for 
the given configuration. 

1. INTRODUCTION 

Adhesively bonded joints are extensively used in the 
manufacture of aerospace vehicles, fibre reinforced 
plastic components, wooden articles and many a 
general li~tweight structural members. Stress 
analysis of these joints is a difficult problem owing 
to the high stress gradients in the adhesive layer and 
non-homogeneity as different materials are used for 
adherends and adhesive. The mathematical models 
are complicated, even for simplest possible con- 
captions. Moreover, viscoelastic behaviour of 
adhesive is to be considered if it does not remain in 
its glassy state due to the thermal and loading 
environment. It is seen from the literature that a few 
typical configurations of the joint are analysed using 
both the analytical and the finite element methods. 
It is well known that the analytical solutions have 
the limitation of application to complex problems 
whereas the Finite Element Method (FEM) can be 
easily and effectively employed for the analysis of 
such problems. 

1.1. Adhesive-bon&d joints 

Goland and Reissner [I], in their classical study of 
the adhesively bonded single lap joints, used two 
important physical idealisations of either beam-plate 
or elastic continuum in the formulation of the prob- 
lem. In beam-plate theory the joint flexibility is 
assumed to be mainly due to the flexible adhesive 
layer. In this case the adherends are considered to be 
plates connected by an adhesive layer which is ideal- 

ised into an elastic spring. As this formulation is 
simple and reliable, it is extended to various complex 
situations such as double lap, scarf and stepped joints 
and joints with non-identical, orthotropic and aniso- 
tropic adherends [Z-6]. The procedure is also used to 
generate design data such as the effect of the adher- 
end shapes and adhesive thickness on the strength of 
the joint [7-91. Erdogan and Ratwani [IO] have used 
a further simplified membrane idealisation for the 
analysis. In the elastic continuum idealisation 
[ 11-I 31, the adhesive layer is considered to be stiff and 
its presence is disregarded to simplify the problem. 
However, the analysis of joints using such an ideal- 
isation is tedious and the results obtained are not 
satisfactory. As the classical theory of Goland and 
Reissner [1] is concerned with the cases of flexible 
and stiff adhesive layers, it cannot be used for the 
joints with medium range fle~bility. Recently Chen 
and Cheng [14] have presented a general approach 
applicable to all adhesive layer conditions and have 
applied it to a single lap bondedjoint. This formulation 
is yet to be extended to various complex situations. 

The Finite Element Method (FEM) is applied to a 
few typical adhesively bonded ~o~~~tions in the 
literature [f5-211. In [19] the usual cubic plane strain 
triangular element -is employed to idea&e both the 
adhesive and adherends of the single plane lap joint. 
The thickness ratio of the adhesive layer and adher- 
ends chosen for the problem.is quite high compared 
to practical situations. This solution has not pro- 
duced zero shear stress at the ends of the adhesive 
layer, which is also the case with the classical solution 
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of Goland and Reissner [I] and the FEM solutions of 
[IS] and [16]. However, the FEM solutions reported 
in [17] and [18] do indicate the zero boundary shear 
stress in the adhesive layer. Barker and Hatt [20] have 
developed an adhesive layer linear element for the 
analysis of joints. In [2l] a six-noded quadratic 
isoparametric adhesive layer element for elastic 
analysis is presented. The adhesive layer is assumed 
to be relatively thin and behaves elastically as a 
tension-compression and shear spring connecting the 
adherends. 

1.2. Viscoelasticil): 

The viscoelastic analysis techniques are broadly 
classified into three basic approaches: (i) quasi-elastic 
solutions, (ii) integral transform techniques; and (iii) 
direct methods. Quasi-elastic solution uses elastic 
properties equivalent to the corresponding visco- 
elastic properties at the desired time. This approach 
essentially ignores the entire past history of loading 
and therefore yields a gross approximation to the true 
response. Integral transform technique [22] is based 
on the correspondence principle, in which the elastic 
solution is used to obtain the corresponding visco- 
elastic solution using the Laplace transform tech- 
nique. This approach is exact for problems for which 
closed form solutions are possible and approximate 
Laplace transform inversion has to be employed for 
the problems with numerical elastic solutions [23]. 
The direct formulations are based on the finite ele- 
ment theory using either the differential form [24] or 
the integral form [25] of stress-strain relationships. 
Viscoelastic analysis of single lap adhesively bonded 
joints employing integral transform technique is re- 
ported in [ 191 and [26]. Delale and Erdogan [26] have 
developed closed form solution for the associated 
elastic problem and the corresponding viscoelastic 
solution is obtained using numerical evaluation of 
transform integrals. In [19] the FEM is used to solve 
the associated elastic problem using the usual cubic 
plane strain element. Viscoelastic solution is obtained 
by inverting the Laplace transforms approximately. 

obtained using both the element formulations are 
discussed and it can be Seen from the results that the 
element formulation 1 is stiff as it uses the straight- 
forward displacement FEM. The element formu- 
lation 2, in which the zero stress constraint is intro- 
duced, exhibits flexible behaviour and gives lower 
stress values. The results obtained using both the 
element formulations agree well with the analytical 
solution [26], except for the lateral normal (Reel) 
stress obtained using the element formulation 2, 
which deviates from the analytical solution. As one 
FEM solution is stiff and the other is flexible, the 
average of both the solutions using moderate mesh 
should be an accurate solution for the given problem, 
particularly for the peel stress. 

2. VlSCOElASTlC FORMULATION 

In practical situations of adhesively bonded joints 
the adhesive layer is very thin compared to the 
adherends. The adherend thickness to bond length 
ratio is also small. The adhesively bonded joints may 
be considered as plates as the width of the joint is 
greater than the other dimensions. Therefore plane 
strain idealisation is used for the analysis of these 
joints. 

In the formulation of element matrices for the 
adhesive layer, the shear and normal stresses are 
assumed to be constant in a lateral direction. The 
six-noded adhesive layer element and eight-m&d 
element for adherends are shown in Fig. 1. The 
formulation for the eight-noded element is avail- 
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1.3. Present work 

In the present paper a direct formulation for the 
viscoelastic analysis of adhesively bonded joints em- 
ploying FEM is presented. The six-noded quadratic 
isoparametric adhesive layer element [2l] is reinvesti- 
gated, modified removing the zero constraint of longi- 
tudinal normal stress, extended to linear viscoelastic 
analysis and is implemented in the special purpose 
program VANIS, Viscoelastic Analysis of Nearly 
Incompressible Solids [27]. Two formulations for the 
adhesive layer finite element are presented. In the 
first element formulation all three stress/strain com- 
ponents of the plane strain idealisation are used 
whereas in the second formulation the longitudinal 
normal stress is assumed to be zero [14, 211. The 
quadratic eight-noded isoparametric plane strain 
element is used to ideal&e adherends. The results 

Ix 
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Fig. I. Quadratic hoparametric elements. 
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able in (27). The formulation for a six-noded element 
is discussed in the present section. As the present 
adhesive layer element is a curved isoparametric 
element it can be used for the analysis of curved 
adhesive layered joints. Two variations for the 
adhesive layer element are presented. 

2. I. Stress-strain relations 

Two types of stress-strain systems are used in 
formulating the two variations of the six-noded 
adhesive layer element. In the first fo~ulation a 
usual two-dimensional plane strain system of stresses 
and strains is used and in the second one a modified 
plane strain system is used, which is obtained by 
introducing a zero longitudinal normal stress con- 
straint into the usual 2-D plane strain system. The 
viscoelastic ~nstitutive relation for plane strain 
analysis with constant bulk modulus Kis given by the 
hereditary integral [27, 281 in the co-ordinate system 
K as 

i 

’ 
a,(X I) = 24(Ok,(X 1) - 

d&t - 1’) 

0+ at' 

x c&K t’W’ + 6,[K - f#(O)Jc,(R, 1) 

+ 6”; I ’ at#qt - 1’) 

at’ t&f’, t’)dt’, (1) 
0+ 

where 4(t) is the shear relaxation modulus and is a 
function of time r. 

Writing eqn (I) in matrix notation we have 

U{c (R, I)} = s ’ af#qr -I’) 

at‘ {c(f, t’)}dt’. (3) 
o+ 

[O] is the usual elasticity matrix for plane strain 
analysis and [C] the viscoelasticity matrix. The 
elements of matrix [Cl are 

c “= -413, i- l,2, C,,= -1 

C, = 213, i*j= 1,2, i Zj. 

The stress and strain vectors for plane strain 
condition are 

<o* t)> = <WY%-Y>. 

In the second element formulation the longitudinal 
normal stress try is assumed to he zero and the 
plane strain condition, i.e. cz= 0.0, is used. The 

stress-strain relations for the case are given as 

UYM, I) = ti(O)CY(X I) 

-I l a$(t - ty 
au 

cy(X, t’) dr’ (4) 
0* 

a+(f -t') - 
at' 

cxr(X, f) dt ‘3 (5) 

where 4(t) is the shear relaxation modulus and e(t) 
is an equivalent tension/comp~ssion modulus, which 
is derived from the rheological differential equations 
of the stress-strain system. The procedure for obtain- 
ing the J/(t) is discussed in the following steps. 

The constitutive behaviour of the volumetric 
components of the stress and strain is given as 

P”(av) = R”(G), (6) 

and the relations of deviatoric components are 

P’(~u) = R’(c,) (7) 

P’(a,) = R’(cYd) (8) 

PM,) = R’(c,), (9) 

where P”, R”, P’ and R’ are appropriate differential 
operators. 

The volumetric and deviatoric components for the 
problem are 

by = (by + u&/3;’ +=(CW+LY)/3 (IO) 

uXd = -(a, + c&3; ~r#l”(~,-fY)l3 (If) 

eYd= (20, - e,)/3; &Yd=( -cw+kr)/3 (12) 

uzd= (-uy+2uz)/3; cLI= -(cx+cy)/3. (13) 

Substituting the relations (10-13) into eqns (69) 
and then eliminating o, and LY from the resulting 
equations we obtain the relation between cry and cy 
as given by eqn (14): 

P’(2P”R’ + R”P’)u, = R’(P”R’+ 2R”P’)c,. (14) 

The elastic behaviour is assumed for the volumetric 
components of stress and strain [28]. Therefore the 
operators P” and R” are given as P” = 1.0 and 
R”=: 3K. Then eqn (14) is simplified as 

P’(2R’ + 3KP’)u y = R’(R’ + 6KP’)c, fW 

The required modulus #(;) can be obtained for the 
given material by substituting its operators P’ and R’ 
into eqn (15) and by evaluating the stress response for 
Heavyside unit strain input. For elastic behaviour 



(instantaneous response) the operators P’ and R’ are 
1.0 and 29(O) respectively. 

For the elastic case the eqn (15) is written as 

cy = $(O)(,. (lo) 

where 

ti(O) = 44(0)]3K + O(OM3K +4+(O)). 

The eqns (4) and (5) are rewritten in matrix notation 
as 

df’. 

The elements of [D) and [C] matrices for this case are 

dz2 = $(O), d,, = 4(O), Cz2 = C,, = - 1.0. 

The symbol j of eqn (17) is similar to the symbol Y 
of eqn (2). However, proper care has to be taken to 
use appropriately the moduli $(I) and 4(f) as seen 
in eqns (4) and (5). 

2.2. Element defails 

As the adhesive layer is very thin the longitudinal, 
lateral normal stresses uc and u, and the shear stress 
Us,, are assumed to be constant in respect of the n 
co-ordinate (Fig. l(a)). Therefore, the displacement 
field along q co-ordinate is linear. The geometry of 
the element is considered as a 2-D plane curve with 
thickness hc,. Only one non-dimensional curvilinear 
co-ordinate e is used to represent the element. 

The geometry of the element is given as 

(18) 

where N,(i = I, 2,3) are the shape functions and are 
given as function of e(-I <t Q I) as 

N,=-;<(I--0, Nz=l-<‘, N,=fQl+c). 

The local top and bottom layer displacements (Fig. 
l(a)) are given by eqns (19) and (20): 

(1% 
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The local normal and shear strains are given by eqns 
(21). (22) and (23): 

Id c( = __ (u’o~ + U~l~~m) 

2ds 
(21) 

(‘I = (L,“*P - v~l~~~m)/ho (22) 

Ltl = (U’OP - u bOuom MO, (23) 

where s is the actual co-ordinate measured along the 
element and is given as 

W/dC)’ = (dx/dC)‘+ (dr/dt)2. (24) 

Equations (l8)-(20) and (24) are substituted into 
eqns (2l)-(23) and the strain matrix B as given by 
eqn (25) is generated. 

10 =ra{w> (25) 

where {c} is the vector of strains given by eqns 
(2l)-(23) and {U} is the vector of nodal displace- 
ments in local co-ordinate directions. 

The elements of matrix [B] are as follows: 

b,,, = b 1.1, = f(< - 0.5) 2 

b,,J= b,,,=f(t +0.5)2 

b,.,=b,.,= -&,,I= -&.I,= -N,/h, 

&..=b,.,= -br.,,,= -b,.,= -NJ& 

br6=b,.,= -brs= -b,,,= -N,/h,. 

The remaining elements of matrix [B] are zero 
elements. 

2.3. Elemental equafions 

The elemental equations are derived in [27] 
considering the stationarity of potential energy as 

{Kl+fMm-wk- h-,M~2l~Mh)~ 

= {f’(Q) + {MO,)}. (26) 

The trapezoidal rule is used to evaluate the integrals 
in the time domain. fk is the time step at which 

(20) 
solution is sought. 
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The matrices [K,] and [KJ of eqn (26) for the 
adhesive layer element are 

Kl =h, ’ [QITPITPIPl~Ql dC (27) 
-I 

Kl =h, ’ ~Ql’~~lr[Cl~~l~Ql W-9 
-I 

where [Q] is the transformation matrix relating 
the local and global displacements {U} and {q} 

respectively and [Q] is given as 

[Ql= 

where 

with 

* = tan-i{(z)/($)}. 

{P(r,)} and {M(r,)} of eqn (26) are the applied and 
memory load vectors respectively. The memory load 
vector {M(f,)} is detailed as: 

{M,)} = - [K,l(i[~(O)-d(r,-r,_,)l{q(~,_,)} 
k-l 

\ 

+ c [#tfk - ‘,+I ) - #cfk - f,)l{q*(f,)} 9 (29) 
1-1 > 

where 

{q+(rJ)) = o-5[{df,)) + {q('J+ ,))I* 

Nodal displacements (q(6)) at kth time are obtained 
by solving qn (26). 

The memory load {M(f,)} is the summation of 
(k - 2) load vectors to be stored in memory or 
backup storage. The large amount of information 
thus to be stored can easily exceed the available core 
memory of a digital computer, or computation be- 
comes costly for large f, when backup storage is used, 
as the large amount of data has to be read into core 
and transferred back to peripherals several times. 
Storing of such a large amount of data is eliminated 
using a recurrence relation obtained by expressing the 
relaxation modulus in Prony series [271, where only 
the set of quantities from the two previous time steps 
have to be retained. 

2.4. Sfresses and strains 

After obtaining {q(r,)}, the strains at the required 
location are computed using eqn (30) as 

@tfk)} = [~l[Ql{dfk)}- 

The stresses are then computed as 

{dfk)} = [s,l{c(fk)} +  &b 

where 

{&}=[CIIB] f[dd”)-+(~k--k-,)l 

( 

t-1 

x {dfk-,)}+ 1 [ddfk--J+l) 

J-1 

-$(‘k - fJ)l{~+(fJ)j ’ 

> 

(30) 

(31) 

(32) 

(33) 

The element matrices given by eqns (27) and (28) 
are evaluated using 2 x 2 Gauss quadrature. 

2.5. Element formulafon 1 

In the element formulation 1, the required element 
matrices [K,] and [KJ are generated using the element 
details given in Sec. 2.2 and the constitutive relation 
given by eqn (2). The strains and stresses are com- 
puted using eqns (30) and (31). 

2.6. Element formulation 2 

In the second formulation, as crX is taken to be zero, 
the strain eX is not included in generating matrix [E] 
(eqn (29)) as the contribution to the potential energy 
due to these components is zero. Therefore, the first 
row of the matrix [B] is made a null row in generating 
the matrices [K,] and [&I. In this case the constitutive 
relation given by eqn (17) is used. Proper care has to 
be taken of it using +(f) and 4(r) for the appropriate 
components of stress-strain in the eqns (26), (29) and 
(30)-(33). 

3. NUMERICAL DlSCU!SSlON 

The procedure developed in the present work for 
the viscoelastic analysis of adhesively bonded joints is 
applied to a single lap joint, with two identical 
adhere&. The adhesive layer is assumed to obey the 

three parameter viscoelastic solid behaviour. The 
analytical solutions for the probkm for three load 
cases, viz. membrane, bending and transverse shear, 
are given in [26]. The geometrical and load details and 
three parameter v&o-elastic solid model are ex- 
plained in Fig. 2. The finite element idealisation for 
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Mu,= N,,(h +h~)/Z 

(01 Membrane 

(bl Bending I err 

(c) Three parameter vlscoelastlc 
solid model 

Fig. 2. Joint loading and viscoelastic model. 

the joint is shown in Fig. 3. The number of nodes and The thickness of the adhesive layer h, is 0.1016 mm. 
elements are 394 and 116 respectively. The governing differential equation for the visco- 

The data used for aluminum adherends are elastic model (Fig. 2) is given by eqn (34): 

E = 7030.768 kg/mm’ 

v = 0.3 

where 
h, = h, = 2.286 mm 

I = 12.7mm (Fig. 2). 

(I+P,~)a*~=(r,+r,$)r,,. (34) 

PI = &/(k, + k2) 

For the particular epoxy used as the adhesive the 
ro = k,k,/@, + k2) 

properties at t = 0.0 hr are r, = i,k,/(k, + k2). 

K = 344.286 kg/mm2, b(O) = 156.435 kg/mm’. 

The equilibrium shear modulus C#J(CO) and the 
The relaxation shear modulus for eqn (34) is 

retardation time I, are taken as 

#(co) = #(0)/3, I,, = 4.0 hr. 
(35) 

Fig. 3. Finite element idealisation 
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Using the data given in 1261, the relaxation modulus 
for the material is found to be 

4(r) = 52.144896 + 104.29 e-“‘I, 

where r1 = 413. 

(36) 

In addition to shear refaxation modulus, we need 
the relaxation modulus (t(l) for the element formu- 
lation 2. The governing differential equation which 
gives the modulus $(r) is obtained by substituting the 
operators 

P’=(l.O+P,L) and R’=(r,,+r,-$ 

into eqn (15), and is given by eqn (37): 

Equation (37), together with data from 1261, yields a 
relaxation modulus as 

Jl(t) = 182.29637 + 104.28966e-“‘I 

+ 162.09848 e-r’r*, (38) 

where t, ==4/3 and TV = 1.7813716. 
The results for the two load cases, viz. membrane 

and bending, are discussed in the following. For the 
case of membrane loading, a pressure of 1 .O kg/mm’ 
is applied on the edges of adherends, which is equiv- 

--P Formrlatson t 
l Formulotion 2 

Fig. 4. Peel and shear stresses in adhesive layer (loading- 
membrane; I = 0.0 hr). 

alent to a longitudinal load of 2.286 kg/mm and a 
bending moment of 2.613 kg [26]. For the bending 
analysis, a moment of 1 .O kg is applied on the edges 
of adherends. Simply supported boundary conditions 
are used on the left edge of the joint and the loads are 
applied on the right edge. The stresses in adherends 
and adhesive layer are computed up to 4.0 hr, which 
is the retardation time for the material. Using the 
equilibrium moduli, equilibrium solutions are also 
obtained. 

The shear and normal stresses in the adhesive layer 
at time t = 0.0 hr in the end regions (0.0 < x/l < 0.2) 
are given in Tables 1 and 2, and are plotted in Figs 
4 and 5 up to x/l = 0.5. Results obtained using both 

Table 1. Shear stress (-ax*) kg/mm’ in adhesive layer with time 

Membrane loading (x/l) Bending loading 
Time 
fir) Formulation 0.0 0.1 0.2 2.0 1.9 1.8 

0.0 I 0.9630 
2 0.9510 
l 0.9704 

1.0 : 0.7866 
0.7745 

* 0.7788 
2.0 : 0.6902 

0.6783 
I 0.6908 

4.0 : 0.6060 
0.5948 

+ 0.6059 
a3 : 0.5599 

0.5501 
* 0.5602 

l Reference [26] values. 

0.3195 0.1253 0.2819 0.0910 0.0355 
0.3210 0.1261 0.2777 0.0915 0.0357 
0.3301 0.1123 0.2675 0.0914 0.0312 
0.3189 0.1430 0.2296 0.0911 0.0407 
0.3203 0.1440 0.2252 0.0916 0.0410 
0.3310 0.1366 0.2191 0.0919 0.0379 
0.3148 0.1529 0.2012 0.0901 0.0436 
0.3162 0.1539 0.1968 0.0905 0.0439 
0.3269 0.1499 0.1919 0.0908 0.0416 
0.3057 0.1610 0.1763 0.0875 0.0460 
0.3068 OA620 0.1722 0.0879 0.0463 
0.3163 0.1604 0.1683 0.0878 0.0445 
0.2913 0.1617 0.1629 0.0834 0.0462 
0.2922 0.1625 0.1592 0.0837 0.0465 
0.3006 0.1613 - - - 
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Table 2. Peel Stress uY kg/mm’ in adhesive layer with time 

Membrane loading (x/C) Bending loading 
Time 
(hr) Formulation 0.0 0.1 0.2 2.0 1.9 1.8 

0.0 1 1.6981 -0.0894 -0.1740 0.6213 -0.0304 -0.0669 
2 1.5502 -0.0706 -0.1678 0.5681 -0.0247 -0.0644 
l 1.6231 -0.1588 -0.1894 0.5917 -0.0578 -0.0691 

1.0 I 1.5466 -0.0745 -0.1720 OS693 -0.0250 -0.0661 
2 I .2890 -0.0397 -0.1593 0.4765 -0.0134 -0.0610 
* 1.5115 -0.1359 -0.1886 0.5538 -0.0498 -0.0691 

2.0 1 1.4698 -0.0662 -0.1707 0.5430 -0.0220 -0.0655 
2 1.1372 -0.0194 -0.1524 0.4228 -0.0060 -0.0583 
* 1.4573 -0.1242 -0.1881 0.5340 -0.0455 -0.0690 

4.0 1 1.4101 -0.0592 -0.1695 0.5226 -0.0195 -0.0650 
2 1.0043 0.0014 -0.1432 0.3752 0.0017 -0.0548 
l 1.4170 -0.1150 -0.1872 0.5193 -0.0422 -0.0686 

03 I 1.3860 -0.0558 -0.1689 0.5146 -0.0184 -0.0648 
2 0.9409 0.0136 -0.1332 0.3518 0.0062 -0.0510 
l 1.4042 -0.1118 -0.1867 - - - 

l Reference [26] values. 

the element formulations along with the analytical 
solution [26] are indicated. The shear stress distribu- 
tion in the adhesive layer at various times in the end 
region is given in Figs 6 and 7 for membrane and 
bending loads respectively using the element formu- 
lation 1. The normal and shear stresses at x/l = 0.0 
are given with respect to time in Figs 8 and 9, 
employing both the element formulations. 

It is seen from the results that the stresses are 
highly localised at the ends of the adhesive layer and 
depict severe stress concentrations in the end regions. 
In the middle region of the joint they are practically 
non-existent. 

e -06. 

- FormutatIon I 
m Formulatron 2 

0.1 L 

Fig. 5. Peel and shear stresses in adhesive layer (t = 0.0 hr; 
M = 1.0 kg). 

1 ’ I I I I I I I 
0.02 004 005 000 010 012 0 14 016 

x/l 

Fig. 6. Shear stress in adhesive layer (membrane loading). 

024 

N- 020 

E 
’ 3 0.16 

:: t! 0.12 

is 
008 
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Fig. 7. Shear stress in adhesive layer (bending loading). 
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0.6 - --_-___--__----- 

I 2 3 4 

Time (hrl 

Fig. 8. Peel and shear stresses in adhesive layer at x/l = 0.0 
for membrane loading. 

The peel stress distribution changes its sign for 
both the load cases when plotted along the adhesive 
layer, whereas the shear stress distribution does not. 
The relaxation of stresses is quite considerable at 
retardation time; about 17% and 37% in peel and 
shear stresses respectively at x/l = 0.0. However, it is 
to be noted that the relaxation depends upon the type 
of adhesive used. The formulation 1 exhibits stiff 
behaviour as it uses straightforward displacement 
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Fig. 9. Stresses in adhesive layer at x/l = 0.0 for bending 
loading. 

technique whereas the formulation 2 is flexible as it 
is equivalent to a constraint approach. 

4. CONCLUSIONS 

The procedure developed for the viscoelastic 
analysis of adhesively bonded joints gives very accu- 
rate results and as it is based on the finite element 
method using curved isoparametric elements it can be 
easily and effectively employed for the analysis of 
complex configurations. Two variations of adhesive 
layer element are presented. As the element formu- 
lation 1 is stiff and the formulation 2 is flexible, the 
average of these solutions using moderate mesh is an 
accurate solution for the given problem, particularly 
for peel stress. A typical single lap bonded joint is 
analysed using the procedure developed. It is ob- 
served from the results that there are severe stress 
concentrations in an adhesively bonded joint, which 
need to be properly taken care of in the design of such 
joints. The storage of a large amount of memory load 
information is minimised using Prony series for relax- 
ation moduli and therefore the computational effort 
and cost are reduced. 
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