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Abstract—A direct formulation for the viscoelastic analysis of adhesively bonded joints using finite
element method is presented. A six-noded quadratic isoparametric element is developed. Two variations
for the adhesive layer element are presented. Hereditary integrals are used to represent the stress-strain
relations. Relaxation modulus, either experimentally obtained or theoretically generated, can be directly
used. Memory load storagefuse is minimised using Prony series for the relaxation modulus.

A usual eight-noded quadratic isoparametric plane strain element is used to idealise the adherends. As
the adhesive layer element is a curved one it can be effectively employed for the analysis of curved
adhesive-bonded joints. It is seen from the results that the stress distributions in the joints are accurately
determined using both the adhesive layer element formulations. As the element formulation 1 is stiff and
formulation 2 is flexible, the average of these solutions using moderate mesh is an accurate solution for

the given configuration.

1. INTRODUCTION

Adhesively bonded joints are extensively used in the
manufacture of aerospace vehicles, fibre reinforced
plastic components, wooden articles and many a
general lightweight structural members. Stress
analysis of these joints is a difficult problem owing
to the high stress gradients in the adhesive layer and
non-homogeneity as different materials are used for
adherends and adhesive. The mathematical models
are complicated, even for simplest possible con-
figurations. Moreover, viscoelastic behaviour of
adhesive is to be considered if it does not remain in
its glassy state due to the thermal and loading
environment. It is seen from the literature that a few
typical configurations of the joint are analysed using
both the analytical and the finite element methods.
It is well known that the analytical solutions have
the limitation of application to complex problems
whereas the Finite Element Method (FEM) can be
easily and effectively employed for the analysis of
such problems.

1.1. Adhesive-bonded joints

Goland and Reissner [1}, in their classical study of
the adhesively bonded single lap joints, used two
important physical idealisations of either beam-plate
or elastic continuum in the formulation of the prob-
lem. In beam-plate theory the joint flexibility is
assumed to be mainly due to the flexible adhesive
layer. In this case the adherends are considered to be
plates connected by an adhesive layer which is ideal-
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ised into an elastic spring. As this formulation is
simple and reliable, it is extended to various complex
situations such as double lap, scarf and stepped joints
and joints with non-identical, orthotropic and aniso-
tropic adherends [2-6]. The procedure is also used to
generate design data such as the effect of the adher-
end shapes and adhesive thickness on the strength of
the joint [7-9]. Erdogan and Ratwani [10] have used
a further simplified membrane idealisation for the
analysis. In the elastic continuum idealisation
{11-13], the adhesive layer is considered to be stiff and
its presence is disregarded to simplify the problem.
However, the analysis of joints using such an ideal-
isation is tedious and the results obtained are not
satisfactory. As the classical theory of Goland and
Reissner {1} is concerned with the cases of flexible
and stiff adhesive layers, it cannot be used for the
joints with medium range flexibility. Recently Chen
and Cheng [14] have presented a general approach
applicable to all adhesive layer conditions and have
applied it to a single lap bonded joint. This formulation
is yet to be extended to various complex situations.

The Finite Element Method (FEM) is applied to a
few typical adhesively bonded configurations in the
literature {15-21}. In [19] the usual cubic plane strain
triangular element is employed to idealise both the
adhesive and adherends of the single plane lap joint.
The thickness ratio of the adhesive layer and adher-
ends chosen for the problem is quite high compared
to practical situations. This solution has not pro-
duced zero shear stress at the ends of the adhesive
layer, which is also the case with the classical solution
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of Goland and Reissner 1] and the FEM solutions of
(15] and [16). However, the FEM solutions reported
in [17) and [18] do indicate the zero boundary shear
stress in the adhesive layer. Barker and Hatt {20] have
developed an adhesive layer linear element for the
analysis of joints. In [21] a six-noded quadratic
isoparametric adhesive Jayer element for elastic
analysis is presented. The adhesive layer is assumed
to be relatively thin and behaves elastically as a
tension-compression and shear spring connecting the
adherends.

1.2. Viscoelasticity

The viscoelastic analysis techniques are broadly
classified into three basic approaches: (i) quasi-elastic
solutions, (ii) integral transform techniques; and (iii)
direct methods. Quasi-elastic solution uses elastic
properties equivalent to the corresponding visco-
elastic properties at the desired time. This approach
essentially ignores the entire past history of loading
and therefore yields a gross approximation to the true
response. Integral transform technique [22] is based
on the correspondence principle, in which the elastic
solution is used to obtain the corresponding visco-
elastic solution using the Laplace transform tech-
nique. This approach is exact for problems for which
closed form solutions are possible and approximate
Laplace transform inversion has to be employed for
the problems with numerical elastic solutions [23].
The direct formulations are based on the finite ele-
ment theory using either the differential form [24] or
the integral form [25] of stress—strain relationships.
Viscoelastic analysis of single lap adhesively bonded
joints employing integra] transform technique is re-
ported in [19] and [26). Delale and Erdogan [26] have
developed closed form solution for the associated
elastic problem and the corresponding viscoelastic
solution is obtained using numerical evaluation of
transform integrals. In [19] the FEM is used to solve
the associated elastic problem using the usual cubic
plane strain element. Viscoelastic solution is obtained
by inverting the Laplace transforms approximately.

1.3. Present work

In the present paper a direct formulation for the
viscoelastic analysis of adhesively bonded joints em-
ploying FEM is presented. The six-noded quadratic
isoparametric adhesive layer element [21] is reinvesti-
gated, modified removing the zero constraint of longi-
tudinal normal stress, extended to linear viscoelastic
analysis and is implemented in the special purpose
program VANIS, Viscoelastic Analysis of Nearly
Incompressible Solids [27]. Two formulations for the
adhesive layer finite element are presented. In the
first element formulation all three stress/strain com-
ponents of the plane strain idealisation are used
whereas in the second formulation the longitudinal
norma} stress is assumed to be zero [14, 21]. The
quadratic eight-noded isoparametric plane strain
element is used to idealise adherends. The results
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obtained using both the element formulations are
discussed and it can be seen from the results that the
element formulation 1 is stiff as it uses the straight-
forward displacement FEM. The element formu-
lation 2, in which the zero stress constraint is intro-
duced, exhibits flexible behaviour and gives lower
stress values. The results obtained using both the
element formulations agree well with the analytical
solution [26], except for the lateral normal (peel)
stress obtained using the element formulation 2,
which deviates from the analytical solution. As one
FEM solution is stiff and the other is flexible, the
average of both the solutions using moderate mesh
should be an accurate solution for the given problem,
particularly for the peel stress.

2. VISCOELASTIC FORMULATION

In practical situations of adhesively bonded joints
the adhesive layer is very thin compared to the
adherends. The adherend thickness to bond length
ratio is also small. The adhesively bonded joints may
be considered as plates as the width of the joint is
greater than the other dimensions. Therefore plane
strain idealisation is used for the analysis of these
joints.

In the formulation of element matrices for the
adhesive layer, the shear and normal stresses are
assumed to be constant in a lateral direction. The
six-noded adhesive layer element and eight-noded
element for adherends are shown in Fig. 1. The
formulation for the eight-noded element is avail-
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(b) Eight-noded element for adherends

Fig. 1. Quadratic isoparametric elements.
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able in [27]. The formulation for a six-noded element
is discussed in the present section. As the present
adhesive layer element is a curved isoparametric
element it can be used for the analysis of curved
adhesive layered joints. Two variations for the
adhesive layer clement are presented.

2.1. Stress—strain relations

Two types of stress—strain systems are used in
formulating the two variations of the six-noded
adhesive layer element. In the first formulation a
usual two-dimensional plane strain system of stresses
and strains is used and in the second one a modified
plane strain system is used, which is obtained by
introducing a zero longitudinal normal stress con-
straint into the usual 2-D plane strain system. The
viscoelastic constitutive relation for plane strain
analysis with constant bulk modulus K is given by the
hereditary integral {27, 28] in the co-ordinate system
X as

o, (X, 1) =200, (X, 1) — j ' idi(—;f,ﬁ
0+

x €,(X, 1)dt" + 3,[K — 3 (0)]emn( X, 1)

2(1 0 =1) g o,
+.;,,3L__3;,.._c,.,(x,z)dr, (1)

where ¢(¢) is the shear relaxation modulus and is a
function of time r.
Writing eqn (1) in matrix notation we have

{o(X. 0} =[DRe(X, 0} +[C)L{e(X, )}, ()

where

LX) = L @;—}Q {e(R, 1)}dr". 3)

[D] is the usual elasticity matrix for plane strain
analysis and [C] the viscoelasticity matrix. The
elements of matrix [C] are

Co=—43, i=12 Cy=-I

C,=2/3, ij=12  i#j

The stress and strain vectors for plane strain
condition are

(o (X, 1)) = {ox0y02y>
Ce(X, 1)) = exeyer).
In the second element formulation the longitudinal

normal stress o, is assumed to be zero and the
plane strain condition, ie. ¢;=0.0, is used. The

stress—strain relations for the case are given as

QX 1) =¥ (0)ey(X. 1)

RO e @
Jos o1
oxy(X, 1) = d(0)exy (X, 1)
f*t -1
2D e, o)
e Ot

Ry

where ¢(1) is the shear relaxation modulus and ¢ (1)
is an equivalent tension/compression modulus, which
is derived from the rheological differential equations
of the stress—strain system. The procedure for obtain-
ing the ¢ () is discussed in the following steps.
The constitutive behaviour of the volumetric
components of the stress and strain is given as

P7(a,) = R"{(e,). ©)

and the relations of deviatoric components are

P'(0xa) = R'{¢x) )]
Ployy) = R'(ey) @®
P(0z4) = R'(€z), )]

where P", R", P’ and R’ are appropriate differential
operators.

The volumetric and deviatoric components for the
problem are

o,=(0y+02)/3 &=(xt+¢)3 (10
Ox=—(0y+02)3; €xg=(2r—€)3 (1
Op=Q20y~07)/3; ep=(—6+2,)3 (12)
Ozg= (=0, +265)/3; €= —(ex+6€y)/3.  (13)

Substituting the relations (10-13) into eqns (6-9)
and then climinating ¢, and ¢, from the resulting
equations we obtain the relation between o, and ¢,
as given by eqn (14):

P'QP"R’+ R"P)oy= R'(P"R" +2R"P')y. (14)

The elastic behaviour is assumed for the volumetric
components of stress and strain [28]. Therefore the
operators P” and R” are given as P” = 1.0 and
R” = 3K. Then eqn (14) is simplified as

15)

The required modulus (1) can be obtained for the
given material by substituting its operators P’ and R’
into eqn (15) and by evaluating the stress response for
Heavyside unit strain input. For elastic behaviour

P(2R 4+ 3KP')o,= R'(R’ + 6KP'),.
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(instantaneous response) the operators P’ and R’ are
1.0 and 2¢(0) respectively.
For the elastic case the eqn (15) is written as

6y =¥ (0)y. (16)
where

¥(0) = 4¢(0)3K + ¢ (0))/[3K + 4¢(0)].

The eqns (4) and (5) are rewritten in matrix notation
as

{o(x, 0} = [DKe(X, N} +[C)fe(X, 00}, (1T)

where
, ___6«/(;;:')"‘1,)
J{c(X.t)}=L‘ -y [
T-éxy(f)

The elements of (D] and [C] matrices for this case are

dp=y(0), dy=¢(0), Cyp=Cy=-10

The symbol # of egn (17) is similar to the symbol &
of eqn (2). However, proper care has to be taken to
use appropriately the moduli ¥ (1) and ¢ (1) as seen

in eqns (4) and (5).

2.2. Element details

As the adhesive layer is very thin the longitudinal,
lateral normal stresses g, and g, and the shear stress
o;, are assumed to be constant in respect of the n
co-ordinate (Fig. 1(a)). Therefore, the displacement
field along n co-ordinate is linear. The geometry of
the element is considered as a 2-D plane curve with
thickness hy. Only one non-dimensional curvilinear
co-ordinate ¢ is used to represent the element.

The geometry of the element is given as

{;} - ,.i. NE) {’y‘}

where N,(i = 1, 2, 3) are the shape functions and are
given as function of {(—1<¢ < 1) as

(18)

Ni= -8 -8, M=1-¢ Ny=3(1+).

The local top and bottom layer displacements (Fig.
1(a)) are given by eqns (19) and (20):

{u }wp - 3 Ni(é){u' . )}
v iml Uit
u bottom 3 u;

b -s el

19

20

The local normal and shear strains are given by eqns
(21), (22) and (23):

({ = __‘1 (ulop + uhouom)

2ds @)
= (0 = o™, (22)
(“ = (ulop - ubollom)/ho’ (23)

where s is the actual co-ordinate measured along the
element and is given as

(ds/d¢)? = (dx/d¢) + (dy/dS ). 24

Equations (18)-(20) and (24) are substituted into
eqns (21)—(23) and the strain matrix B as given by
eqn (25) is generated.

(e} =BV, 25)

where {¢] is the vector of strains given by eqns
(21)-(23) and {U} is the vector of nodal displace-
ments in local co-ordinate directions.

The elements of matrix [B] are as follows:

dé

=b , =4 -0.5=

bl.l 1Lt 2({ S)ds
d{
bn.J—bn.o—‘fa‘

d¢

=p =1 55—

by s=b, z(f‘*‘os)ds

bz.z=b3.l=‘bz.|z=—b3.n="Nn/ho

bz,4=bs.3= ‘bz,|o= -b:‘9= — N, /hq

bre=0bys= ~byy= —by ;= —Ny/h,.

The remaining elements of matrix [B] are zero
clements.

2.3. Elemental equations

The elemental equations are derived in [27)
considering the stationarity of potential energy as

{[K.1+ %[d’(o) — ¢ — - KN} g (1)}

={Pt)} +{M)}. (26)
The trapezoidal rule is used to evaluate the integrals
in the time domain. 1, is the time step at which
solution is sought.
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The matrices [K,] and [K,] of eqn (26) for the
adhesive layer element are

K\ = ho J ) [Q]’[B]’[D][B][Ql(%>dé @

! ds
(K2l = ho J‘_] QY (BYIC)IB)IQ] (d_c)dc’ 28)

where [Q] is the transformation matrix relating
the local and global displacements {U} and {g}
respectively and [Q] is given as

- -

g

@21= ,

where

cos@ siné
[Q]=[sin0 cosB:I

() )

{P(1,)} and {M(1,)} of eqn (26) are the applied and
memory load vectors respectively. The memory load
vector {M (1)} is detailed as:

with

M)} = "[Kz]G[‘f’(o) — o — 6 )){a(t_ )}
k-2

+ 2 (¢ — ,,.)—¢(fk—',~)]{q‘(!,)}), 29)

j=

where

{g*(1)} = 0.5[{q (s} + {q(;, J}].

Nodal displacements {g(z,)} at kth time are obtained
by solving eqn (26).

The memory load {M(z,)} is the summation of
(k — 2) load vectors to be stored in memory or
backup storage. The large amount of information
thus to be stored can easily exceed the available core
memory of a digital computer, or computation be-
comes costly for large ¢, when backup storage is used,
as the large amount of data has to be read into core
and transferred back to peripherals several times.
Storing of such a large amount of data is eliminated
using a recurrence relfation obtained by expressing the
relaxation modulus in Prony series [27], where only
the set of quantities from the two previous time steps
have to be retained.
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2.4. Stresses and strains

After obtaining {¢(1,)}, the strains at the required
location are computed using eqn (30) as

{e()} =(Bl1Q){q(1)}- (30
The stresses are then computed as
{o(t)} =[S\ Ke(t)} + {S:}, (31
where
[$.]=[D]+3[6(0) ~ ¢ (t — &, _IC) (32)
{S:}= [C][Bl(%ltb(o) ¢ -4
k-1
x{gt- N+ Y o= 111)
j=l1
-0 — l,)]{q‘(l,)})- (33)

The element matrices given by eqns (27) and (28)
are evaluated using 2 x 2 Gauss quadrature.

2.5. Element formulaton |

In the element formulation 1, the required element
matrices (K] and [K,] are generated using the element
details given in Sec. 2.2 and the constitutive relation
given by eqn (2). The strains and stresses are com-
puted using eqns (30) and (31).

2.6. Element formulation 2

In the second formulation, as o, is taken to be zero,
the strain ¢, is not included in generating matrix [B]
(eqn (29)) as the contribution to the potential energy
due to these components is zero. Therefore, the first
row of the matrix [B] is made a null row in generating
the matrices [K,] and [K;]. In this case the constitutive
relation given by eqn (17) is used. Proper care has to
be taken of it using ¥ (¢) and ¢ (¢) for the appropriate
components of stress—strain in the eqns (26), (29) and
(30)(33).

3. NUMERICAL DISCUSSION

The procedure developed in the present work for
the viscoelastic analysis of adhesively bonded joints is
applied to a single lap joint, with two identical
adherends. The adhesive layer is assumed to obey the
three parameter viscoelastic solid behaviour. The
analytical solutions for the problem for three load
cases, viz. membrane, bending and transverse shear,
are given in [26). The geometrical and load details and
three parameter visco-elastic solid model are ex-
plained in Fig. 2. The finite element idealisation for
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Fig. 2. Joint loading and viscoelastic model.

the joint is shown in Fig. 3. The number of nodes and
elements are 394 and 116 respectively.
The data used for aluminum adherends are
E = 7030.768 kg/mm?
v=0.3
h, = h,= 2286 mm
! =12.7mm (Fig. 2).

For the particular epoxy used as the adhesive the
properties at ¢ =0.0 hr are

K =344.286 kg/mm?, ¢(0) = 156.435 kg/mm?.

The equilibrium shear modulus ¢(cc) and the
retardation time ¢, are taken as

The thickness of the adhesive layer kg i1s 0.1016 mm.
The governing differential equation for the visco-
elastic model (Fig. 2) is given by eqn (34):

(

-

0 ¢
1 +P'E>°”=('°+"&>‘"‘ (34)

where
po= A/t + ky)
ro=kky[(k, + k)

ri= Aryky[(k) + k).
The relaxation shear modulus for eqn (34) is

¢(1)=fo+<;7'|—'o)e"”'~ 39

¢(0) = ¢(0)/3, t,=4.0hr.
y
b= 60
:» W b b
i " I
-L [ [ W 1 [ 1 1 q“
fo——— 127 e 27 ol

Fig. 3. Finite clement idealisation.
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Using the data given in [26], the relaxation modulus
for the material is found to be
@(1) = 52.144896 + 104.29 ¢~ ", (36)
where 1, =4/3.
In addition to shear relaxation modulus, we need
the relaxation modulus ¢ (¢) for the element formu-
lation 2. The governing differential equation which

gives the modulus ¢ (1) is obtained by substituting the
operators

é 2
P'—_- R _— '= ——
(10+P,6l) and R (ro-{»r,at)

into eqn (15), and is given by eqn (37):

{(31{ +2rg) + (2r, + 6Kp, + 2’0!71);‘

3?
+ pi(2r, + 3Kp)) a—tz}"r

é
= {r°(6K +r,)+ (6Kp,ry + 6Kry + 2ror,) P

62

+ (6Kp 1 + ’%)—}tr- (37

or

Equation (37), together with data from [26], yields a
relaxation modulus as

¥ (1) = 182.29637 + 104.28966 ¢~

+ 162.09848 ¢~ "2, (38)
where 1, =4/3 and 1, = 1.7813716.

The results for the two load cases, viz. membrane
and bending, are discussed in the following. For the
case of membrane loading, a pressure of 1.0 kg/mm?
is applied on the edges of adherends, which is equiv-

%

o= Formutation |

E s Formulation 2
< + [26]
2
~ 1
a
-
]
o
-aXY
0%

1
\,9% o2 03 04 o5

N
x/0

Fig. 4. Peel and shear stresses in adhesive layer (loading—
membrane; ¢ = 0.0hr).

alent to a longitudinal load of 2.286 kg/mm and a
bending moment of 2.613 kg {26]. For the bending
analysis, a moment of 1.0 kg is applied on the edges
of adherends. Simply supported boundary conditions
are used on the left edge of the joint and the loads are
applied on the right edge. The stresses in adherends
and adhesive layer are computed up to 4.0 hr, which
is the retardation time for the material. Using the
equilibrium moduli, equilibrium solutions are also
obtained.

The shear and normal stresses in the adhesive layer
attime ¢ = 0.0 hr in the end regions (0.0 < x// € 0.2)
are given in Tables 1 and 2, and are plotted in Figs
4 and 5 up to x/I/ = 0.5. Results obtained using both

Table 1. Shear stress (—o,y) kg/mm? in adhesive layer with time

Membrane loading (x//)

Bending loading

Time

(hr) Formulation 0.0 0.1 0.2 2.0 19 1.8
0.0 1 0.9630 0.3195 0.1253 02819 0.0910 0.0355
2 09510 03210 Q.1261 02777 0.0915 0.0357
. 09704 03301 0.1123 02675 0.0914 0.0312
1.0 | 0.7866 03189 0.1430 02296 0.0911 0.0407
2 0.7745 03203  0.1440 02252 0.0916 0.0410
¢ 0.7788  0.3310 0.1366  0.2191 0.0919  0.0379
20 1 0.6902 03148 0.1529 0.2012 0.0901 0.0436
2 0.6783  0.3162 0.1539  0.1968 0.0905 0.0439
* 0.6908 0.3269 0.1499  0.1919 0.0908 0.0416
4.0 1 0.6060 03057 0.1610 0.1763 00875 0.0460
2 0.5948 0.3068 0.1620 0.1722 0.0879 0.0463
. 0.6059 03163 0.1604 0.1683 00878 0.0445
© i 0.5599 02913 0.1617 0.1629 0.0834 0.0462
2 0.5501  0.2922 0.1625 0.1592 0.0837  0.0465

* 0.5602 03006 0.1613 — — —

* Reference [26] values.
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Table 2. Peel Stress ¢, kg/mm? in adhesive layer with time

Membrane loading (x//) Bending loading
Time
(hr) Formulation 0.0 0.1 0.2 20 1.9 1.8
0.0 1 1.6981 —0.0894 —0.1740 0.6213 -0.0304 --0.0669
2 1.5502 —-0.0706 —0.1678 0.5681 —0.0247 —0.0644
* 1.6231 —0.1588 —0.1894 0.5917 -—0.0578 —0.0691
1.0 1 1.5466 —0.0745 —0.1720 0.5693 -0.0250 —0.0661
2 1.2890 —0.0397 —0.1593 0.4765 -0.0134 —~0.0610
* 1.5115 —0.1359 —0.1886 0.5538 —0.0498 —0.0691
20 I 1.4698 —0.0662 —0.1707 0.5430 —0.0220 —0.0655
2 1.1372  —-0.0194 -0.1524 04228 —0.0060 —0.0583
* 1.4573 —0.1242 —0.1881 0.5340 —0.0455 —0.0690
4.0 i 1.4101 —-0.0592 —0.1695 0.5226 —0.0195 —0.0650
2 1.0043 0.0014 —-0.1432 0.3752 0.0017 —0.0548
. 1.4170 —0.1150 —0.1872 0.5193 —0.0422 —0.0686
© 1 1.3860 —0.0558 —0.1689 0.5146 —0.0184 —0.0648
2 0.9409 0.0136 —0.1332 0.3518 0.0062 —0.0510
*

1.4042 ~-0.1118 —0.1867 —_ —_ —_

* Reference [26] values.

the element formulations along with the analytical
solution [26] are indicated. The shear stress distribu-
tion in the adhesive layer at various times in the end Formutotion |
region is given in Figs 6 and 7 for membrane and
bending loads respectively using the element formu-

lation 1. The normal and shear stresses at x/l = 0.0
are given with respect to time in Figs 8 and 9,
employing both the element formulations.
It is seen from the results that the stresses are
highly localised at the ends of the adhesive layer and .~
depict severe stress concentrations in the end regions. £
In the middle region of the joint they are practically 3
. E 4
non-existent. =
b;
L
ot
o1}
-05 ] ] 1 ! i ! | S
-0 Formulation | 002 004 005 008 010 012 0i4 0Ql6
s Formulation 2 2/\
o [26] . . . .
-04 Fig. 6. Shear stress in adhesive layer (membrane loading).
< -03 a 028
E Y
E
N\ SN
=
9 oz ZOxv ~ 020 3
s / E Y t=00Hr
L] o OI6 o =1
E, .
-0 . :
\ § o
. &
N 008
; | - b ;,9_ -
0 A 02 03 0 05
\\o_ /“’VO,O ¢ 004 |-
¢ o x/L
L I I i B S— | L Il
o4 003 004 006 008 0ic Oz 0#4 016

Fig. 5. Peel and shear stresses in adhesive layer (# = 0.0 hr; 2L

M =1.0kg). Fig. 7. Shear stress in adhesive layer (bending loading).
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Z)
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Fig. 8. Peel and shear stresses in adhesive layer at x// = 0.0
for membrane loading.

The peel stress distribution changes its sign for
both the load cases when plotted along the adhesive
layer, whereas the shear stress distribution does not.
The relaxation of stresses is quite considerable at
retardation time; about 17% and 37% in peel and
shear stresses respectively at x// = 0.0. However, it is
to be noted that the relaxation depends upon the type
of adhesive used. The formulation 1 exhibits stiff
behaviour as it uses straightforward displacement
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Fig. 9. Stresses in adhesive layer at x// = 0.0 for bending
loading.
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technique whereas the formulation 2 is flexible as it
is equivalent to a constraint approach.

4. CONCLUSIONS

The procedure developed for the viscoelastic
analysis of adhesively bonded joints gives very accu-
rate results and as it is based on the finite element
method using curved isoparametric elements it can be
easily and effectively employed for the analysis of
complex configurations. Two variations of adhesive
layer element are presented. As the element formu-
lation 1 is stiff and the formulation 2 is flexible, the
average of these solutions using moderate mesh is an
accurate solution for the given problem, particularly
for peel stress. A typical single lap bonded joint is
analysed using the procedure developed. It is ob-
served from the results that there are severe stress
concentrations in an adhesively bonded joint, which
need to be properly taken care of in the design of such
joints. The storage of a large amount of memory load
information is minimised using Prony series for relax-
ation moduli and therefore the computational effort
and cost are reduced.
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