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Abstract-The finite element method is well established for the analysis of structures and other field 
problems. However, its straightforward application for the analysis of nearly incompressible solids yields 
erratic results. In the present work, an efficient special purpose code for the Viscoelastic Analysis of Nearly 
Incompressible Solids (VANIS) is developed using isoparametric elements with selective integration pro- 
cedure, which is a third order Gauss rule for deviatoric response and second order Gauss rule for volumetric 
response. The software can be effectively employed for the structures with lower Poisson’s ratios. VANIS 
is based on the direct formulation using linear uncoupled thermoviscoelastic theory for the thermorheolog- 
icaUy simple materials. The element library consists of 8-noded plane strain, I-noded axisymmetric solid and 
20-noded three dimensional quadratic isoparametric elements. These elements meet all the possible structural 
idealisation requirements of the solid continua. Experimentally obtained rigidity modulus can be used directly 
or expressing it in Prony series. The software is tested on a number of problems and gives very accurate 
results for all the permissible values of the Poisson’s ratio. 

1. INTRODUCnON 

Solid propellant rocket fuels are incompressible or 
nearly incompressible (Poisson’s ratio approaching 
one half) viscoelastic solids. Also, the mechanical 
properties of these materials are highly temperature 
dependent. Such is the situation with the other poly- 
meric solids and polymers. Metals in the plastic 
region and soils in the saturated condition also have 
higher Poisson’s ratios. Application of the usual finite 
element method for the analysis of such solids yields 
severely oscillating stresses/strains across elements. 

In the present work a simple and efficient special 
purpose code for the Viscoelastic Analysis of Nearly 
Incompressible Solids (VANIS) is developed using 
the plane strain, axisymmetric solid and 3-D qudratic 
isoparametric elements. Selective integration pro- 
cedure is employed for computing the element 
stiffness matrices. 

Thermal effects are incorporated through the use 
of the shifted time hypothesis. The viscoelastic for- 
mulation is presented in Section 2 and the per- 
formance of the software is discussed in Section 3. It 
is seen from the results that the software is a very 
useful code for the analysis of incompressible solid 
continua. Also, the software can be effectively used 
for the anaiysis of compressible structures through 
the use of a control parameter, which changes the 
computational Row from the selective integration to 
a third order Gauss rule for the computation of both 
the deviatoric and volumetric components of the 
stiffness matrix. 
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I. 1 Incompressibility 
It is well known that the straightforward applica- 

tion of the displacement method to nearly incom- 
pressible structures yields erratic displacements and 
severely oscillating stresses about the exact solution 
and across the elements. This aspect has been studied 
for elastic materials and is well documented in 
literature[l-lo]. The remedies suggested in literature 
to overcome the difficulties are the use of: (i) refined 
meshes, (ii) reduced Poisson’s ratio, (iii) alternate 
formulations, such as the stress hybrid approach and 
the formulation based on Herrmann’s (Semi- 
Reissner’s) variational principle, and (iv) reduced 
integration for the troublesome portion of the strain 
energy. The proposition of mesh refinement [3] needs 
number of elements and yields doubtful results and 
therefore is not advisable. The results obtained using 
the reduced Poisson’s ratio have to be extrapolated so 
as to obtain the results corresponding to the required 
Poisson’s ratio[4, 51. There are no systematic meth- 
ods of extrapolation of results as of now. Previous 
experience or engineering intuition could provide 
hints to the juditious extrapolation. Improved results 
are obtained using Herrmann’s variational 
fonnulation[ 1,2] ftir incompressible structures. In 
this procedure simultaneous minimization of strain 
energy with respect to displacements and pressure 
variable is done. Stress hybrid formulation of Pian 
and Tong[6] also gave good results. Use of the 
reduced integration is versatile and is an economical 
approach[7-91. Moreover, it is shown in literature 
[IO] that Herrmann’s formulation is identical to the 
displacement method with underintegration of cer- 
tain troublesome portions of the strain ener_gy. 
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The viscoelastic analysis techniques may broadly 
be classilied into thrte basic approaches. viz. (i) 
quasi-elastic solutions. (ii) integral transform tsch- 
niquss. and (iii) direct methods. Quasi-elastic solu- 
tion uses elastic properties equivalent to the corre- 
sponding viscoelastic properties at the desired time 
and temperature. This approach essentially ignores 
the entire past history of loading and environment 
and therefore yields gross approximation to the true 
response. Integral transform t:chnique[ 1 I] is based 
on the correspondence principle. in which using the 
elastic solution, the corresponding ciscoelastic solu- 
tion is obtained using the Lapiace transform tech- 
nique. This approach is exact for which closed form 
solutions are possible and approximate Laplace 
transform inversion has to bc employed for the 
problems with the numerical elastic solutions[ 121. 
Further, the transform technique is not directly appli- 
cable for the problems of non-homogeneous transient 
temperature distributions. To circumvent these prob- 
lems, conditions of constant temperature over time 
increments are imposed and the correspondence prin- 
ciple is applied on an incremental basis[ 131. The 
direct formulations are based on the tinite element 
theory using either the differential form [ 14, 151 or the 
integral form[l6. 171 of stress-strain relationships. 

The special purpose code, VANIS is developed 
for the linear analysis of nearly incompressible 
viscoelastic solid continua. The software can be 
effectively employed for the structures with lower 
Poisson’s ratio. It is based on the direct formulation 
using hereditary integral (linear) stress-strain re- 
lationships. Further, it is assumed in the formulation 
that: (i) reduced time hypothesis is valid (thermo- 
rhsologically simple material). (ii) bulk modulus is 
constant with time, and (iii) the material is isotropic 

-x 
( I) Plane strox element 
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and homogeneous. The element library consists of 
8-noded plane strain. Y-noded axisymmetric solid and 
20-noded three dimensional solid quadratic iso- 
parametric elements. The elements meet all the possi- 
ble structural idealisation requirements of the solid 
continua. 

Software uses a selective integration procedure. 
which is the third order Gauss rule for deviatoric 
response and the second order Gauss rule for volu- 
metric response. Storage of large amount of memory 
load information is avoided using the recurrence 
relation developed expressing the relaxation modulus 
in Prony series. Only the two immediate previous 
load vectors are required to be stored in memory. 
Also. it must be noted that, in the present formu- 
lation, the e.xperimentally obtained modulus can be 
used either directly or by expressing it in Prony series 
and therefore. the problem of looking for realistic 
material models is avoided, which has been always a 
problem in the integral transform techniques. 

The software is tested on a number of problems. 
The results obtained agree well with the already 
published ones. 

2. VISCOELASTIC FORIMULATION 

The element details of the three quadratic iso- 
parametric finite elements available in “VANIS” are 
given in Fig. I and are also available in Ref. [9]. The 
present softuare uses the linear uncoupled thermo- 
viscoelastic formulation[ 16. 171 and is based on the 
following assumptions 

(i) the stress strain relation is a hereditary integral 
expression. 

(ii) the bulk modulus is constant with time, 
(iii) the reduced time hypothesis is valid, 
(iv) the material is isotropic and homogeneous. 

The thermoviscoelastic formulation is briefly dis- 
cussed in the present section. 

i II I Axlsymmetrlc soLd element 

3D - SoLId eLsment 

Fig. I Element details 
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7. I Stress-strain relation 
The thermoviscoeiastic constitutive relation [ 181 

with constant bulk modulus K and constant linear 
co-efficient of thermal expansion x is 

cr,{R, t) = 2G(O)r@, t) 

s&i-, f’) dr’ 

- S,3aKP-(X f) - T,(X 0)l (1) 

where T(Z, f) is the current temperature; 7’xx, 0) is 
the structural reference temperature; and G(r) is the 
shear relaxation modulus given for an arbitrary “ma- 
terial” reference temperature, T,,,. The shifted time 5 
is related to real time t through the relation 

T =@,t)= ’ J dt 
, 

o+ AATGf, fll (2) 

where AT is shift function and is evaluated using the 
so called WLF equation[l9] as 

log AT = - 
CO - r&d 

c2 i- (T - T&f) = -fim (3) 

i.e. 

where C, and Cz are material constants. 
Writing eqn (1) in matrix notation, we have 

{4X r)j = Pl{c(X t)) + [ClYp(c(X r)] 

- 3aK[T(X t) - T,(.?, O)l{Jj (5) 

where 

[D] is the usual elasticity matrix; and [C] is the 
viscoelasticity matrix and is given in appendix for the 
three elements. {cT(~, t)), fs(R, t)) are the stress and 
strain vectors and are 

for plane strain element 

(4, r)) = (%~,a,) 

(4K t)> = (VYerv) 

for axisymmetric solid element, 

(4, r)> = (Vy~eQ) 

(6 (X 0) = (‘##C,> 

and for 3-dimensional solid element, 

It is seen from eqn (5) that the second component in 
the right hand side is due to the viscoeiastic property 
of the material. 

2.2 ~irffin-~~p~ucement relation 
The geometry {x) and the displacement field {VI 

in the isoparametric elements is given by 

where [N] is matrix of shape functions and {.x,1 and 
{q,] are the nodal co-ordinates and nodal dispiace- 
ments. 

Strain-displacement relation, after appropriate 
differentiation of shape functions is written in matrix 
notation as 

f4 = VW (8) 

the bar and suffix I’ of q are dropped for convenience. 
The shape functions are explicit functions of local 
co-ordinates. Strain quantities need differentiation of 
shape functions with respect to global co-ordinates 
and is done through a transfo~ation[g] using 
Jacobian matrix [a. 

2.3 Elemental equations 
The elemental equations are derived using the 

principle of virtual displacements 

- 
I 

SU’(X, t)F,(R, t) dr dt 
I 

(9) 
f 

where F,fx, t) is the prescribed body force vector; 
F,@, t> is the prescribed surface tractions on the 
boundary s, and U(x, t) are the virtual displace- 
ments. Substituting eqns (5), (7) and (8) into eqn (9) 
we get 

S’DB dv {q} + 
s 

BCLf’P(6) dv 
ll 

- 
I 

3aK(T- T,)S’du{.Ij dt 1 (10) v 
where {P] is the surface traction vector per unit 
surface area; and (Q ) is the body force vector per unit 
volume. The elemental equations are obtained con- 
sidering the stationarity of the potential energy (eqn 
10) as 

+ 
i 
N’{Q} du - 3aK(T - T,) Br{J} du = (0). ” J D v 1) It is seen from eqn (11) that the second term is the 

additional term and is due to viscoelastic property of 
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Fig. 2. Plane strain problem 

the material. Using the trapezoidal rule for time 
domain and using eqn (8) this term is rewritten for {M(rli)} = -[&I 

i 
$GO - G(T~ - G-,)l{drk-,)) 

k th time step as 
i 

BTC+ } du = ; [G(O) - G(r, - tk_ ,)][:cJ{q(tk)j 

4 ._ 2 

- ,;, [G(r, - r,- 1) - G(r, - #q*(f,) 
> 

(14) 

k-2 

+ [Kd C=l c [C(7k - 7, + I 1 - G(7k - q)l{q*($)j (12) 

where 

{4*(f,)) = W{q(r,)j f {qO,+ ,))I 

[KJ = 
J 

BTCB dv 
” 

substituting eqn (12) into eqn (11) we get the elemen- 
tal equilibrium equation as: 

[K,] + ; (G(O) - G(r, - 5k - ,)][&I 1 (dtk)} 

= {p(fk)) + {H(fk)j + {“(rk)} (13) 

where 

Nodal displacements (q(tk)) at kth time step are 
obtained by solving the eqn (13). 

2.4 Stresses and strains 
After obtaining {q(fk)), the strains at the required 

location are obtained using eqn (8). 
The stresses are then computed using the strains 

evaluated as 

where 

IS,1 = lD1-t; [G(O) - G(7k - 7k- ,)l[Cl 

f&j = [CIIBI 

+i[G(O) - G(r, -Tc-,)l{df,-1); (16) 

[K,] = B’DB dv 7; is the temperature of the structure at the kth time 
step and T, is the structural reference temperature. 

{W,)] = Nr{pI ds + 
s s 

Nr(e 1 du 2.5 Memory load considerations 
c The memory load (M(rJj is the summation of 

(k - 2) load vectors to be stored in memory or 

{H(r,)j = - 3rK(7- - r,) Br{J} du backup storage. The large amount of information 
thus to be stored can easily exceed the available core 

Table 1. Strains in plane strain problem 

I 6x 5 “(f) 

hrs. Exact FEM FEM 

0.0 0.0125341 0.0125340 - _ 0.0 124659 0.4995456 
1.0 0.0306363 0.0306385 - 0.0305347 0.49989 15 
2.0 0.0482035 0.0481386 - 0.0480704 0.4999687 
3.0 0.0652515 0.0651570 - 0.0650888 0.4999859 
4.0 0.08 17957 0.0816735 - 0.0816052 0.4999898 
5.0 0.0978509 0.0977026 - 0.0976344 0.4999906 

10.0 0.1712484 - - 
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memory of a digital computer or computation will 
become costly for large t, when the backup storage is 
used. as the large amount of data has to be read into 
core and transferred back to peripherals several 
times. Storing of such a large amount of data is 
eliminated using a recurrence relation obtained by 
expressing the relaxation modulus in Prony series. 
Only set of quantities from the two previous time 
steps have to be retained. 

The relaxation modulus in Prony series is written 
as 

G(r)=&+ i .4,e-“81 
1-I 

(17) 

where A,, Ai and fii are the material constants. 
Equation (17) amounts to a representation of the 
relaxation modulus by either a generalised Maxwell 
or a generalised Kelvin model[l9]. 

The expression for the memory load {M(Q) (eqn 
14) is rewritten, using eqn (17) as 

{M(lA) = - [Kzl i Ai{pi.k} + i G(O) - A, 
( ix I [ 

-i$, R,e-i’k-‘t-1)‘~i]{y(4_,)}) (18) 

d 

- 

A’ 

-.- -.- I 
* 4x900 mm 

a=300 mm 

t=300 mm 

a 
I -I 
Fig. 3. Solid mass slump problem. 

------ y:go(-J.o 

> 
-06 - 

-07 - 

-0.0 - 

-09 - 

(0) Vertical displacement 

Fig. 4. 

O-l.00 

5 ..-._.) 

(b) Shear stress 

Displacements and stresses in solid mass stump problem at f = 0.0. 
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I 
,P,_I = e -~irc(~-:!d, _ ~J{~(o);. 

Thus. the summation over the time realm is replaced 
by a summation over Prony series plus a recurrence 
relation. In certain cases however, eqn (17) can be 
used wherein the solution is required for less number 
of time steps. 

2.6 hlcomprtwihility considerutions 
The formulation is made applicable for nearly 

incompressible structures using a selective integration 
procedure, which is exact for the shear component 
and approximate for the bulk component of the 
elastic stiffness matrix. 

The elastic stiffness matrix [K,] of eqn (13) is 
written into two (shear and bulk) components[9] as 

[K,l = [K,'l + [K, 1 CO) 

16 0 I 
z 15 9 

"0 I5 8 _ 
x 
3 

157 

i 
15 6 L 

(a 

-0 919 

-0 915 

E 
-0 911 

E 

'-0906 

-0902 

-0.899 

I I I I I 
I2 3 4 5 

t (hrs) 
u-dlspiacement Ot 

x=300, )1:900 

I I I I I _ 
I2345 

t lhrsl t (hrsl 

cc 1 v-d~splocement at (0) v-dlspiOCement at 
x=300 x=150 
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for incompressible structures (v -0.5) the elements of 
[K,‘] tend to intinity and govern complete equi- 
librium. The contribution of the shear component 
[k’,] becomes insignificant. 

The software “VANIS” employs a selective inte- 
gration procedure, which is third order Gauss rule for 
[K,‘J and second order Gauss rule for [K,“]. intro- 
ducing numerical singularity into [K:‘]. This approach 
gives very accurate stresses/strains at second order 
Gauss points[7. 9. 201. 

3. NL'JlERICAL DISCLSSIO' 

The code “VANE” is tested on several problems. 
A few typical problems are reported in the present 
paper to demonstrate the bshaviour of the software. 
It gives very accurate results for all the permissible 
values of Poisson’s ratio. 

The bulk modulus k’is taken to be 110 Kg/mm’ for 
all the problems. Kilogram, millimetre and hour are 
the units used for the force. length and time rc- 
spectively. One hour time is divided into ten time 
steps for the analysis of the problems. 

3. 1 Plurw strain problem 
The geometrical and loading details are given in 

Fiv o. 2. In view of the symmetry, only quarter of the 

7 90 

z 
- 775 

“0 - 
x 
3 

7 70 

765 ‘i 
ib 

..l.i 
I I I I i 
, 2 3 4 5 

t (hrsl 
z-displacement at 

x=150, ys900 

Fig. 5. Displacement with time 
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structure is considered for the analysis and is divided 
into four plane strain finite elements. The applied 
stresses a,(t) and cry(f) are 0.01 Kg/mm2 and 
0.005 Kg/mm’ respectively for all the positive values 
of 1. 

The modulus of rigidity is taken to be 

G(t) = 0.002 + 0.098 e-i”. 

It is a constant stress problem. Strains vary with time 
(creep) but are constant with geometry. The closed 
form solution for the problem is 

U(S. 1) = 1.25341 x lo-‘t49.866960 - 48.866959 
x ,-O.Jl _ ,()-6e-l.49955rjx. 

(21) 

The results obtained using the present code along 
with the closed form (exact) solution are given in 
Table 1. It is seen from the Table 1, that the present 
software gives very accurate results for nearly incom- 
pressible structures (v(t) > 0.49955). It is also seen 
from the Table 1 that the Poisson’s ratio changes with 
time (as rigidity modulus is function of time and the 
bulk modulus is constant). 

3.2 Solid mass slump problem 
The propellant slump is a serious problem in solid 

propellant engineering. The material being visco- 
elastic in nature, the propellant grains stored for long 
time, undergo dimensional deviations due to their 
own weight.Normally the grains are supported by a 

casing. It is expected that the slumping can be 
minimised, by supporting the grain at the bottom. 
This problem is studied through a simple example of 
rectangular prism structure. Details of the structure 
and fern idealisation are given in Fig. 3. This problem 
is analysed using both the plane strain and 3-D finite 
elements. 

The material properties used are: 

G(t) = 0.022 + 0.03 e-“.z5r + 0.048 e-OS’ 
(density) = 1.8 x 10e6 Kg/mm’. 

The results are given in Figs. 4 and 5. Both the plane 
strain and 3-D idealisations gave identical results. It 
is seen from these figures that both the displacements 
and stresses have come down with the increased b/a 
(bottom support). Also, it is seen from Fig. 5 that the 
displacements increase with time (of course for all the 
support conditions). It is found that stress variation 
with time is very small. 

3.3 A typical rocket grain 
The geometrical details of the grain, considered for 

the analysis are given in Fig. 6. It is a long grain 
encased in a rigid sheath. It is analysed for a thermal 
shrinkage of 30°C (from 60 to 30°C). In view of the 
symmetry only quarter of the grain is considered for 
the analysis. Plane strain and 3-D idealisations are 
used and is divided into 24 elements. The active 
degrees of freedom are I44 and 338 for plane strain 
and 3-D idealisations respectively. Both the ideal- 
isations gave identical results. 

r=450.0-~r~u 
Fig. 6. Grain configuration (quarter section). 
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250 260 270 280 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 

r (mm) 

Fig. 7. Stresses and strains along P-P (I = 2.0 hr). 

The following material properties are used for the 
analysis. 

G(t) = 0.022 + 0.03 e-OS’ + 0.048 e-’ 

r = 0.00011 mm/mm”C 

c, = 8.0, cz = 150.0. 

The stresses and strains along P-P and Q-Q (Fig. 6) 
are given in Figs. 7 and 8 at t = 2.0. P-P and Q-Q 
are the lines joining 2 x 2 Gaussian points and are 
close to y and .x axes respectively. The displacements, 
stresses and strains at points A, B, C, D and E are 
given in Table 2 for various values of t. It is seen from 
the results that C and D are the stress concentration 
regions and the region E is compressively stressed. 

Aiso, it is observed from the results that a, and ci? 
represent (closely) hoop and radial stresses re- 
spectively. It is seen from Figs. 7 and 8 that the 
principal stress Ok (radial) approaches zero at the 
inner surface which is the condition that has to be 
satisfied at the free boundary, In Fig. 8 osciltation of 
az about zero is seen in the free boundary region 
owing to its small numerical values. Abo it is seen. 
for the larger values of r(r = I’m), u, is of the 
same order either along P-P or Q-Q indicating that 
the geometrical irregularities affect the stress distri- 
bution locally. The situation is the same with c2. 

The stresses build up with time (Table 2) until 
f = 2.0 and then relax, whereas the strains keep on 
building up leading to the strain failure for such 
materials and loading conditions. 

Fig. 8. Stresses and strains along Q-Q (I = 2.0). 
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Time 
Hrs. 

Table 2. Stresses and dispia~ments in rocket grain 

Displacements (mm) at o, x 1000 kg/mm? at oA strains at 
A B c c D 

c ” c D E 61 61 61 

I.0 1.925 2.503 5.655 5.339 - 0.305 - 1.514 0.877 - 1.881 
2.0 2.630 3.416 9.386 8.862 - 0.526 - 2.073 1.194 - 2.575 
3.0 2.894 3.762 8.420 7.949 - 0.452 - 2.285 1.315 - 2.840 
4.0 2.995 3.901 6.205 5.858 - 0.302 - 2.369 I.364 - 2.948 
5.0 3.034 3.960 4.558 4.304 - 0.193 - 2.405 1.386 - 2.994 

4. CONCLUSIONS 

The code “VANIS” presented in the paper is based 
on the linear uncoupled the~ovis~oelastic theory. 
The software is made useful for nearly incompressible 
structures through the use of a selective integration 
procedure. It gives very accurate results for all the 
permissible values of Poisson’s ratio. As it uses the 
displacement formulation it is versatile and eco- 
nomical. 

Practical analysis of rocket motor type structures 
needs incorporation of the stiffness of the casing and 
the bonding adhesive layer characteristics. These 
aspects are being incorporated by implementing 
two more elements, viscoelastic adhesive layer 
element[21,22] and a shell element [23] with 
isotropic/orthotropic properties in the code. 
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APPENDIX 

Elements of viscoelastic matrix [C] 
The elements of viscoelastic matrix [C] are 

C,i = -413 i=l,m 
C, = +2/3 
C,, 

i,j=l,m,i#j 
= -1 i=m+l,n 

m = 2, n = 3 for plane strain element 
m = 3, n = 4 for axisymmetric solid element. 
m = 3, n = 6 for 3-D element. 

All other elements of [C] matrix are zeros. 


