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Abstract—The finite element method is well established for the analysis of structures and other field
problems. However, its straightforward application for the analysis of nearly incompressible solids yields
erratic results. In the present work, an efficient special purpose code for the Viscoelastic Analysis of Nearly
Incompressible Solids (VANIS) is developed using isoparametric elements with selective integration pro-
cedure, which is a third order Gauss rule for deviatoric response and second order Gauss rule for volumetric
response. The software can be effectively employed for the structures with lower Poisson’s ratios. VANIS
is based on the direct formulation using linear uncoupled thermoviscoelastic theory for the thermorheolog-
ically simple materials. The element library consists of 8-noded plane strain, 8-noded axisymmetric solid and
20-noded three dimensional quadratic isoparametric elements. These elements meet all the possible structural
idealisation requirements of the solid continua. Experimentally obtained rigidity modulus can be used directly
or expressing it in Prony series. The software is tested on a number of problems and gives very accurate
results for all the permissible values of the Poisson's ratio.

0045-7949/85  $3.00 - .00
Pergamon Press Lid.

1. INTRODUCTION

Solid propellant rocket fuels are incompressible or
nearly incompressible (Poisson’s ratio approaching
one half) viscoelastic solids. Also, the mechanical
properties of these materials are highly temperature
dependent. Such is the situation with the other poly-
meric solids and polymers. Metals in the plastic
region and soils in the saturated condition also have
higher Poisson’s ratios. Application of the usual finite
element method for the analysis of such solids yields
severely oscillating stresses/strains across elements.

In the present work a simple and efficient special
purpose code for the Viscoelastic Analysis of Nearly
Incompressible Solids (VANIS) is developed using
the plane strain, axisymmetric solid and 3-D qudratic
isoparametric elements. Selective integration pro-
cedure is employed for computing the element
stiffness matrices.

Thermal effects are incorporated through the use
of the shifted time hypothesis. The viscoelastic for-
mulation is presented in Section 2 and the per-
formance of the software is discussed in Section 3. It
is seen from the results that the software is a very
useful code for the analysis of incompressible solid
continua. Also, the software can be effectively used
for the analysis of compressible structures through
the use of a control parameter, which changes the
computational flow from the selective integration to
a third order Gauss rule for the computation of both
the deviatoric and volumetric components of the
stiffness matrix.
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1.1 Incompressibility

It is well known that the straightforward applica-
tion of the displacement method to nearly incom-
pressible structures yields erratic displacements and
severely oscillating stresses about the exact solution
and across the elements. This aspect has been studied
for elastic materials and is well documented in
literature[1-10]. The remedies suggested in literature
to overcome the difficulties are the use of: (i) refined
meshes, (ii) reduced Poisson’s ratio, (iii) alternate
formulations, such as the stress hybrid approach and
the formulation based on Herrmann's (Semi-
Reissner’s) variational principle, and (iv) reduced
integration for the troublesome portion of the strain
energy. The proposition of mesh refinement[3] needs
number of elements and yields doubtful results and
therefore is not advisable. The results obtained using
the reduced Poisson’s ratio have to be extrapolated so
as to obtain the results corresponding to the required
Poisson’s ratio[4, 5]. There are no systematic meth-
ods of extrapolation of results as of now. Previous
experience or engineering intuition could provide
hints to the juditious extrapolation. Improved results
are obtained using Herrmann’s variational
formulation[1, 2] for incompressible structures. In
this procedure simultaneous minimization of strain
energy with respect to displacements and pressure
variable is done. Stress hybrid formulation of Pian
and Tong[6] also gave good results. Use of the
reduced integration is versatile and is an economical
approach[7-9]. Moreover, it is shown in literature
[10] that Herrmann’s formulation is identical to the
displacement method with underintegration of cer-
tain troublesome portions of the strain energy.
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1.2 Viscoelusticity

The viscoelastic analysis techniques may broadly
be classified into three basic approaches, viz. (i)
quasi-elastic solutions. (i) integral transform tech-
niques. and (itl) direct methods. Quasi-elastic solu-
tion uses elastic properties equivalent to the corre-
sponding viscoelastic properties at the desired time
and temperature. This approach essentially ignores
the entire past history of loading and environment
and theretore yields gross approximation to the true
response. Integral transform technique{i!] is based
on the correspondence principle. in which using the
elastic solution, the corresponding viscoelastic solu-
tion 1s obtained using the Laplace transform tech-
nique. This approach is exact for which closed form
solutions are possible and approximate Laplace
transform inversion has to be employed for the
problems with the numerical elastic solutions{12].
Further, the transform technique is not directly appli-
cable for the problems of non-homogeneous transient
temperature distributions. To circumvent these prob-
lems, conditions of constant temperature over time
increments are imposed and the correspondence prin-
ciple is applied on an incremental basis{13]. The
direct formulations are based on the finite element
theory using either the differential form {14, 15] or the
integral form([16, 17] of stress-strain relationships.

1.3 The software "VANIS®

The special purpose code, VANIS 1s developed
for the linear analysis of nearly incompressible
viscoelastic solid continua. The software can be
effectively employed for the structures with lower
Potsson’s ratio. It is based on the direct formulation
using hereditary integral (linear) stress-strain re-
lationships. Further, it is assumed in the formulation
that: (1) reduced time hypothesis is valid (thermo-
rheologically simple material), (i) bulk modulus is
constant with time, and (iii) the material is isotropic

(i) Plone strain element

and homogencous. The element library consists of
8-noded plane strain, 8-noded axisymmetric solid and
20-noded three dimensional solid quadratic iso-
parametric elements. The elements meet all the possi-
ble structural idealisation requirements of the solid
continua.

Software uses a selective integration procedure,
which is the third order Gauss rule for deviatoric
response and the second order Gauss rule for volu-
metric response. Storage of large amount of memory
load information is avoided using the recurrence
relation developed expressing the relaxation modulus
in Prony series. Only the two immediate previous
load vectors are required to be stored in memory.
Also. it must be noted that, in the present formu-
lation, the experimentally obtained modulus can be
used either directly or by expressing it in Prony series
and therefore, the problem of looking for realistic
material models is avoided, which has been always a
problem in the integral transform techniques.

The software is tested on a number of problems.
The results obtained agree well with the already
published ones.

2. VISCOELASTIC FORMULATION

The element details of the three quadratic iso-
parametric finite elements available in “VANIS™ are
given in Fig. | and are also available in Ref. [9]. The
present software uses the linear uncoupled thermo-
viscoelastic formulation[16. 17] and is based on the
following assumptions

(1) the stress strain relation is a hereditary integral
expression,

(i) the bulk modulus is constant with time,

(iti) the reduced time hypothesis is valid,

(iv) the material is isotropic and homogeneous.
The thermoviscoelastic formulation is briefly dis-
cussed in the present section.

{ii) Axisymmetric sold element
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2.1 Stress—strain relation

The thermoviscoelastic constitutive relation[18]
with constant bulk modulus K and constant linear
co-efficient of thermal expansion 2 is

(X, 1)=260)/X, 1)
~2 J[ 06E =) (2. 1yar

o+ ct

+ 5,,-[1( - % G(O)}M(X, 1)

2{* 8G{x —1")
6n~ bl S jt tr d I
+ l,3L* G X, 1) dt

~8,3aK[T(X, )~ T(X,001 ()
where T(X, 1) is the current temperature; T(X,0) is
the structural reference temperature; and G(t) is the
shear relaxation modulus given for an arbitrary *‘ma-
terial” reference temperature, T,. The shifted time ¢
is related to real time ¢ through the relation

¢ ds’
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where Ay is shift function and is evaluated using the
so called WLF equation[19] as
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where C; and C, are material constants.
Writing eqn (1) in matrix notation, we have
{o(X,0)} = {D}{e(f, n}+ [C1¥{e(X, n}

= 3aK[T(X, 1) - T(X, O/} (5)

where

aG{t —1")

Fle(X, 0} = J'o LDk par @

[D] is the usual elasticity matrix; and [C] is the
viscoelasticity matrix and is given in appendix for the
three elements. {o(X, 1)}, {¢(X, 1)} are the stress and
strain vectors and are

for plane strain element

(X, 1)) =(0,0,0,,)
<€(‘Y’ t)> = <€x€y61y>

for axisymmetric solid element,

(e(X, 1)) = {0,0,00,,)
<€ (/?’ ()> h <€x5y£9€xy>

and for 3-dimensional solid element,

(o(X, 1)) ={0,0,6.,,0,6..)
(X, 1)) = (e8,6.£,,£,6.,)-
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It is seen from eqn (5) that the second component in
the right hand side is due to the viscoelastic property
of the material.

2.2 Strain-displacement relation
The geometry {X'} and the displacement field {U}
in the isoparametric elements is given by

(X} = [N){x}
{U} =N){q}

where [N] is matrix of shape functions and {x,} and
{4} are the nodal co-ordinates and nodal displace-
ments.

Strain-displacement relation, after appropriate
differentiation of shape functions is written in matrix
notation as

M

{e} =(Bl{q} (®)

the bar and suffix { of g are dropped for convenience.
The shape functions are explicit functions of local
co-ordinates. Strain quantities need differentiation of
shape functions with respect to global co-ordinates
and is done through a transformation[9] using
Jacobian matrix [J].

2.3 Elemental equations
The elemental equations are derived using the
principle of virtual displacements

J‘q {J' 8¢(X, e (X, )dv —j SUTX, OF (X, 1) dv

—J SUT(X, )F(X, t)ds} de %)

where F(X, t) is the prescribed body force vector;
F(X,1) is the prescribed surface tractions on the
boundary s, and U(X, 1) are the virtual displace-
ments. Substituting eqns (5), (7) and (8) into eqn (9)
we get

£ :2 bq}'U B™DB dv{q} + f BC (e} dv
+J: N'{p}ds + ’[ NT{p}dv

~J 3aK(T — zj)BTdu{J}] dt (10)

where {p} is the surface traction vector per unit
surface area; and {g} is the body force vector per unit
volume. The elemental equations are obtained con-
sid)ering the stationarity of the potential energy (eqn
10) as

ﬁBTDB dv{q}+£BTCY{e}dv+£NT{p}ds

+j NT{o} dv — 32K (T — T,)J BT{J} dv = {0}.
v v (ll)

It ig seen from eqn (11) that the second term is the
additional term and is due to viscoelastic property of
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Fig. 2. Plane strain problem.

the material. Using the trapezoidal rule for time
domain and using eqn (8), this term is rewritten for
kth time step as

1
J B'C&{e}dv = 7 [G(0) — Gt — w - DI (1)}
1

+{G0) — G~ 74 x)][Kzl{‘I(’k— 1)}

[T

k-2
+ (K] ; (G — 1.0 =G —i{g*)} (12)
where

{q*(tj)} = 0-5[{‘7(’,)} + {‘7(’,‘+ 1)}]
(K} =j BTCB dv

v

substituting eqn (12) into eqn (11) we get the elemen-
tal equilibrium equation as:

[ t€1+ 5160~ 6=tk [ige)

= {P(’k)} + {H(’k)} + {M(’k)} (13)

where

(K] :J BDB dv

N{p}ds + jNT{Q}dU

v

{P(d} =f

5

[H(t)} = = 32K (T ~ TI)J B{J}dv

l
(M(t)} = ~(K2)(5(60) ~ Glre ~ r-Hatte- 1}

[
= Y G(u—5. )= G- r,-)l{q*u,))-

j=1
(14)

Nodal displacements {g(z,)] at kth time step are
obtained by solving the eqn (13).

2.4 Stresses and strains

After obtaining {g(z,)}, the strains at the required
location are obtained using eqn (8).

The stresses are then computed using the strains
evaluated as

{U(fk)}' = [Sl]{f(’k)} + 1 2} — 3aK(T, — Ts){J} (15)

where
[$1=1D1+3(600) - 6z~ IC]

k-2
{Sz} - [C][B](Z (Gt —~ Tiv ) =Gt — Tj)]{q*(l,)}

{

"3

[G(O)_G(fk“fk—\)]{‘l([kAl)}> (16)

T, is the temperature of the structure at the Ath time
step and 7, is the structural reference temperature.

5

2.5 Memory load considerations

The memory load {M(zy)} is the summation of
(k —2) load vectors to be stored in memory or
backup storage. The large amount of information
thus to be stored can easily exceed the available core

Table 1. Strains in plane strain problem

t €, €, v(t) B
hrs. Exact FEM FEM
0.0 0.0125341 _ 0.0125340 —0.0124659 0.4995456
1.0 0.0306363 0.0306385 —0.0305347 0.4998915
2.0 0.0482035 0.0481386 — 0.0480704 0.4999687
3.0 0.0652515 0.0651570 — 0.0650888 0.4999859
4.0 0.0817957 0.0816735 —0.0816052 0.4999898
5.0 0.0978509 0.0977026 —0.0976344 0.4999906

0.1712484 —
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memory of a digital computer or computation will
become costly for large 7, when the backup storage is
used, as the large amount of data has to be read into
core and transferred back to peripherals several
times. Storing of such a large amount of data is
eliminated using a recurrence relation obtained by
expressing the relaxation modulus in Prony series.
Only set of quantities from the two previous time
steps have to be retained.

The relaxation modulus in Prony series is written
as

G(r)=dy+ Y, Aje=h (1n

i=1

where Ay, A; and B, are the material constants.
Equation (17) amounts to a representation of the
relaxation modulus by either a generalised Maxwell
or a generalised Kelvin model[19].

The expression for the memory load {M (1)} (eqn
14) is rewritten, using eqn (17) as

{M(’k)} = - [Kz](i Ai{.ui,k} + % [G(O) — 4

_ i A,'e‘('k-fk_')/ﬁl]{q(tk‘l)}> (18)
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Fig. 4. Displacements and stresses in solid mass stump problem at ¢ = 0.0.
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In eqn (19) the {u, }. {x..} are null vectors and
sl =e 7P e 7m0 — 1){q(0)).

Thus, the summation over the time realm is replaced
by a summation over Prony series plus a recurrence
relation. In certain cases however, eqn (17) can be
used wherein the solution is required for less number
of time steps.

2.6 Incompressibility considerations

The formulation is made applicable for nearly
incompressible structures using a selective integration
procedure, which is exact for the shear component
and approximate for the bulk component of the
elastic stiffness matrix.

The elastic stiffness matrix [K|] of eqn (13) is
written into two (shear and bulk) components[9] as

[Kl] :[K”JF[KIF] (20)

160 t—
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for incompressible structures (v —0.5) the elements of
[Ki‘] tend to infinity and govern complete equi-
librium. The contribution of the shear component
[K}"] becomes insignificant.

The software "VANIS™ employs a selective inte-
gration procedure, which is third order Gauss rule for
[K] and second order Gauss rule for [K,'], intro-
ducing numerical singularity into [K°}. This approach
gives very accurate stresses/strains at second order
Gauss points[7, 9, 20].

3. NUMERICAL DISCUSSION

The code "VANIS™ is tested on several problems.
A few typical problems are reported in the present
paper to demonstrate the behaviour of the software.
It gives very accurate results for all the permissible
values of Poisson’s ratio.

The bulk modulus K is taken to be 110 Kg/mm- for
all the problems. Kilogram, millimetre and hour are
the units used for the force, length and time re-
spectively. One hour time is divided into ten time
steps for the analysis of the problems.

3.1 Plane strain problem
The geometrical and loading details are given in

Fig. 2. In view of the symmetry, only quarter of the
[
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x=150, y=900
-0 704
-0 700
E
g -0696
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-0692

-0.688
t {hrs}
(g} v-displtocement at
x=150

Fig. 5. Displacement with time.
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structure is considered for the analysis and is divided
into four plane strain finite elements. The applied
stresses o.(t) and o,(t) are 0.01 Kg/mm? and
0.005 Kg/mm?® respectively for all the positive values
of 1.

The modulus of rigidity is taken to be

G(t)=0.002 + 0.098 e~ .

It is a constant stress problem. Strains vary with time
(creep) but are constant with geometry. The closed
form solution for the problem is

u(x, 1) = 1.25341 x 10~*(49.866960 — 48.866959

X e—O.St__ 10-66-1_49955t]x' (21)

The results obtained using the present code along
with the closed form (exact) solution are given in
Table 1. It is seen from the Table 1, that the present
software gives very accurate results for nearly incom-
pressible structures (v(r) > 0.49955). It is also seen
from the Table | that the Poisson’s ratio changes with
time (as rigidity modulus is function of time and the
bulk modulus is constant).

3.2 Solid mass slump problem

The propellant slump is a serious problem in solid
propellant engineering. The material being visco-
elastic in nature, the propellant grains stored for long
time, undergo dimensional deviations due to their
own weight. Normally the grains are supported by a

t—0—0—0—0—0—0—0—o—+

P

41

casing. It is expected that the slumping can be
minimised, by supporting the grain at the bottom.
This problem is studied through a simple example of
rectangular prism structure. Details of the structure
and fem idealisation are given in Fig. 3. This problem
is analysed using both the plane strain and 3-D finite
elements.
The material properties used are:

G(t)=0.022 +0.03 e~ +0.048 e 0>
(density) = 1.8 x 10~ % Kg/mm’.

The results are given in Figs. 4 and 5. Both the plane
strain and 3-D idealisations gave identical results. It
is seen from these figures that both the displacements
and stresses have come down with the increased b/a
(bottom support). Also, it is seen from Fig. 5 that the
displacements increase with time (of course for all the
support conditions). It is found that stress variation
with time is very small.

3.3 A typical rocket grain

The geometrical details of the grain, considered for
the analysis are given in Fig. 6. It is a long grain
encased in a rigid sheath. It is analysed for a thermal
shrinkage of 30°C (from 60 to 30°C). In view of the
symmetry only quarter of the grain is considered for
the analysis. Plane strain and 3-D idealisations are
used and is divided into 24 elements. The active
degrees of freedom are 144 and 338 for plane strain
and 3-D idealisations respectively. Both the ideal-
isations gave identical results.

i
A Q
= & —0 e P Py .
L Ix, u
f r=450.0 -

Fig. 6. Grain configuration (quarter section).
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The following material properties are used for the
analysis.

G(t)=0.022+0.03e %" +0.048 e
x = 0.00011 mm/mm°C
C;=80,C,=1500.

The stresses and strains along P—P and Q-0 (Fig. 6)
are given in Figs. 7and 8 at t =2.0. P-P and g-Q
are the lines joining 2 x 2 Gaussian points and are
close to y and x axes respectively. The displacements,
stresses and strains at points 4, B, C, D and £ are
given in Table 2 for various values of ¢. It is seen from
the results that C and D are the stress concentration
regions and the region £ is compressively stressed.

Also, it is observed from the results that o, and o,
represent {closely) hoop and radial stresses re-
spectively. It is seen from Figs. 7 and 8 that the
principal stress o, (radial) approaches zero at the
inner surface which is the condition that has to be
satisfied at the free boundary. In Fig. 8 oscillation of
o, about zero is seen in the free boundary region
owing to its small numerical values. Also it is seen,
for the larger values of r(r = V& + y2), o, is of the
same order either along P~£ or @ indicating that
the geometrical irregularities affect the stress distr-
bution locally. The situation is the same with o3,

The stresses build up with time (Table 2) until
t = 2.0 and then relax, whereas the strains keep on
building up leading to the strain failure for such
materials and loading conditions.

Ty
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Fig. 8. Stresses and strains along Q-0 (r =2.0).
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Table 2. Stresses and displacements in rocket grain

Time Displacements (mm) at ¢, x 1000 kg/mm? at % strains at
Hrs. C C D

v u C D E € € €
1.0 1.925 2.503 5.655  5.339 —0.305 - 1.514 0877 — 1.881
20 2.630 3.416 9.386  B.862 —0.526 -2.073 1194 - 2575
30 2.8%4 3.762 8.420 7.949 —0.452 — 2.285 1.315 —2.840
4.0 2.995 3.901 6205  5.858 —-0302 -—236% 1364 —2.948
5.0 3.034 3.960 4.558 4304 —0.193 —2405 1.386 - 2.994

4. CONCLUSIONS

The code “VANIS” presented in the paper is based
on the linear uncoupled thermoviscoelastic theory.
The software is made useful for nearly incompressible
structures through the use of a selective integration
procedure. [t gives very accurate results for all the
permissible values of Poisson’s ratio. As it uses the
displacement formulation it is versatile and eco-
nomical.

Practical analysis of rocket motor type structures
needs incorporation of the stiffness of the casing and
the bonding adhesive layer characteristics. These
aspects are being incorporated by implementing
two more elements, viscoelastic adhesive layer
element{21,22] and a shell element{23] with
isotropic/orthotropic properties in the code.
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APPENDIX

Elements of viscoelastic matrix [C}]
The elements of viscoelastic matrix [C] are

Ci = —4/3 i=i,m
G = +2/3 Lj=lmi#j
i =—1 i=m+1,n

2, n =3 for plane strain element

3, n =4 for axisymmetric solid element.
3, n =6 for 3-D element.

All other elements of [C] matrix are zeros.
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