

SYNTHESIS OF 7-HYDROXY-3-[(4-METHYL-2-OXO-2H-1-BENZOPYRAN-7-YL-OXY) METHYL]-8-UNDECYL-6H-4, 1,2-BENZOXADIAZIN-6-ONE

V. Rajeswar Rao*, G. Mohan Rao and V. Ravi Kumar

Department of Chemistry, Regional Engineering College, Warangal-506 004
and

T. V. Padmanabha Rao and P. Ravinder

Department of Chemistry, Kakatiya University, Warangal-506 009

Received 14 Oct. 1995; Accepted 9 March 1996

Embelin (I) was condensed with 4-methyl-7-coumarinyloxyacetic acid hydrazide (II) in abs ethanol to give 7-hydroxy-3-[(4-methyl-2-oxo-1-2H-1-benzopyran-7-yl)oxymethyl]-8-undecyl-6H-4, 1,2-benzoxadiazin-6-one. (III), which on further condensation with aromatic primary amines, acid hydrazides and orthophenylenediamines gave Schiff's bases (IV) and oxadiazinophenazines (V).

In continuation of our earlier work on embelin (I)¹⁻³, we are now reporting the synthesis of 7-hydroxy-3-[(4-methyl-2-oxo-2*H*-1-benzopyran-7-yl)-oxy]methyl-6*H*-4, 1,2-benzoxadiazin-6-one (III) and its derivatives (IV & V).

Embelin on heating with coumarinyloxyacetic acid hydrazide (II) in anhyd ethanol afforded compound (III), which on condensation with aromatic primary amines and acid hydrazides gave the corresponding Schiff's bases (IV) and with orthophenylenediamines the oxadiazinophenazines (V). All the assigned structures were confirmed by their analytical, IR and PMR spectral data.

Experimental

Melting points are uncorrected. Purity of the compounds was checked by TLC. IR spectra were recorded on Perkin-Elmer model-283 and PMR spectra on a Varian 60 MHz spectrophotometer using TMS as internal standard (Chemical shifts in δ ppm).

Preparation of III

Embelin (2.94 g, 0.01 mol) in dry ethanol (30 ml) was treated with (II) (0.01 mol) and the reaction mixture was refluxed for 3 hr on a steam bath. On cooling a shining yellow solid separated out, which was filtered off and purified by crystallization from acetone.

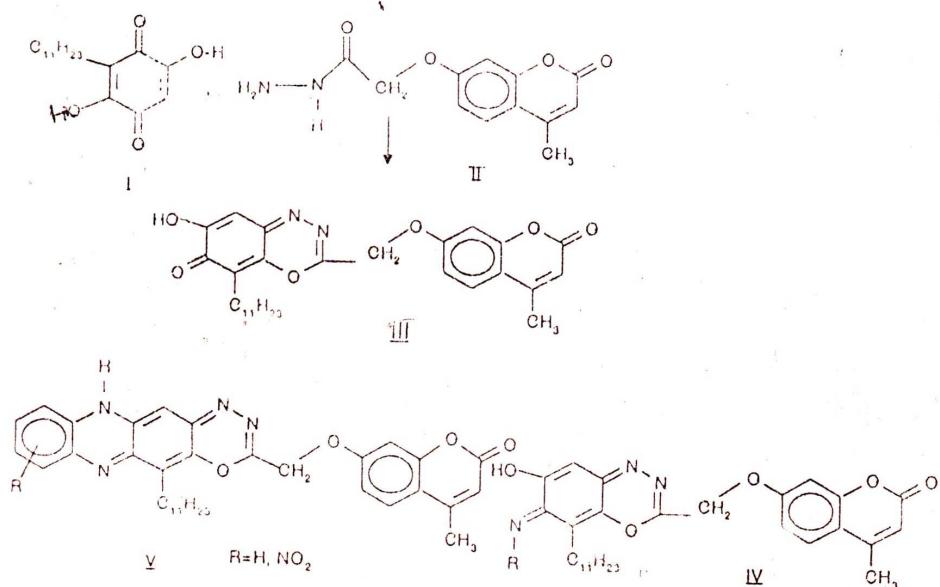


Table-1
Physical and analytical data of compounds III, IV and V

Compd	R	M.P. (°C)	Crystallisation sol.	Mol formula	Yield (%)	Found/(Calcd) N
III		195-195	EtOH	C ₂₉ H ₃₄ N ₂ O ₆	86	5.49 (5.53)
IVa	phenyl	130-197	EtOH	C ₃₅ H ₃₉ N ₃ O ₅	80	7.11 (7.16)
IVb	p-methoxyph	110-112	EtOH	C ₃₆ H ₄₁ N ₃ O ₆	88	6.85 (6.87)
Va	H	115-147	AcOH	C ₃₅ H ₃₈ N ₄ O ₄	8	9.66 (9.69)
Vb	NO ₂ (5)	205-207	AcOH	C ₃₅ H ₃₇ N ₅ O ₆	78	11.21 (11.23)
IVc	C ₆ H ₅ CONH-	170-172	EtOH	C ₃₆ H ₄₀ N ₄ O ₆	70	8.95 (8.97)
IVd	p-C ₆ H ₄ CONH	180-182	AcOH	C ₃₆ H ₃₉ CIN ₄ O ₆	74	8.43 (8.50)
IVe	p-NO ₂ C ₆ H ₄ CONH	185-187	EtOH	C ₃₆ H ₃₉ N ₅ O ₈	76	10.36 (10.46)
IVf	m-NO ₂ C ₆ H ₄ CONH	175-177	EtOH	C ₃₆ H ₃₉ N ₅ O ₈	75	10.36 (10.46)

IR : 1600 (-C=N-), 1730 (lactone carbonyl), 1590 (quinone carbonyl) and 3220 (-OH). PMR (CDCl₃ + DMSO-d₆): 0.9 (t, 3H, methyl), 1.1-1.4 (m, 18H, alkyl chain), 1.7-2.2 (t, 2H, alkylic-CH₂-), 2.4 (s, 3H, coumarin C₄ CH₃), 4.8 (s, 2H, -CH₂-O-), 5.4 (s, 1H, vinylic), 6.2 (s, 1H, coumarin C₃-H) and 7.0-7.7 (m, 3H, ArH).

Preparation of IV

To a solution of III (0.005 mol) in acetic acid (15 ml) was added appropriate aromatic primary amine (0.005 mol) or aromatic acid hydrazide (0.005 mol) and refluxed for 3 hr. The reaction mixture was cooled and crushed ice added. The separated solid was crystallized from ethanol. IVa, IR : 1600 (C=N), 1710 (lactone C=O), 1590 (quinonoid C=O), 3220 (-OH). PMR (CDCl₃): 0.9 (t, 3H, CH₃), 1.5 (m, 18H, alkyl side chain), 3.0 (t, 2H, alkylic), 2.5 (s, 3H, coumarin C₄-methyl), 5.3 (s, 1H vinylic), 4.7 (s, 2H, CH₂-O-), 6.1 (s, 1H, coumarin C₃-H), 7.0 to 7.6 (m, 8H, aromatic). IVc, IR: 1600 (C=N), 1670 (CONH), 1720 (lactone C=O), 3230 (-OH, br); PMR (CDCl₃): 0.9 (t, 3H, CH₃), 1.24 (m, 18H alkyl side chain), 3.0 (t, 2H, allylic), 2.4 (s, 3H, coumarin CMe), 4.8 (s, 2H, OCH₂), 6.1 (s, 1H,

coumarin, C₃-H), 6.8 (-NH-, 1H), 7.2-7.6 (m, 8H, Ar-H).

Preparation of Va

To a solution of III (0.005 mol) in acetic acid (15 ml) was added o-phenylene diamine (0.005 mol) and refluxed for 3 hr. The reaction mixture was cooled and diluted with crushed ice. The separated reddish solid was purified by crystallisation from ethanol. IR : Va, 1600 (-C=N), 1710 (lactone C=O), and 3300 (-NH). PMR (CDCl₃): 0.9 (t, 3H, CH₃), 1.20 (m, 18H, alkyl side chain), 2.2 (t, 2H, alkylic, vinyl), 3.2 (b, s, 1H, NH), 2.4 (s, 3H, C₄ methyl coumarin), 4.8 (s, 2H, -CH₂-O), 5.4 (s, 1H, vinylic), 6.2 (s, 1H, vinylic), 6.2 (s, 1H, coumarin C₃-H), and 7.0-7.7 (m, 7H, ArH).

References

1. Y.V.D. Nageswar and T.V. Padmanabha Rao, *Indian J. Chem.*, 18B (1979), 559.
2. Y. V. D. Nageswar and T.V. Padmanabha Rao, *Indian J. Chem.*, 19B (1980), 524.
3. D. Venkat Rao, V.V. Ramana Rao, T.V. Padmanabha Rao Y.V.D. Nageswar, *Sulfur Letters*, 8 (1989), 309.