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Abstract--A mathematical model is presented to study the motion of the spermatozoa in the cervical canal 
by considering the transverse waves along its tail and the transverse and longitudinal motions of the cervical 
wall. In an attempt to control fertility by reducing the speeed of sperm, the transverse waves have been 
considered in the direction opposite to the motion of the spermatozoa. It has been shown that by having 
appropriate transverse wave motion and longitudinal velocity, the sperm may not be able to move towards 
the oviduct even if it could continue to have its own propelling velocity. 

A particular case of the motion of a thin plane sheet in a channel under peristaltic motion of its walls has 
also been obtained and studied. 

lNTRODUCTlON 

The study of swimming of micro-organisms was ini- 

tiated by Taylor (1951) who modelled it as a two 

dimensional, infinite extensible sheet of zero thickness 

with a sinusoidal wave travelling down its length. 
Hancock (1953) studied the propulsion of a thin 
circular filament through a cylindrical tube for several 
wave amplitudes and radii of the tube. Further studies 
were conducted for small wave amplitudes and long 
wave lengths approximation by Gray and Hancock 

(1955), Reynolds (1965), Shack and Lardner (1974), 
Shack et al. (!974), Lighthill (1976) and others. At- 
tempts were also made to explain the motion of 
spermatozoa in the female genital tract by considering 
the dynamical interaction of the wall (Smelser et al., 
1974; Shukla et (I/.. 1978). Blake et al. (1983) presented 
a theoretical model of ovum transport in the oviduct 

incorporating transport mechanisms due to ciliary 
and muscular activity of the wall by adding a force 
distribution term in the equation of motion. The 
motion due to ciliary and muscular activity can also 

be represented by a combination of peristaltic waves 
(Barton and Raynor, 1968; Shapiro et al., 1969; Shack 
and Lardner, 1972; Guha er al., 1975: Gupta and 

Seshadri, 1976; Shukla et a/., 1980) and longitudinal 
waves (Macagno et al., 1975; Melville and Denli, 1979) 
along the walls. 

It may be noted here that the effect of peristalsis on 
the motion of spermatozoa has not been studied by 
any of the earlier authors. In this paper, therefore, we 

present a mathematical model to study the motion of 
self propelling micro-organisms when the wall of the 
channel is undergoing peristaltic and longitudinal 
wave motion. 

The main aim of the study is to apply the analysis to 

fertility control by reducing the speed of spermatozoa 
in the female genital tract. Analysis presented here, 
suggests that if the peristaltic waves are induced in the 
direction opposite to motion of the spermatozoa by 
some biochemical or other means, it may be possible 

to reduce the speed of spermatozoa to such an extent 
that they may not be able to reach the point of 
fertilization. 

The other aim of this paper is to study the motion of 
a thin sheet in a channel when travelling peristaltic 
waves are imposed on the walls of the channel. 

MATHEMATICAL MODEL 

Consider the swimming of a thin propelling sheet In 

a Newtonian incompressible fluid flowing through a 
two-dimensional channel having flexible boundaries. 
It is assumed that the sheet, while swimming, sends 
down lateral waves of finite amplitude along its length. 
Further, peristaltic waves of finite amplitude are im- 
posed along the flexible walls of the channel in the 
direction opposite to the motion of the sheet as shown 
in Fig. 1. The sheet is considered to be swimming with 
a propulsive velocity Vb in the negative axial direction. 
It is assumed that the waves travelling along the 
channel walls and along the sheet are in synchroniz- 
ation under steady state and thus have the same wave 
speed C (along positive axial direction) and wave- 
length i. In a fixed frame of reference (X’. I”. r’~ the 
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Fig. I. Propagation of an elastic sheet swimming through a 

two-dimenslonal channel with peristaltic and longrtudmal 

motion of walls. 

shapes of the walls and the sheet at an instant I’ are 

given by, 

H;(X’,t’)=a+h, sine(X’-Cr.+ V;t’) 
i 

(1) 

H;(X’, t’)= -n+b,sinz(X’-Ct’+ Q’) 
i 

12) 

H’,(X’, I’)=b,sinz(X’-Q+ Vbr’) (3) 
A 

where b,, h, are the amplitudes of the peristaltic waves 
travelling along the upper wall and the lower wall 
respectively, 20 is the width of the channel and b, is the 

amplitude of the lateral wave along the sheet. 
Since the Reynolds number invoived in the swim- 

ming of a microorganism is of the order of lo-‘. the 

governing equations for fluid flow can be written, after 
neglecting the inertia terms, as follows 

14) 

au,* ?v,* 

~ ----zo 
ax' + a~’ 

(6) 

where U’, V’ are the velocity components along the X’ 
and Y directions respectively, p’ is the pressure. 14 is 
the viscosity of the fluid and (i-) refer to various 

quantities in the regions (Hb< Y’<H’,) and 
(H; < Y’ < Hb) respectively. 

Taking into account the longitudinal motility of the 
walls, the boundary conditions are 

u’+(X’,t’)= G;(x'-cr+ vbr’, 1 

V’(X’, t’) = 
aH; 

dt’ ! at Y’ = H; (X’. f’) 

171 

C”-(X’,f)= G>(X’-Ct’+v;r’)~ 
. , 

V’ _(X’, f) - cH2 
at’ i 

at Y’= H>(X’, r’) 

(8) 

U”(X’, t’) = U’_(X’, t’)= - VP ) 

_I I 

v+(x’,t’)= vyX’,t’)=$ i 
at Y’= Hb(X’, t’) 

(9) 

where G; and G; represent the total longitudinal 

velocity of the walls. 
Further the sheet is self-propelling and the forces 

exerted by the fluid on it must balance for its motion 
with a constant velocity, i.e. 

s (T+ + T)dS=O (10) 
5 

where T’ and ir- are the resultant of forces acting on 

the upper and lower surfaces of the sheet respectively 
and S is the surface area of the micro-organism. 

In a frame (x’, y’, t’) moving with velocity C - VP in 
the positive axial direction, the sheet and the walls of 
the channel appear stationary and the flow in this 
moving frame will be steady. 

Using the following transformation 

x,=X’-Cc’+ VP”; y’= Y (11) 

and introducing the following dimensionless quanti- 
ties 

X = X’/l, y = y’fa, t = Ct’li, 

pzp’ E$, I !Ca v*=y= - 
i 

(ll** vflY gi)=(“‘*, Vi, Gi)/C, i= 1, 2 

hi=H;/a, Ei=bi/a, i=O, 1, 2. 

Equations (4,5, and 6) under long wavelength ap- 
proximation (a/i 4 l), get reduced to 

w aZuf -~ +- 
ax ay2 

=o 

ap* 
-0 --_ 

ay 

ad ad 
dx+-=O. ay 

(12) 

(13) 

(14) 

The boundary conditions for u are written in dimen- 
sionless form as 

u +=V,+g,(x)-l=U,; y=h,(x) 

U- = ~,+g,(x)--l=U2; .r=h2(x) (15) 
U +cu-=__l; y=h,(x) i 

where 

h,(x) = E,sin 2nx 

h,(x)=l+e,sin2xx 
I 

i h,(u)= - 1 t~~sin2n.x : 
(15a) 
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Further using the stress-strain relationship and 
using long wavelength approximation, the force equi- 
librium condition (10) can be written as 

(16) 

1 su I([ 1 dho 
T Y=hO(‘)+dx[p’ dx = O (17) 

0 cy 

where [f] indicates the difference in the quantity f 
above and below the sheet. 

MATHEMATICAL ANALYSIS 

The differential equation (12) is solved with bound- 
ary conditions (15) to obtain the velocities u+ and u- 
in the regions (h,<y<h,) and (h,Cy<h,) respect- 
ively, which are given as follows 

U ty2--,y-ho.v+h~h,) 

+” (y-4,) (h, -A -___ 
‘6 -ho) (h, -ho) 

+u h-ho) (4-Y) ___- 
%,-ho) (h,-ho)’ 

(18) 

(19) 

The dimensionless flow flux q* (=q”/aC) in the 
moving frame can be obtained as 

hl ho 
q+ = 

i 
u’dy and q-= 

J 
u-dy 

ho hl 

which on using equations (18) and (19) gives 

(h,-ho)3+$(hI-ho)(UI-l) (20) 

(ho-h,)3+$(ho-h,)(Uz-l). (21) 

TO obtain the pressure gradients api/&, the equa- 

Integrating the equation of continuity (14), it can be 

seen that the two fluxes q* are constants. Further it is 
evident that Ap, the pressure rise over a wavelength is 
same for the two regions. 

Integrating equations (22) and (23) over a wave- 
length, we get the following two relations among the 
three unknown quantities VP, q+ and q- 

-12q+1,,+6VP1,2+61,3-121,~=Ap (24) 

- 12q- I,, +6V,,1,,+61,,- 121,,=Ap. (25) 

Using the expressions (18), (19) and (22), (23) for u ’ 
and c?p*/dx, the force equilibrium condition (17) pro- 
vides us with the third relationship necessary to 
determine VP, q+ and q- as 

12qfI,,-12q-f,,+2V,I,,+2(I,,+1,,)-121,, 

=2Ap (26) 

where 

s 

L dx 

OS; 

i=l, 2 

and 

13, = 
i 

’ h,+h,-1 

o (h-ho)-’ 
dX 

I,,= dx 

I,,= 
3-2h,-4ho+3+2h,+4ho 

(h, -ho)’ (ho-h,)’ 3 
dx 

I,, = 
’ I-h,-ho S[ l+h,+h, 

o (h,-ho)’ + (ho-h,)Z 1 dx’ 

Solving equation (24H26) we get 

(271 

(28) 

v =[ (2+~-~)Ap-2~,,-2~,,+12~,,-~~,,+~~,,] 

P 

I 

I 31 I 32 
213,+6-1,2-6-11,, 

I II 1 21 1 
(291 

where, I,, = 6(1,,-21,2) and 1,,=6(123-21,,) and 
tions (20) and (21) can be rewritten as the total flux q=q++q- is 

~L,_l2 q+ 
U,-1 

I? (h, --ho? + (h, -ho)’ 

(22) u=-(il,+&)g+(?+:); 

dp- 4- _= - +6 u*-1 12_- ____ 
?.u (ho-U3 (ho-h,)’ 

(231 
( 

1,3--21,, 1,3--21x 
+ 2, + 2I (301 

11 2, 
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The flux in the stationary frame Q is related to the 
flux q in the moving frame by the following relation- 
ship 

Q=q+(l- V,JW,-H,)b. (31) 

Averaging equation (31) over a time period we 

therefore get the time averaged flow Q in terms of q 

and V,, as 

Q=q+2(1- VP,. (32) 

Equations (29), (30) and (32) provide expressions for 

VP, q and Q for the given forms of h,(x), h,(x), h2(x) 
[15(a)] and general forms of functions g,(x), g2(x) 
representing the longitudinal motility of the channel. 
In the following analysis we consider the following 
forms of longitudinal motion of the wall 

gi(x)=C,, +C,,sin2nx 

g2(x)=C1, +C,,sin2nx. 
(33) 

For these given forms of h,, hi, h, and g,, gz and 

writing 

a,=&,-&(J,a,=E,-&,. 

The expressions (27) and (28) reduce to 

i 

1 dx 
Ii,= 

o (l+a,sin2~x)~ 

s 

1 dx 
Ii, = (i= 1, 2) 

e (1 +aisin2nx)’ 

li3=Cil Ii2 + Cjzli, 

s I sin 277x 
I, = 

o (1 + a,sin 27~~)’ 

and 

sin 211x 
Is, =@*+e*) 

(1 + a,sin 27r~)~ 
dx 

s I sin 2nx 
j32=(&0+&2) 

o (1 +a,sin2nx)’ 
dx 

sin2 211x 
I,,= 

(1 + cLi sin 2rr~)~ 
dx. 

s 1 sin2 2nx 
I,* = 

o (l+a,sin27t~)~ 
dx. 

have 
a, = -Ed, a,=co 

and therefore we get the expressions for V,,, q and Q 
from equations (29), (30), (32) in the following simpli- 

fied form 

y+M,Ap+M,) (37) 
0 

1 
-,,+$e)+z(?) 

+~cC11,(C11+C21) 
+~lIiC,,-C,2)-4~~2l 

Q+p ( __1+6!!++12~) 
11 0 11 0 

+; F-2 +2+~[I,,(c,,+c,,) 
0 ( > IL 1, 

(34) where 

M,=41,*- loco,,,+ 12$1,, 
11 

M, =2+2+ 
II 

(38) 

(3% 

These integrals can be evaluated by contour inte- 
gration and are listed in Appendix A. 

(35) M2= -W12-4~o~14)(Cl, +C,,) 

-2(1,,-4~~13~)(C,~-C~~) 

-24E,I,,-6~1r,,(C,,+C,,) 
11 

+ IL,(ClZ -C22)-41,2l. (40) 

Further, if longitudinal motion is also absent i.e. 

s,(x)=O,. 92(x)=0 

equations (37H39) reduce to the following forms after 
using the values of the integrals given in Appendix A 

3&i 
V,=f(l -~;)“~Api +-- 

1+2&g 

2(1-&i) 
q=f(l -E;)~‘~&-P 

1 + 2E; 
(41) 

Q= -$(2+&;)(1 -E;)“*~P. 

These expressions are the same as those obtained by 
Shack and Lardner (1974) for q = 2Q and Q=2Q,. 

DISCUSSION 

The values of VP and Q have been computed using 
equations (29H32) for the following set of parameters 

(36) c,,=o, c,,=o, C,(=C,,)=(O,O.2, -0.2) 

C,(=C22)=(0,0.2, -0.2) 

Ei =(O, 0.35) E2 =(o, 0.25, -0.25) 

When there is no peristaltic motion of the walls, we Ap = (0, 0.05, - 0.05) 
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and are plotted in Figs 2-13 as functions of E,, 
Effects of various parameters on V, are graphically 

shown in Figs 2-7. In Fig. 2 the results are shown 
corresponding to the particular case when there is no 
peristaltic motion on the walls (E, =O, s2 =O). As noted 
in the expressions (37H40) the velocity amplitudes 
C,(=C,,) and C2(=CL,) appear always as their 
difference C, - C, = d. The effect of this parameter d is, 
therefore, shown for Ap = 0, 0.05. It is observed that VP 
increases as magnitude of cc, increases. For fixed E,, > 0, 
V,, >O, VP decreases as d increases and for cc ~0, a 
reverse trend is noticed. It is also noted that, in this 
particular case, there is no effect of the longitudinal 
velocities C,, C, if E~=O. The effect of p. for fixed 
values of E,, and d is to increase VP. 

Effect of Ct and C, for non-zero values of E,, c2 is 
shown in Fig. 3 for Ap=O. The effect of C, and C, is 

AP :.05 

APYO 

-o_ ce-0.L 

-0.3 -0.2 - 0.1 0.0 0.1 0.2 o-3 

Eo - 

Fig. 2. Effect of C, and C, on Y, for zero c, and cI (no 
peristalsis). 

Fig. 3. Effect of C, and C, on VP for lixed Z, and Ed 
(E, =0.35, ~~=0.25 and Ap=Ol Fig. 6. Etfect of E, and e2 on V, (C, =0.2, C, = -0.2. Ap =O) 

Fig. 4. EKectofe,andc,on Y,(C,=-00.2,C,=0.2,Ap=O). 

“P 
i 

.3 

L OH0 - E2’0.0 

I -- c2:?‘25 

Fig. 5. Effect of E, and .Q on V, (C, =O, C, =O, Ap=O). 

\ 

i 

/ 
\ / - E2=o 

. / 
- -_.30 

-*- Et-O?5 

---- +_.25 
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Fig. 7. Etfect of Ap and E,. Ed on VP (C, =o, c, =o) 

-0-m _.- 

/-a- 
- .3 

O-0. t 
ap=-0.05 

a 

- .2 

- .I 

-o- d_-0.‘ 

- d z 0.0 

-o- d : 0.L 

(d z C2-C,) 

Fig. 8. Effect of C, and C, on Q for zero E, and z2 (no 
peristalsis). 

similar to that observed in Fig. 2. Comparing Figs 2 
and 3, it can also be noticed that because of the 
peristalsis on the walls, the propagation velocity V, is 
reduced and in fact is in the opposite direction. The 
maximum negative value of VP is obtained for the 
combination C, < 0, C, > 0. 

Similar effects of q , Ed, C, and C, can be seen from 
Figs 4-6, where effects of E, and .Q are shown for fixed 
(C,, C,)=[(-0.2, 0.2), (O,O), (0.2, -0.2)] and Ap=O. 
Comparing these three figures it can be observed that 
for C, = C, =0, sign of Ed does not matter. The maxi- 
mum negative value of VP for fixed E,,, cl is obtained 
for the first case(C, ~0, C,>O) with .z*>O(Fig. 4). An 
increase in Ap, the pressure rise, causes an increase in 
VP (Fig. 7). 

Effects of various parameters on time-average flux 
0 are shown in Figs 8-13. It can be seen that in general 

0.3 -0.2 - 0.1 0.0 0.1 0.2 0.3 

co-- 

Fig. 9. Effect of C, and C, on 0 (E, =0.35, Ed= -0.25. 
Ap =OI. 

.o+ _ 0.2 -0.1 0 0.1 0.2 

co--- 

E2:-.25 

E2’0 

E2: 25 

Fig. IO. Effect of E, and E* on Q (C, =O. C, =0, Ap=O.). 

the results are opposite to those obtained for VP. The 
effect of peristaltic waves on the wall is to increase 0 
but increase in the magnitude of the amplitude z0 
causes a decrease in @, (Figs 8, 10, 11). It also increases 
as Ap becomes negative, (Figs 12, 13). For a particular 
case of no peristalsis (E, =.Q =0) the effect of d is 
opposite to that of VP i.e. Q is minimum for d ~-0, 

(Fig. 8). However in general, the maximum values of Q 
are obtained when C, and Cz are both negative (Fig. 9). 

In the following passage we apply these discussions 
in the study of the motion of spermatozoa in the 
cervix. 
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-0 

‘0 

Fig. II. Effect of&, andclon Q(C, =0.2.C2= -0.2.Ap=O). 

Fig. 12. Effect of Ap on (z (C, ~0, C, =O). 

application TO SPERMATOZOA TRANSPORT: 
AN APPROACH TO FERTILITY CONTROL 

The spermatozoa are male reproductive cells. They 
are specialized cells containing only 23 out of the full 

46 chromosomes of a normal cell in human body. 
During coitus, the spermatozoa are deposited. at the 
time of ejaculation, at the mouth of the cervix in the 
female genital tract. It has been found that they take 

an average of 45 min to reach the fertilization point in 

the fallopian tube and thus travel with an average 

speed of l-3 mm min- I. It is necessary, from the point 
of fertility control, to reduce this speed of spermatozoa 
in the female genital tract by some biochemical or 
other means. 

It is known that spermatozoa, when in large num- 

bers and close to each other, travel in unison. It is 
therefore possible to approximate their motion by a 
sheet flowing through fluid (Taylor. 1951). The pro- 

(j -0.7 
-_-_. ail z-.05 
- 4p=o 

-o- d.p:.05 

- oa 

_------- 
___----- 

- 0.02 E,=O 

E2:O 

_.3 _.2 _., 0 .l -2 .3 
ED- 

- -0.02 

Fig. 13. EtTect of Ap on Q (C, =0.2, C, = -0.2). 

posed model and results discussed earlier can there- 
fore be applied to study the effects of peristaltic and 
longitudinal motion of the walls of the female genital 
tract on spermatozoa transport. 

Noting the effects of various parameters on VP, as 

discussed earlier, it is evident that VP can be made 

negative by application of a negative Ap (i.e. pressure 
drop) and this effect can be further enhanced by 
inducing the peristaltic waves travelling along the 
walls in the direction away from the point of fertiliz- 
ation. Further, the motion of the cilia can also enhance 
this effect by a suitable choice of longitudinal wave. It 
is therefore suggested that if the generation of a 
pressure drop and the peristaltic motion is possible by 
some mechanism, such as sudden withdrawal of the 
male organ from the vagina immediately after ejacu- 

lation, it may be possible to reduce the motion of the 
spermatozoa and hence controlling fertility. Thus the 
ancient belief behind the practice of withdrawal of the 
male organ immediately after ejaculation to control 
fertility, may have a scientific basis as predicted by this 
model. 

A PARTICULAR CASE: MOTION OF A THIN SHEET IN A 
CHANNEL UNDER PERISTALTIC MOTION OF THE WALLS 

This case can be obtained from the present model 
when there are no lateral waves on the sheet and no 
longitudinal wave motion along the channel walls. It 
should be noted that this case is physically different 
from the usual peristaltic flow in a channel (Shapiro er 
al., 1969) as there exists a sheet in the middle of the 
channel which divides it into two separate zones. 

Mathematically. this case is obtained by putting 
y,(x)=O, g2(.x)=0 and s,,=O into equations (29H32) 
and then the expressions for I’,,. y and 0 become (for 
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the symmetric case when E, = -sz =E) 

where 

M,=41,,-8&l,, 

M,=2+ 
I1 

M,= -24&4+24+,. 
11 
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(42) 

(43) 

The effects of Ap, E, and Ed on VP and 0 can be seen 

from Figs 2,5,8 and 12 for so = 0. It can be noted from 
Figs 2 and 3 that the velocity VP of the sheet increases 
as Ap increases. However for E, #O, Ed #O it is seen that 
VP is negative, i.e. the sheet flows in the direction of 
peristaltic waves and this effect is enhanced as E, and 
c2 increase. The effects of Ap, E, and c2 on 0 can be 
studied from Figs 8 and 12. It is observed that 0 
increases as the magnitude of .sr and .s2 increase and as 
Ap decreases. 

CONCLUSION 

A mathematical model to study the effect of peri- 
staltic and longitudinal motion of the walls, on the 
propulsion of a sheet has been presented and the 
results have been applied on the swimming of sperma- 
tozoa through the female genital tract. It has been 
shown that the speed of spermatozoa can be reduced 
considerably, to avoid fertilization, by generating a 
pressure drop and inducing peristaltic waves on the 
wall of the genital tract through some biomechanical 
or other means such as sudden withdrawal of the male 
organ from the vagina immediately after ejaculation. 

A particular case of the motion of a thin sheet in a 
channel under peristaltic motion of the walls has also 
been discussed. It is shown that sheet velocity is 
dependent on the amplitudes and direction of propa- 
gation of the peristaltic waves. 
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APPENDIX A. 
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