J. Biomechanics Vol. 21, No. 11, pp. 947 954, 1988.
Printed in Great Britain

0021-9290/88 $3.00 + .00
i 1988 Pergamon Press pic

EFFECTS OF PERISTALTIC AND LONGITUDINAL WAVE

MOTION OF THE CHANNEL WALL ON MOVEMENT OF

MICRO-ORGANISMS: APPLICATION TO SPERMATOZOA
TRANSPORT

J. B. SHUKLA, P. CHANDRA and RAJIV SHARMA
Department of Mathematics, I.L.T. Kanpur-208016, India.

and

G. RADHAKRISHNAMACHARYA

Department of Mathematics, Regional Engineering College, Warangal. India.

Abstract—A mathematical model is presented to study the motion of the spermatozoa in the cervical canal
by considering the transverse waves along its taii and the transverse and longitudinal motions of the cervical
wall. In an attempt to control fertility by reducing the speeed of sperm, the transverse waves have been
considered in the direction opposite to the motion of the spermatozoa. It has been shown that by having
appropriate transverse wave motion and longitudinal velocity, the sperm may not be able to move towards
the oviduct even if it could continue to have its own propelling velocity.

A particular case of the motion of a thin plane sheet in a channel under peristaltic motion of its walls has

also been obtained and studied.

INTRODUCTION

The study of swimming of micro-organisms was ini-
tiated by Taylor (1951) who modelled it as a two
dimensional, infinite extensible sheet of zero thickness
with a sinusoidal wave travelling down its length.
Hancock (1953) studied the propulsion of a thin
circular filament through a cylindrical tube for several
wave amplitudes and radii of the tube. Further studies
were conducted for small wave amplitudes and long
wave lengths approximation by Gray and Hancock
(1955), Reynolds (1965), Shack and Lardner (1974),
Shack et al. (1974), Lighthill (1976) and others. At-
tempts were also made to explain the motion of
spermatozoa in the female genital tract by considering
the dynamical interaction of the wall (Smelser et al.,
1974; Shukla et al., 1978). Blake et al. (1983) presented
a theoretical model of ovum transport in the oviduct
incorporating transport mechanisms due to ciliary
and muscular activity of the wall by adding a force
distribution term in the equation of motion. The
motion due to ciliary and muscular activity can also
be represented by a combination of peristaltic waves
(Barton and Raynor, 1968; Shapiro et al., 1969; Shack
and Lardner, 1972; Gubha et al, 1975; Gupta and
Seshadri, 1976; Shukla et al., 1980) and longitudinal
waves (Macagno et al., 1975; Melville and Denli, 1979)
along the walls.

It may be noted here that the effect of peristalsis on
the motion of spermatozoa has not been studied by
any of the earlier authors. In this paper. therefore, we
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present a mathematical model to study the motion of
self propelling micro-organisms when the wall of the
channel is undergoing peristaltic and longitudinal
wave motion.

The main aim of the study is to apply the analysis to
fertility control by reducing the speed of spermatozoa
in the female genital tract. Analysis presented here,
suggests that if the peristaltic waves are induced in the
direction opposite to motion of the spermatozoa by
some biochemical or other means, it may be possible
to reduce the speed of spermatozoa to such an extent
that they may not be able to reach the point of
fertilization.

The other aim of this paper is to study the motion of
a thin sheet in a channel when travelling peristaltic
waves are imposed on the walls of the channel.

MATHEMATICAL MODEL

Consider the swimming of a thin propelling sheet in
a Newtonian incompressible fluid flowing through a
two-dimensional channel having flexible boundaries.
It is assumed that the sheet, while swimming, sends
down lateral waves of finite amplitude along its length.
Further, peristaltic waves of finite amplitude are im-
posed along the flexible walls of the channel in the
direction opposite to the motion of the sheet as shown
in Fig. 1. The sheet is considered to be swimming with
a propulsive velocity ¥, in the negative axial direction.
It is assumed that the waves travelling along the
channel walls and along the sheet are in synchroniz-
ation under steady state and thus have the same wave
speed C (along positive axial direction) and wave-
length /. In a fixed frame of reference (X'. Y. 1) the
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Fig. 1. Propagation of an elastic sheet swimming through a
two-dimensional channel with peristaltic and longitudinal
motion of walls.

shapes of the walls and the sheet at an instant ¢ are
given by,

2n
H (X', t')=a+b, sin—(X'—Ct' + V1) 1)
/.
. 2n
HYy X' t')=—a+b,sin—(X'—Ctr'+ V1) (2)
A
’ ’ ’ : 2n ’ ! ’
ol X', ¢t )=bosm7(X —Ct+V,t) 3)

where by, b, are the amplitudes of the peristaltic waves
travelling along the upper wall and the lower wall
respectively, 2a is the width of the channel and b, is the
amplitude of the lateral wave along the sheet.

Since the Reynolds number involved in the swim-
ming of a microorganism is of the order of 107 ?, the
governing equations for fluid flow can be written, after
neglecting the inertia terms, as follows

0~p'i 62U'1 +02U'1 0 ‘4)
ax T axr Tayr |7
(':pli (:_eri (‘;ZV't 0 5]
v M ax T T ey
au't gyt
—+——=0 {6)
X oY’

where U’, V" are the velocity components along the X’
and Y directions respectively, p’ is the pressure. y is
the viscosity of the fluid and () refer to various
quantities in the regions (Ho<Y'<H|) and
(H, € Y'< Hy) respectively.

Taking into account the longitudinal motility of the
walls, the boundary conditions are

UP(X', )= Gy(X' = Ct+ V1)
OH tY=H|(X.r
V’+(X', t/): Il a HI(X [)
ot (7
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U (X, 1) = Gy(X' —Ct+ V1)
CHY

Al

ct

.- at Y'=Hy(X', 1)
VXL 1) =

(8)
UNX,t)=U"(X,t)=-V,
6H,
ot

at Y'=Hu(X", t')

VXL ey = V(XL )=
©

where G| and G represent the total longitudinal
velocity of the walls.

Further the sheet is self-propelling and the forces
exerted by the fluid on it must balance for its motion
with a constant velocity, i.e.

f (T*+T7)dS=0 (10)
Ay
where T and T~ are the resultant of forces acting on
the upper and lower surfaces of the sheet respectively
and S is the surface area of the micro-organism.

In a frame (x', ¥, t') moving with velocity C— V¥, in
the positive axial direction, the sheet and the walls of
the channel appear stationary and the flow in this
moving frame will be steady.

Using the following transformation

(11)

and introducing the following dimensionless quanti-
ties

X=X =Cl+V,t; y=Y

x=x"/A, y=Yy'/a, t=Ct'/.,
CA Ca

P=P'/L =z o
a

WV, g)=(U'%, V), G)/C, i=1,2
h,=Hja, &=bja, i=0,1,2.

Equations (4, 5, and 6) under long wavelength ap-
proximation (a/4 < 1), get reduced to

opt o%ut

apt
_6p—=0 (13)

y

outr vt
g*‘?y—:(). (14)

The boundary conditions for u are written in dimen-
sionless form as

ut=V,+g,(x)—1=U;; y=h(x)
uT =V, +g,(x)=1=U,; y=h,y(x) (15)
ut=u=—1; y=hg(x)
where
ho(x)=gosin 2mx )
hi{x}=1+¢,sin2nx '> (15a)

hy(x)= — 1 +¢&,sin2rx. |
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Further using the stress-strain relationship and
using long wavelength approximation, the force equi-
librium condition (10) can be written as

0
(*/Teul
Jo kL(‘:_yJ)'=!lo(.w)+ﬁd_-[pJ)dx = 0 (17)

MATHEMATICAL ANALYSIS

The differential equation (12) is soived with bound-
ary conditions (15) to obtain the velocities u* and u~

949

Integrating the equation of continuity (14}, it can be
seen that the two fluxes g* are constants. Further it is
evident that Ap, the pressure rise over a wavelength is
same for the two regions.

Integrating equations {22} and {23) over a wave-
length, we get the following two relations among the
three unknown quantities V,, ¢* and ¢~

—1297 1, +6V,I,;+61,,—121,,=Ap

(24)
pla2+61,3,—121,,=Ap. (25
Using the expressions (18), (19) and (22), (23) for u*
and dp*/dx, the force equilibrium condition (17) pro-
vides us with the third relationship necessary to

determine V,, g* and g~ as

in the regions (ho<y<h,) and (h, <y<h,) respect- =2Ap (26)
ively, which are given as follows
where
_{op* o o
)(y hyy—hgy+h hgy) .' dx dx
0x iy =(-1) mv I,= m‘.
‘V—hoy (h:—y) (18) l 0 0 i 1] 0 i
- {x)dx
l(hl“ho) (hy —hy) I,-3=J‘ g—'(})—z, i=1,2 27
{ /An-\ O(hO—hi)
(5 )()'z_hZY‘hoy+hohz} and
X
v—‘“o) {hy—y) I rlh‘+h°_ld
+U,——— . 1 n=\) T adx
2 _ho) (hz—ho) ( 9) ' Jo (hl—h0)3
The dimensionless flow flux g*(=¢*/aC) in the , _ [fhy+ho+1
moving frame can be obtained as 27 o (ho—hy)?
(1] 3—2h,~4hy 3+2h,+4h, |
q*=J u*dy and q'=J u-dy I3,= : 20 2 2°J
ho h2 Jo L (hi—ho) (ho—h3)
which on using equations (18) and (19) gives (113—2h, —4h, (28)
f34= ———— [g1(x)dx
. 1/6 +\ Jo L (hl—ho)
R hy—hg) +4h, —h (U, —1) (20 e
q 0 )( 1 —ho)? +4(hy —ho) U — 1) ) I 1 3+2}}2+4ho1 o
= _— x)dx
i /5‘ - ho—h,) U 5 35 Jo L (ho"hz)z _92
=5 —hy)? 44 hg—hy)(U, =1 1 -
q )( 3 WU,—-1. @1 Ci—h, —hy 1+h2+h0‘]
I6= dx.
PR + 47 (h —h (b _h 2
To obtain the pressure gradienis dp*/éx, the equa- Jo Lt — o) Wg— M)
Solving equation (24)-(26) we get
1 I I 1
”z+—’—‘——’i\A — 2= 2y + 120 35— 311“+ﬁ142]
V =L\ Ill 21 lll ]Zl (29)

tions (20) and (21) can be rewritten as

a + + U __l
Pt e @
éx (hy —ho)®  (hy—hy)
3 - U,—1
LA J R Sk S £

ox (hg—hy)  (hg—hy)?

!
(21,3+6—3~‘I.,
17200

it

622, ]

21

where, I,,=6(I,,—21,,) and I,,=6(I,;—2I,,) and
the total flux g=qg* +q~ is
+’ﬁ>i’g
I,,/2

1 1 \A I
.
Ill 121 12 Ill
123

1,21 =21,
(et
214, 21,

(30)
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The fiux in the stationary frame Q is related to the
flux g in the moving frame by the following relation-
ship

@=q+(1-V,)(H,—H,)/a.

Averaging equation (31) over a time period we
therefore get the time averaged flow @ in terms of g
and V, as

(1)

O=gq+2(1-V,). {32

Equations (29), (30) and (32) provide expressions for
V,, q and § for the given forms of hy(x), h,(x), hy(x)
[15(a)] and general forms of functions g,(x), g,(x)
representing the longitudinal motility of the channel.
In the following analysis we consider the following
forms of longitudinal motion of the wall

g,(x)=C,, +C,,sin2nx

. 33)
g,(x)=C,, + C,,sin 2nx.

For these given forms of hg, h,, h; and g,, g, and
writing

o, =&y —Eg, 00y =Eg—E&;. (34)
The expressions (27) and (28) reduce to
1i1=J~l —E)‘(—
o (1+0a,sin2nx)?
1.2=J"—dx—— (i=1,2) (35)
‘ o (1 +0o;sin2nx)? ’
I3=Cilin + Ciplyy
Lom ! sin'27tx
o (1 +a;sin 2nx)?
and
131=(£o+81)J.1 ‘—M*—dx
o (1+a;sin 2nx)*
132=(€0+81)J‘ sin 2mx
o (1 +a,sin2nx)?
Ty3=1,,—2(e,+2e0) 114+ 155+ 2(e3 + 260) 1 54
Lya=[11,—2e, +260)1,4]C,
+ e~ 20, +260)15,1C 5
Iys=[1;;+2(e; + 280)124]1Cy,
+12a+2(e; +260)1351C5;
Iyg=—(e &)l s +(e2+8) 20
I,= ! sin2'2nx N
o (14, sin2nx)?
Iy= ' sin?2nx N 36)

o (1+a,sin 27x)?

These integrals can be evaluated by contour inte-
gration and are listed in Appendix A.
When there is no peristaltic motion of the walls, we
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have

A= —&, A3=¢&

and therefore we get the expressions for V,, ¢ and @
from equations (29), (30), (32) in the following simpli-
fied form

1
VP=K4—0(M,Ap+M2) 37

1 1 6M, 1 M, /1
(-t )
6 lll MO Ill MO Ill

1
+m[’12(cn+c21)

+1,4(Ci;—Ca3)—41,]

1 1 M, I M
Q=_Ap(——+6——‘£—12—')
6 Ill MO Ill MO

M, (1, 1
+——=-2)+2+

MO lll 2111
+114(C12_C22)_4112]

where

(38)

[112(Cy +Cyy)

(39)

131
Mo=411,— 16614+ 122,
i1

I
M,=2+221
11
My=—2(l;,—4e514)(C,, +C3y)
—2(I14—4e137)(C 3 —C3y)
13
—2450114—61_[112(C11+C21)
1

14 (€ —Cyy) =41 5]

Further, if longitudinal motion is also absent i.e.

(40)

9:(x)=0, g,(x)=0

equations (37)+39) reduce to the following forms after
using the values of the integrals given in Appendix A

2

V,=4(1—-e3)"2Ap+ +——
P 2( 0) /) l+2€(z)
2(1—¢d)
=41 —-€e2)**Ap— 41
q=3( o) p 14262 (41)

0=—4Q+e)(1-53)"8p.

These expressions are the same as those obtained by
Shack and Lardner (1974) for ¢=2Q and § =20Q;.

DISCUSSION

The values of ¥, and § have been computed using
equations (29}(32) for the following set of parameters

Cy1=0, Cy;=0, C,(=C,,)=(0,02, -02)
Cy(=C,,)=(0,02, —0.2)
£, =(0,0.35), £, =(0, 0.25, —0.25),
Ap=(0,0.05, —0.05)
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and are plotted in Figs 2-13 as functions of &,.

Effects of various parameters on V, are graphically
shown in Figs 2-7. In Fig. 2 the results are shown
corresponding to the particular case when there is no
peristaltic motion on the walls (¢, =0, ¢, = 0). As noted
in the expressions (37){40) the velocity amplitudes
Cy(=C,,) and C,(=C,,) appear always as their
difference C, — C, =d. The effect of this parameter d is,
therefore, shown for Ap=0, 0.05. It is observed that vV,
increases as maguitude of ¢, increases. For fixed ¢, > 0,
V,>0, V, decreases as d increases and for ¢5<0, a
reverse trend is noticed. It is also noted that, in this
particular case, there is no effect of the longitudinal
velocities C,, C, if £,=0. The effect of p, for fixed
values of ¢, and d is to increase V.

Effect of C and C, for non-zero values of ¢,, ¢, is
shown in Fig. 3 for Ap=0. The effect of C, and C, is

\ 0/ ap =
o Q/o 05
\ 4200 /0/ a e

—0=— d=-0-4
° \u /0 ° d=0
\ /o / ——0—d:04
° N s /" (d=Cy-Cy)
" n }O il I X
-03  -02 -01 0-0 01 02 03

Fig. 2. Effect of C, and C, on V, for zero ¢, and ¢, (no
peristalsis).

Fig. 3. Effect of C, and C, on V, for fixed &, and ¢,.
(¢, =0.35,6,=025 and Ap=0.

03

02

Ef - ° — £2:00

—o— £2:425

Fig. 5. Effect of ¢, and ¢, on V, (C, =0, C,=0, Ap=0).

\\ ,/ —— 52-;0
~_ 47 —s— £,2025
er_go 2
--- gpe-25

Fig. 6. Effectof &, and ¢, on V,(C;=02,C,= -02,Ap=0).
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Fig. 8. Effect of C, and C, on Q for zero ¢, and ¢, (no
peristalsis).

similar to that observed in Fig. 2. Comparing Figs 2
and 3, it can also be noticed that because of the
peristalsis on the walls, the propagation velocity ¥, is
reduced and in fact is in the opposite direction. The
maximum negative value of V, is obtained for the
combination C, <0, C,>0.

Similar effects of ¢,, ¢,, C, and C, can be seen from
Figs 4-6, where effects of ¢, and ¢, are shown for fixed
(C,, Cy)=[(—02,0.2), (0,0), (0.2, —0.2)] and Ap=0.
Comparing these three figures it can be observed that
for C,=C, =0, sign of &, does not matter. The maxi-
mum negative value of ¥, for fixed ¢, ¢, is obtained
for the first case (C, <0, C,>0) with ¢, >0 (Fig. 4). An
increase in Ap, the pressure rise, causes an increase in
v, (Fig. 7).

Effects of various parameters on time-average flux
Q are shown in Figs 8-13. It can be seen that in general

J. B. SHUKLA et al.

S
-03  -02 -01 0-0 01 0-2 a3
Eo—

Fig. 9. Effect of C, and C, on @ (¢,=0.35, ¢,= —0.25
Ap=0).

€2=-25
€=0
EZ: -25

Fig. 10. Effect of ¢, and ¢, on @ (C,=0, C, =0, Ap=0.).

the results are opposite to those obtained for ¥,. The
effect of peristaltic waves on the wall is to increase §
but increase in the magnitude of the amplitude ¢,
causes a decrease in §, (Figs 8, 10, 11). It also increases
as Ap becomes negative, (Figs 12, 13). For a particular
case of no peristalsis (g, =¢,=0) the effect of d is
opposite to that of ¥, i.e. Q is minimum for d>0,
(Fig. 8). However in general, the maximum values of §
are obtained when C, and C, are both negative (Fig. 9).

In the following passage we apply these discussions
in the study of the motion of spermatozoa in the
Cervix.
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Fig. 11. Effectofe, and ¢; on §(C,=0.2,C, = —0.2, Ap=0).

e N Vol
X NPTy PUSNICY) SERPY

-=== ap=-005
— ap=0
—e— ap: 0:0%

Fig. 12. Effect of Ap on @ (C, =0, C,=0).

APPLICATION TO SPERMATOZOA TRANSPORT:
AN APPROACH TO FERTILITY CONTROL

The spermatozoa are male reproductive cells. They
are specialized cells containing only 23 out of the fuli
46 chromosomes of a normal cell in human body.
During coitus, the spermatozoa are deposited. at the
time of ejaculation, at the mouth of the cervix in the
female genital tract. It has been found that they take
an average of 45 min to reach the fertilization point in
the fallopian tube and thus travel with an average
speed of 1-3 mmmin " '. It is necessary, from the point
of fertility control, to reduce this speed of spermatozoa
in the female genital tract by some biochemical or
other means.

It is known that spermatozoa, when in large num-
bers and close to each other, travel in unison. It is
therefore possible to approximate their motion by a
sheet flowing through fluid (Taylor, 1951). The pro-
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Fig. 13. Effect of Ap on @ (C, =02, C,=—0.2).

posed model and results discussed earlier can there-
fore be applied to study the effects of peristaltic and
longitudinal motion of the walls of the female genital
tract on spermatozoa transport.

Noting the effects of various parameters on V,, as
discussed earlier, it is evident that ¥, can be made
negative by application of a negative Ap (i.e. pressure
dropj and this effect can be further enhanced by
inducing the peristaltic waves travelling along the
walls in the direction away from the point of fertiliz-
atton. Further, the motion of the cilia can also enhance
this effect by a suitable choice of longitudinal wave. It
is therefore suggested that if the generation of a
pressure drop and the peristaltic motion is possible by
some mechanism, such as sudden withdrawal of the
male organ from the vagina immediately after ejacu-
lation, it may be possible to reduce the motion of the
spermatozoa and hence controlling fertility. Thus the
ancient belief behind the practice of withdrawal of the
male organ immediately after ejaculation to control
fertility, may have a scientific basis as predicted by this
model.

A PARTICULAR CASE: MOTION OF A THIN SHEET IN A
CHANNEL UNDER PERISTALTIC MOTION OF THE WALLS

This case can be obtained from the present model
when there are no lateral waves on the sheet and no
longitudinal wave motion along the channel walls. It
should be noted that this case is physically different
from the usual peristaltic flow in a channel (Shapiro et
al., 1969) as there exists a sheet in the middle of the
channel which divides it into two separate zones.

Mathematically. this case is obtained by putting
¢,(x)=0, g,(x)=0 and &, =0 into equations {(29)-(32)
and then the expressions for I',. g and  become (for
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the symmetric case when ¢, = —¢, =¢)
1
"pzM—o(MlAP+Mz)
1 1 M1
qz_A,,<___ ) )
6 lll MOIII
I M,I
+(—2L2 - ”) (42)
Ill MOIll
1 1 M1 M
0=-A (—+6 ! 12—12—‘)
6 Ill MOIll MO/
I M,I M
+<_z_'£ 24 Maliz z_z)
lll M()Ill MO
where
My,=41,—8¢l,,
I3
M1=2+21— (43)

11

131
M,=—-24el,,+24—1,
11 1
The effects of Ap, ¢, and ¢, on ¥V, and 0 can be seen
from Figs 2, 5, 8 and 12 for ¢, =0. It can be noted from
Figs 2 and 3 that the velocity V, of the sheet increases
as Ap increases. However for g, #0, £, #0 it is seen that
V, is negative, i.c. the sheet flows in the direction of
peristaltic waves and this effect is enhanced as ¢, and
¢, increase. The effects of Ap, ¢, and ¢, on § can be
studied from Figs 8 and 12. It is observed that §
increases as the magnitude of ¢, and ¢, increase and as
Ap decreases.

CONCLUSION

A mathematical model to study the effect of peri-
staltic and longitudinal motion of the walls, on the
propulsion of a sheet has been presented and the
results have been applied on the swimming of sperma-
tozoa through the female genital tract. It has been
shown that the speed of spermatozoa can be reduced
considerably, to avoid fertilization, by generating a
pressure drop and inducing peristaltic waves on the
wall of the genital tract through some biomechanical
or other means such as sudden withdrawal of the male
organ from the vagina immediately after ejaculation.

A particular case of the motion of a thin sheet in a
channel under peristaltic motion of the walls has also
been discussed. It is shown that sheet velocity is
dependent on the amplitudes and direction of propa-
gation of the peristaltic waves.

REFERENCES

Barton, C. and Raynor, S. (1968) Peristaltic flow in tubes.
Bull. math. Biophys. 30, 663-680.

Blake, J. R., Vann, P. G. and Winet, H. (1983) A model of
ovum transport. J. theor. Biol. 102, 145-166.

J. B. SHUKLA et al.

Gray, J. and Hancock. G. J. (1955) The propulsion of sea-
urchin spermatozoa. J. exp. Biol. 32, 802.

Guha, S. K., Kaur, H. and Ahmed, A. M. (1975) Mechanics of
spermatic fluid transport in the vas deferens. Med. Biol.
Engng 13, 518-522.

Gupta, B. B. and Seshadri, V. (1976) Peristaltic pumping in
non-uniform tubes. J. Biomechanics 9, 105-109.

Hancock, G. J. (1953) The self propulsion of microscopic
organisms through liquids. Proc. Roy. Soc. 217, 96.

Lighthill, M. J. (1976) Flagellar hydrodynamics. S.I.A.M.
Rev. 18, 161-230.

Macagno, E., Melville, J. and Christenson, J. (1975) A model
for longitudinal motility of the small intestines. Biorheol-
ogy 12, 369-376.

Melville, J. G. and Denli, N. (1979) Fluid mechanics of
longitudinal contractions in the small intestine. J. biomech.
Engng 101, 284-288.

Reynolds, A. J. (1965) The swimming of minute organisms.
J. Fluid Mech. 23, 241--260.

Shack, W. J. and Lardner, T. J. (1972) Cilia transport. Bull.
math. Biophys. 34, 325-335.

Shack, W. J, Fray. C. S. and Lardner, T. J. (1974) Obser-
vations on the hydrodynamics and swimming motions of
mammalian spermatozoa. Bull. math. Biol. 36, 555-565.

Shack, W. J. and Lardner, T. J. (1974) A long wavelength
solution for a microorganism swimming in a channel. Bull.
Math. Biol. 36, 435444,

Shapiro, A. H., Jaffrin, M. Y. and Weinberg, S. L. (1969)
Peristaltic pumping with long wavelengths at low
Reynolds number. J. Fluid Mech. 37, 799-825.

Shukla, J. B, Parihar, R. S.. Rao, B. R. P. and Gupta, S. P.
(1980) Effect of peripheral layer viscosity on peristaltic
transport of a bio-fluid. J. Fluid Mech. 97, 225-237.

Shukla, J. B., Rao, B. R. P. and Parihar, R. S. (1978)
Swimming of spermatozoa in cervix: effects of dynamical
interaction and peripheral layer viscosity. J. Biomechanics
11, 15-19.

Smelser, R. E., Shack. W. J. and Lardner, T. J. (1974) The
swimming of spermatozoa in an active channel. J. Bio-
mechanics T, 349-355.

Taylor, G. (1951) Analysis of microscopic organisms. Proc. R.
Soc. 209, 447-461.

APPENDIX A.

|

o (I +asin2nx) (1_— %)/

1
J-o (1 +asin 2n~c)2 (1 —a?)*?

J" 2+4a?
o (1+1sm7m =2(1—12)5’2
2+ 347
J (1 +asin 2nx)* _2(1—912)7"Z
sin 2nx dx 2

L (1 + asin 2nx)? _(1—12)3’2

' sin 2mxdx 3a
L (I+asin 2nx)°  2(1—o2)*"2

' sin 2mxdx 5% x
L (1 +asin 2nx)* 3(1—22)772 +3(1 —x)3?
J' sin? 2rx dx 1 20?1

(1+1sm2nx)' - ::+;2(77 7;);



