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Abstract-- The paper is a study of the Row of incompressible micropolar fluid arising from the 
harmonic oscillation of an elliptic cylinder parallel to either of the principal axes of its cross section. 
The stream function as well as the velocity and microro~dtion vectors are obtained and expressed 
in intinite series form involving M~tthieu functions and functions allied to them. The drag on the 
cylinder is evaluated and the effect of variations of the polarity and frequency parameters on the 
drag as revealed by numerical studies is shown through figures. 

I. INTRODUCTION 

Micropolar fluids [l] are a subclass of simple microfluids [2] and the theory of either of 
them takes account of the microscopic effects arising from the local structure and 
micromotion of the Auid elements. In both theories, there is the sustenance of couple stress 
which is a distinguishing feature of these fluids as contrasted with nonpolar fluids whose 
motion is governed by the Navier---Stokes equations. Another significant departure of the 
polar fluid theory is the non-symmetry of the surface stress tensor. The field equations of 
micropolar fluid flow are representable in terms of the fluid velocity vector and the 
microrotation vector and the constitutive equations of the theory involve first order spatial 
gradients on the above two field vectors. 

The study of harmonic oscillations of a body in a Ruid domain has fascinated many 
over the years and the oscillations of symmetric bodies like the circular cylinder, sphere 
and spheroid as well as the rectilinear oscillations of an elliptic cylinder in classical viscous 
fluids have been analytically examined by Kanwal [3,4]. The harmonic oscillation of a 
sphere and a circular cylinder has been discussed for viscoelastic fluids of Oldroyd’s three 
constant model (fluid of B-type) by Frater [5,6] and numerical information is provided to 
reveal the effects of the viscoelastic and frequency parameters on the drag experienced by 
the bodies. The harmonic oscillations of symmetric bodies like a circular cylinder, a sphere 
and a spheroid in micropolar fluids have already been examined in 17-9) and numerical 
information extracted to show the thrust of the micropolarity parameter as well as the 
frequency parameter on the drag/couple experienced by the bodies. 

The present study is centred round the flow of incompressible micropolar fluid arising 
from the harmonic oscillation of an elliptic cylinder oscillating rectilinearly along its major 
or minor axis. The velocity and microrotation are evaluated in analytical form and the 
drag on the cylinder is computed. The result of numerical study has been presented in the 
form of figures showing the critical variations of the drag parameters for various frequency 
levels. 

2. DIFFERENTIAL EQUATIONS OF THE PROBLEM 

The field equations of incompressible micropolar fluid flow are given by the collection 
of equations 

divq = 0 (2.1) 

dq p- = $- gradp i- k 
dt 

curl V - (p + @curl curl q 
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(2.2) 
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di 

+ (x + [j + y)grad div t, (2.3) 

In these equations, 4 and V are the velocity and microrotation vectors, j is the gyration 
parameter, (p, k) are the viscosity coefficients while ((x, 8, y) are the gyroviscosity coefficients. 
The symbols p, p, f, 1 denote per unit mass and body couple per unit mass respectively. 
The force stress tensor tij and the couple stress tensor mij are given by [I] 

tij = -pcSij + (211 + k)cij + kijr(o), - rr) (2.4) 

mij = r(div V)6, + /Ppi.j + yvj.i (2.5) 

where eij is the rate of strain tensor and wk = ~E,ijvj,i is the spin tensor. The viscosity 
coefficients (p, k) and the gyroviscosity coefficients (&,/II, y) conform to the following 
inequalities: 

k B 0; 2~ + k 3 0; 

a+/3+y30; 3cI+a+y30; IBI d Y (2.6) 

An elliptic cylinder oscillates harmonically and rectilinearly with velocity, U exp(iat) 
along its major or minor axis. The cross-section ellipse has the semifocal distance c and 
the quantity U/(W) is assumed small and the inertial and gyroinertial terms in the equations 
of motion are linearized and the body force and body couple terms are deleted. 

Let e,, E,, ti, be the base vectors of an elliptic coordinate system with the line element 

ds2 = h,2da2 + h;dg2 + dz2 (2.7) 

The velocity and microrotation vectors appropriate to the problem are 

q = u(a, 8, tp, + u(cL, 8, tp, 

v = C(cc, p, t)Gz 

and in terms of the stream function $(x, ,!I, t) we can write 

hpU = _ ?!! hu=d* 
3p g ac! 

The linearized versions of the equations of motion are 

ph; = - ijf + kg - (p + k)~(V~t,b) 
/ 

pj$ = -2kC + kVf$ + yV:C 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

in which h, = h, = h and 

v:=$(-$+$) (2.14) 
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In view of the harmonic oscillation of the cylinder we may take 
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ok B1 0, 0, B, 0% ‘44 P, a 
= (fb, PI, gt4 lib P(K B))ewtW 

From equations (2.11-2.15) it follows easily that 

(2.15) 

aP af ag a 
ap = -Wz - kz + (P + X-)zPTf) 

(2.16) 

(2. I 7) 

(ipjo + 2k)g = rV:g + kV:f (2.18) 

Eliminating P from (2.16) and (2.17) we have 

ipoV:f + kV:g - (p + k)V:Vff = 0 (2.19) 

and eliminating g using (2.18) and (2.19) we obtain the following differential equation for 
.f(s S): 

+ ipo(ipj@ + 2k)Vff = 0 (2.20) 

The function g(cl, 8) is expressible in terms off (cc, fl) in the form 

k(2k + ipjo)g = y(,u + k)Vtf + (k2 - ipay)V:f (2.21) 

Let the complex numbers a2 and 13’ be defined by the equations 

y(p + k)(a’ + b2) = k(2p + k) + ipc(y + jp + jk) (2.22) 

y(ll + k)aZbZ = ips(ipoj + 2k) (2.23) 

The roots with their real parts positive are denoted by a and b. Equation (2.20) can be 
written in the form 

V@‘: - a’)(Vf - b2)f = 0 

and it is possible to write f in the form 

.f=.fo -+SI +f2 

where 

Vfo = 0, WI, V:f2 = b2fi 

(2.24) 

(2.25) 

(2.26) 

The superposition of the three solutions in (2.26) to make up the solution f is on the tacit 
understanding that a2 and b2 are distinct. The possibility of resonance (a2 = b2) cannot 

be ruled out in the case of micropolar fluids and this arises when 

(y/3 = (2~ + k)(p + W(2iu + 34 

PO = (2~ + kK+ + W/C2(~ + kfjl (2.27) 
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The case of resonance which arises also in circular and spherical geometry is signiticant 
and merits separate discussion. 

Equation (2.21) directly expresses K in terms of the derivatives of,/ and specifically it 
can be expressed in terms of ,I; and f; in the form 

The problem of the oscillation of the elliptic cylinder therefore rests on the solution of the 
differential equations in (2.26) subject to the prescribed regularity requirements at infinity 
and hyperstick or superadherence condition on the boundary. It may be observed that 
while alternative types of boundary conditions involving the microrotation vector arc 
possible, the hypersticks condition is the most common among them all. 

3. OSCILLATION PARALLEL TO THE MAJOR AXIS 

The elliptic coordinates (a,,!?) are defined by the relation 

x + iy = ccosh(cc + i[j) (3.1) 

and the cylinder is given by CI = tl,,. The scale factors of the frame are 

h, = h, = h = c(cosh2x - COS~/J)~‘~ (3.2) 

The adherence condition on the cylinder means that the velocity of the fluid element on 
the cylinder is Uexp(iat) parallel to the major axis and the microrotation vector on the 

cylinder equals f curl(i&,Oundary ) and this is equal to zero. Therefore, on the boundary c( = CC”, 
we have the conditions 

~(a, fl, t) = T sinh GI cos p exp(iat) 

~(a, p, t) = ~ F cash z sin /YI exp(iat) 

C(a, /3, t) = 0 (i.e.)g(a, p) = 0 

These are equivalent to the statements 

,f’(a, /3) = - UC sinh LX sin /I 

(3.3) 

(3.4) 

y(p + k)VtJ’ + (P - iprf)V:f’ = 0 (3.5) 

on (Y = ~1~. Far away from the body, as c1 --f co, the velocity and microrotation vanish. 
The function &(a,B) is harmonic (cf. equation 2.26), and the boundary conditions (3.4). 

(3.5) suggest the solution of the form 

&(cc, /I) = $ C, exp( - nn)sin n/l 
n=l 

(3.6) 

The function fi(a, /?) satisfies the differential equation 

(Vf - U’)fl = 0 (3.7) 
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and this can be written as 
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r $ + $ - F (cash 2a - cos 28) 1 ,f, = 0 (3.X) 

Putting 

we find that 

R”(E) - (A + (u’c2/2) cos 2z)R = 0 (3.10) 

S”(p) + (i_ + (a2c2/2) cos 2/I)S = 0 (3.1 I) 

in which A is the separation constant. The Mathieu equation (3.11) has the periodic 
solutions IIlO] 

(3.12) 

corresponding to a discrete set of values of jk which are functions of (u2c2/4). In this problem 
we need only the solutions se m correspond 10 the charucleristic numbrrs i = a2,,,+, , A = hz,+ 2 and have 
the Fourier sine series expansions 

.s(Jzm+ ,(/L -u2c2/4) = C (- l)m+rA(i?lmi+j “sin(2r + l)b 
r=O 

(3.13) 

se,,+,(b, --u2c2/4) = % (- 1)m+‘B\~“,~2’sin(2r + 2)fi 
r=O 

(3.14) 

In these Fourier expansions, the coefficients A, B are functions of the parameters (- u2c”/4). 
The solutions of the modified Mathieu equation (3.10) that correspond to the solutions 

in (3.13), (3.14) and vanish as c[ -+ rx are given by the functions Gek,(cr, -u2c2/4) which 
arc representable in the form [lo, p. 2481: 

Gek Z”, + I(%. -Ll”C2;‘4) = [pi,, ,/(“A:2m+ I’)] 

& A$::: ” (I,(uce-“/Z)K,+ ,(uce”/2) 

+ I,+ ,(uce -“/2)K,(uce”/2)) (3.15) 

Gck 2m / JCX, - a”c2/4) = [s;,+ 2/nB(21m+ ‘I] 

+ I,+ ,(ace -a/2)K,(uce"/2)\ (3.16) 

in which I and K denote the modified Bessel functions. The solution ,f;(a,B) is thus 
representable in the form 

.I;(G B) = 2 D,Gek,(cc, - a2c2/4)se,(/?, - u2c2/4) 
n=l 

(3.17) 
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The function fi(a, @) can similarly be represented in the form 

fz(a, PI = nz, &G&,(a, - b’c2/4)se,(P, bzc2/4f (3.18) 

The solution of (2.24) is obtained by the addition off,, fr and fi given in (3.6), (3.17) and 
(3.18) respectively. 

The constants (C,), (Dni, \ ni t ‘E 1 are determined by the boundary conditions (3,4), (3.5) 
and to enforce these, it is essential to recast the expansions of fr and fi in (3.17) and (3.18) 
into Fourier series involving sine terms of fl. This is done using the expansions for se,,, 1 
and se 2m+Z given in (3.13) and (3.14). We may write 

Gek,,&, - azc2/4)~e~~~, - a2c2/4) = 2 F,,(a)sin n/S 
n=l 

(3.19j 

and then it is easily seen from (3.13), (3.14) and (3.19) that 

F 2m42.n(a) = ~~~~)~+!~~~~~~Gek 2m+2((r, -a2c2/4),(n = 2r + 2,r = 0,1,2, ._ .) (3’21) 

In a similar way, we can have 

G&,(a, - b2c2/4)se,(fl, - b2c2/4) = 2 C,,(a)sin n/I 
?S=i 

(3.22) 

The functions G,,,(a) are defined exactly as Fmn(a) given in (3.20), (3.2) with the parameter 
bZc2/4 instead of a2c”/4. The function f(a,fl) can then be represented in the form 

(3.23) 

From this we have 

+ 5 E, b4 + 
k2 - ipoy 

b2 (3.24) 
m=l Y(P + k) 

The boundary conditions (3.4), (3.5) can now be enforced and we have the following muster 
of linear algebraic equations in the constants {C,}, (II,,), (E,]: 

C,exp(-na,) -t 2 D,F&a,) -t f EmG,,(ao) = - Ucsinhae&r 
m=1 m=l 

(3.25) 

- nC,exp( - nao) f f &$~,,(a,) + 2 E,G,,(a,) = - UC cash aOiSnl 
??I=1 m=l 

(3.26) 
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cl4 + 
k2 - ipny 

Y(P + 4 

h4 + k2 - mu hZ 
Y(P + k) 

(n > 1) (3.27) 

The prime on F,, and G,, in (3.26) indicates differentiation with respect to 2. Elimination 
of C, from equations (3.25) (3.26) leads to the linear set of equations in the constants ID,,,;, 

{Em}: 

(3.28) 

The systems of equations (3.27) and (3.28) can be used to determine the constants D,, Em 

and then the constants C, are obtainable from (3.25). This leads to the determination of 
the solutionf’(a, fl). The function g(cx, p) is thereafter determined from (2.28). The velocity and 
microrotation components are then determined from the stream function $(c(, fi, t) = .f‘(~, 0) 
exp(iat) and the function g(M, 8) exp(iat). 

Pressure 

The pressure distribution p(~, fl, t) = P(a, fl) exp(ior) is determined from (2.16) and (2.17). 
From (2.16), we have 

. Y(P + k) & (a4f; + h:h) + (k2 - iprry) 4 (a’J; + h:f2) 

- (P + k) $ (u’f, + W;) 

It can be seen that &/a[) and afi/afl in the above add up to zero. Hence 

dP 
-= 
& 

if)0 % nC,exp( - na) cos n/3 
n=l 

and on integration 

P(cr,/l) = -iipo i C,exp(-nr)cosn/l 
n=l 

(3.29) 

(3.30) 

(3.31) 

The integration constant in (3.31) is chosen equal to 0. 

Drag on the cylinder 

The stress tensor tij can be evaluated using (2.4) and the nonvanishing components of 

it are t,,, LB, la=, tSB, tzZ. The stress vector on the cylinder is t,,C, + t&i, + t& and the 
drag per length L of the cylinder is 

s 277 

D = D, + D, = CL (t,,sinh c( cos /YI’ - t,gcosh c( sin /?)a=a, dp (3.32) 
0 
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where the pressure drag DP and the friction drag Dr are given by 

D, = CL;” (r,,sinh a), =ao cos p d/j 

2n 

D, = -CL 
I 

(tap cash a), =2,~ sin /j’d/l 
0 

(3.33) 

From (2.4) we have 

f Sa = -JJ+(2p++)e,, (3.34) 

1 a/l = (2P + k)e,l, + k(tu= - VZ) (3.35) 

and elementary but long calculation shows that on the boundary of the cylinder 

f’ 7.E = 0 (3.36) 

emB = -(&)jUcsina,,sinp 

+ F C,(exp( - nct,)sin np exp(iat) 
n=l I 

and 

wz - v_ = enp 

(3.37) 

(3.38) 

It follows that 

D, = hpocLC, sin a, exp( - a,)exp(iat) (3.39) 

while 

D, = izpacl cash CQ[ UC sinh cl0 + C, exp( - aO)]exp(iat) (3.40) 

The total drag on the cylinder is thus 

D = izpocL(Uc sinh go cash c(” + C,)exp( (3.41) 

The couple stress mij defined in (2.5) has the nonvanishing components mzar ma=, mgz 
and mz8. The couple stress vector on the boundary is maze= and the couple on the cylinder 
about the axis is zero. 

Limiting case 

By allowing cr, to +O, we have the case of a flat plate harmonically oscillating along its 
edge. The stream function II/ = S(a, fi)exp(iot) is found from (3.23) and the constants {C,}, 
{D,,,}, {I!?,) are determined from the linear equations after chasing a0 = 0. The pressure 
drag in this case is zero and the drag 

D = D, = izpcLC, exp(iot). (3.42) 

4. OSCILLATIONS PARALLEL TO MINOR AXIS 
This runs similarly in all details to the problem of oscillation parallel to the major axis 

and results are only briefly stated. 
Let the elliptic coordinates be now defined by the relation 

x + iy = csinh(a + ip) (4.1) 
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The cylinder is given by a = do and 

539 

h = c(sinh% + COS~~~)*~’ (4.2) 

The boundary conditions are 

.m> P) = - UC cash 01 sin fl 

aJ/acx = - UC sinh cx sin ,8 (4.3) 

and 

y(p + k)V:J’+ (Ii2 - ipy)V;“/‘ = 0 (4.4) 

on 31 = ~1~. The differential equation for f(ol,fl) is (2.24) as before and the solution is the 
sum of the three functionsf,(cr, fi),f,(a, @),f,(a, p) respectively satisfying the three differential 
equations in (2.26). We have 

fe(n, /I) = f f;;kxp( - nsr)sin nfi 
n-1 

(4.5) 

The solutions .I;(c(, ,Q fz(cr,fi) are of a different type compared to those in the previous 
section. The differential equation for &(a, p) is 

6 + -$ - F(cosh 2a + cos 2p) 

which differs from (3.8). Taking fr(a, 8) = R(~)S(~), we see that 

R”(a) -- 
i 

i; + Fcosh 2a R(a) = 0 

s”(j)+- 
( 

i-$$os28 S(P)=0 
J 

(4.6) 

(4.7) 

(4.8) 

The solutions of (4.8) are ce~~~,u2e2~4) and ~e*(~,~~c~/4) corresponding to a discrete set 
of values of the separation constant A and in the problem we need the functions se, only. 
They correspond to the characteristic numbers 1 = ha,,,+ 1, hz,+ 2 and have the Fourier 
sine series expansions 

seZm+2(& a2c2/4) = 2 ~~~~~2’sin(2r + 2)@ 
r=O 

(4.9) 

(4.10) 

The solutions of (4.7) that correspond to the solutions in (4.9), (4.10) and which vanish as 
z --) xi are the modified Mathieu functions Gegm+, , Gel&,,+ 2 given by 

Gerr,;, + i(a, - uzc2/4) 

I (&,+ 1/(“B\2m+ I) ) 2 S$tY:*) (I,(ace~"/2)K~+ ,(ace"/2) 
r=o 

+ Ircl (uce-"/2)~~(uce~/2)~ (4.1 I) 
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Gek& &x” - de2 14) 

= [S;,+&d3y+2))] f B\;p {I,(ace-@/2)K,+,(ace”/2) 
r-0 

- I,+ ,(ace-‘/2)Kr(ace”/2)}. 

The functions fI{&, /?) and f&x, /I?) can be expressed in the form 

(4.12) 

(4.13) 

(4.14) 

These functions can be put into alternative forms involving a series of sines in p as in the 
earlier section and the solution f&p) may be cast into the form 

f(%P) = x {Cexp(-nff) f mEI &Xl&) 

-t F GGda) 
m=l I 

sin@ (4.15) 

The functions F$(a), G”(U) are defined in a way analogous to the corresponding relations 
of the previous section: 

EL+ US(@) = 
O,(n = 2,4,6 ,...) 
B!$< ‘)Gegm+ I(a, - a2c2/4), (n = 2r + 1, r = 0, 1,2,. . .) 

F;, + 2,nw = 
O,(n = 1,3,5,. .) 

B~~~‘,“)Ge~m+2(cI. -a2c2/4),(n = 2r + 2, I = 0, 1,2,. . .) 

G;,+ I,” (a> = fJ@ = 2,4+.., 
Bit:: ‘)Geb,+ 1(o1, - b2c2,J4), (n = 2r + 1, r = 0, I, 2,. . .) 

f4.18) 

(4.16) 

(4.17) 

(4.19) 

The constants (cj, {$), (F,‘] in (4.15) are determined from the boundary conditions 
(4.3) and (4.4). The linear equations involving the unknowns (c’), (g), fgj are given 

by 

(4.20) 

(4.21) 
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Elimination of the constants G* from the two equations (4.20), (4.21) leads to the set of 

linear equations 

From equations (4.22) and (4.23) it should, in principle, be possible to determine the 
constants {aj and {c} and thereafter the constants (c;l*} from (4.20). This leads to the 

determination of the solution f(cc, fl) and the function g(a, /I) will then be available from 
(2.28). 

Pressure 

The pressure p(cc,& t) = P(cr,fi)exp(iot) is determined from equations (2.16) and (2.17). 
After elementary though lengthy calculation, we find that 

P(0, 8, t) = - ipo 5 G*exp( - ncl)cos n/I exp(icrt) (4.24) 
n=l 

Drug on the cylinder 

It is seen that on the cylinder, the strain velocity component ena = 0 and 

% = -&(U c cash ~1~ sin p + 2 G*exp( - na,)sin $)exp(iar) (4.25) 
n=l 

Further, w, - v, = en0 on a = ao. The stress components on the cylinder are therefore 

t,, = ipa $J (G* exp( - na,)cos n/I)exp(iat) (4.26) 
n=l 

t ap = - (ipo) UC cash a,, sin fl 

+f 
II=1 

G*exp( - na&in nfl)exp(iot) 

The pressure drag per unit length L of the cylinder is 

(4.27) 

D, = CL cash a0 
J 

(t,,), =a,, cos p d/j’ = irrpacLCr* cash a,exp( - a,)exp(icrt) (4.28) 
0 

The friction drag is 

s 

2rr 

D, = -cLsinha, (r,& =#,, sin P dB 
0 

= i-npacl sinh a,( Uc cash a0 + G*exp( - ao))exp(iat) 

The drag D on the cylinder is 

(4.29) 

D = D, + D, 

= inpocl( Uc sinh a,cosh a0 + G*)exp(iot) (4.30) 

The nonvanishing couple stress components are mzn, ma=, mZB, ms,. The couple stress 
vector on the boundary of the cylinder is ma& and the couple on the body is seen to be 
zero. 
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Limiting cuse 

Uy allowing cl0 to 0, we have the case of a flat plate performing harmonic oscillation 
transverse to its plane. The constants {C;l*). {xt), iF$) are to be obtained from the muster 
of linear equations (4.20) to (4.22) after the substitution x0 = 0. It is seen that the friction 
drag in this case is zero and the total drag is given by 

D = D, = &pacLG*exp(iot) (4.31) 

Numerical work 

For the numerical information on the drag one has to solve systems of linear equations 

involving the coefficients {C,}, {D”}, {E,} and (C;*>, (a}, {r;;n*>. The systems are of infinite 
order and one has to deal with three sets of unknowns, in both the cases of oscillations 
discussed in the paper. The matrices of the concerned linear systems have necessarily to 
be truncated and the order of truncation is decided by the extent to which the elements 
of the matrices can be numerically evaluated. These elements are transcendental functions 
involving modified Matheu functions and each coefficient of the matrix involves an infinite 
series expansion. The generic terms of these infinite series involve the coefficients A,” and 
B,” connected with the Mathieu functions and the modified Bessel functions I and K. 

Further the separation constant i which is the eigenvalue parameter, involves an infinite 
series expansion in powers of (ac/2)/(hc/2) and the order of truncation of the two linear 
systems is controlled by the availability in explicit form of the individual terms in the 
expansion for the parameter 2 in the standard source material [IO, 111. For the evaluation 
of the constants 1, all the known terms in its expansion as presented in the above two 
references have been utilized. 

The functions Gek, are evaluated for n = 1, 3, 5, 7, 9 and in the process of this evaluation. 
the needed modified Bessel functions I, and K, are evaluated for the orders r = 0, 1 using 
the standard expansions for them [ 121 and for r = 2, 3, 4, 5 the well known recurrence 
relations have been utilized. The functions F,,(U) and F,,(a) are needed only for odd values 
of m and n. These are obtained for m, n = 1, 3, 5, 7, 9. Thus the evaluation of the constants 

iQJ and {E,) t res s on a truncated system of 10 x 10 linear algebraic equations and the 
constants C, are determined after the determination of {D,,,) and (I?,;. Aim to have a 
larger sized truncation in the evaluation of {Dm}, (E,} would involve the need for the 

evaluation of an enlarged set of constants A:, B,” and the functions Gek,, F,, and G,,. 
The numerical evaluation of the constants {G*}, {al), { .$} in the oscillation of the cylinder 
parallel to the minor axis is treated on similar lines using a 10 x IO linear system involving 

$Q, {J$n*1. 
In both the instances, viz. oscillation of the cylinder parallel to the major axis and the 

minor axis, the drag can be written in the form 

D = -MUa(iK + K’)exp(iot) (4.33) 

where 

M = 7cpLc’cosh a,sinh ~1~ (4.34) 

measures the mass of the fluid displaced by a height L of the cylinder. The drag parameters 
K, K’ are defined by 

Cl 
UC cash a, sinh a, ! 

(4.35) 
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when the oscillation is parallel to the major axis. When the oscillation is parallel to the 

minor axis, these parameters are defined by 

c: 
UC cash x0 sinh CQ, 

(4.361 

Figures 1 20 show the variation of the drag parameters K and K’ for various values of 
the frequency and material parameters of the fluid. The case of nonpolar fluids is also 
included in the profile of figures. The symbols employed in the figures are as follows: 

l,O 0.5 1.5 2.2 

l.O- 

K 

0.99_ I I I I I 
10 1.2 14 1.6 1.8 2-O 

PT 

Fig. I. Variation of K (oscillation along major axis). 

16' 

PL PJ AL a, 

1.0 0.5 15 2.0 

1.5- 

14- 
, 

13- 
K 

12- 

1.1- 

l.O- 

0.9 I I I I I 
1.0 1.2 1.4 16 1.8 2.0 

PT 

Fig. 2. Variation of K (oscillation along major axis). 
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0.98: 

K 

0438’ 

Fig, 3. Variation of K (oscillation along major axis) 

Fig 4. Variation of K (oscil~~t~o~ along major axis). 

Fig. 5. Variation of Ic’ (oscillation ahg major axis!. 

Fig. 6. Variation of K’ ~o~c~~lat~on along major axis). 
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-ant I I I / / 

14 1.2 I.4 1.6 1.8 : 
PT 

Fig. 7. Variation of K’ (oscillation along major axis). 

w 
PL PJ AL a0 

10 10 1.5 2,o 

02- 

Pi 

Fig. X. Variation of K’ (oscillation along major axis). 

1.045- 

Y 
1,043- 

PL PJ AL a,, 

1.0 o-5 15 2,2 

l~OL1 
1.0 1.2 1.L 1.6 2.0 

PT 

Fig. 9. Variation of K (oscillation along minor axlsk. 

PL PJ AL a0 

I,0 0.5 1 5 2.0 

Fig. IO. Variation of K (oscillation along minor axis1 
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Fig. I f. Yariation of K (osciilalion along minor axisl. 

1036 Pi PJ AL So 

1.0 1.0 1.5 2.2 

1.034 

l-028 
?.O 1.2 1.8 i 

PT 

Fig. 12. Variation of K (oscillation along minor axist. 

l,O 0.5 I.5 2.0 

L 0 

Y 

-x 
-0.1 

-0.8 
1.2 1.6 1.8 2.0 

PT 

Fig, 13. Variation of K’ (osc~ilation along minor axis). 

-042 
1.0 12 14 1.8 

Fig. 14. Variation of K’ (oscillation along minor axis). 
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0 lo- 

, 

0 06 I I I I I 
1.0 1.2 14 1.6 16 20 

PT 

Fig. 15. Variation of K’ (oscillation along minor axis). 

K 

Fig. 16. Variation of K’ (oscillation along minor axis). 

Fig. 17. Variation of K (oscillation along major aus: nonpolar case). 

0 15- 

012 I I I I I 
1.0 12 lb 1.6 16 20 

PT 
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Fig. 18. Variation of K’ (oscillation along major axis; nonpolar case) 



54x 

Fig. 19. Varlatlon of h (oscillation along minor aub; nonpolar case). 

Fig. 20. Variation of K’ (oscillation along minor axis; nonpolar case). 
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