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Abstract— The paper is a study of the flow of incompressible micropolar fluid arising from the
harmonic oscillation of an elliptic cylinder parallel to either of the principal axes of its cross section.
The stream function as well as the velocity and microrotation vectors are obtained and expressed
in infinite series form involving Mathicu functions and functions allied to them. The drag on the
cylinder is evaluated and the effect of variations of the polarity and frequency parameters on the
drag as revealed by numerical studies is shown through figures.

1. INTRODUCTION

Micropolar fluids [1] are a subclass of simple microfluids [2] and the theory of either of
them takes account of the microscopic effects arising from the local structure and
micromotion of the fluid elements. In both theories, there is the sustenance of couple stress
which is a distinguishing feature of these fluids as contrasted with nonpolar fluids whose
motion is governed by the Navier-Stokes equations. Another significant departure of the
polar fluid theory is the non-symmetry of the surface stress tensor. The field equations of
micropolar fluid flow are representable in terms of the fluid velocity vector and the
microrotation vector and the constitutive equations of the theory involve first order spatial
gradients on the above two field vectors.

The study of harmonic oscillations of a body in a fluid domain has fascinated many
over the years and the oscillations of symmetric bodies like the circular cylinder, sphere
and spheroid as well as the rectilinear oscillations of an elliptic cylinder in classical viscous
fluids have been analytically examined by Kanwal [3,4]. The harmonic oscillation of a
sphere and a circular cylinder has been discussed for viscoelastic fluids of Oldroyd’s three
constant model (fluid of B-type) by Frater [5, 6] and numerical information is provided to
reveal the effects of the viscoelastic and frequency parameters on the drag experienced by
the bodies. The harmonic oscillations of symmetric bodies like a circular cylinder, a sphere
and a spheroid in micropolar fluids have already been examined in [7-9] and numerical
information extracted to show the thrust of the micropolarity parameter as well as the
frequency parameter on the drag/couple experienced by the bodies.

The present study is centred round the flow of incompressible micropolar fluid arising
from the harmonic oscillation of an elliptic cylinder oscillating rectilinearly along its major
or minor axis. The velocity and microrotation are evaluated in analytical form and the
drag on the cylinder is computed. The result of numerical study has been presented in the
form of figures showing the critical variations of the drag parameters for various frequency
levels.

2. DIFFERENTIAL EQUATIONS OF THE PROBLEM
The field equations of incompressible micropolar fluid flow are given by the collection
of equations

divg=20 (2.1
dq _ .
Pa = ol — grad p + kcurl ¥ — (u + k)curlcurl g (2.2
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Ay _ ., _
pj—d-l = pl — 2kv + kcurlg — ycurlcurl ¥
+ (x+ f + y)grad divy (2.3)
In these equations, q and v are the velocity and microrotation vectors, j is the gyration
parameter, (4, k) are the viscosity coefficients while («, f, y) are the gyroviscosity coefficients.
The symbols p, p, f, T denote per unit mass and body couple per unit mass respectively.
The force stress tensor t;; and the couple stress tensor m;; are given by [1]
t,’j = —p(jij + (2# + k)é’,, + kijr(U)r — \"r) (2.4)
mi; = Udiv¥)o;; + Py, ; + yvj (2.5)
where e;; is the rate of strain tensor and w, = }g,,v;; is the spin tensor. The viscosity
coefficients (1, k) and the gyroviscosity coefficients («,f8,y) conform to the following

inequalities:

k=0,  2u+k=0
a+B+y=20  Ba+pf+y=0; Bl <y (2.6)

An elliptic cylinder oscillates harmonically and rectilinearly with velocity, U exp(iot)
along its major or minor axis. The cross-section ellipse has the semifocal distance ¢ and
the quantity U/(co) is assumed small and the inertial and gyroinertial terms in the equations
of motion are linearized and the body force and body couple terms are deleted.

Let €,, &5, €, be the base vectors of an elliptic coordinate system with the line element

ds® = hlde® + h}dp* + dz? (2.7)
The velocity and microrotation vectors appropriate to the problem are
q = ul, f, t)e, + v, f,1)e, 2.8
v = Cla, B, e, 2.9)
and in terms of the stream function y(x, £, 1) we can write

_ W

hgu = (’?[3" ho = . (2.10)
The linearized versions of the equations of motion are
phes = P kSt R V) 1)
phy = =Sk w2 VI) 2.12)
pj% = —2kC + kViy + yViC (2.13)

in which h, = hy = h and

1(o* &
2 _ .= R
V= h2<aa2 + (3[32) (2.14)
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in view of the harmonic oscillation of the cylinder we may take

(W, B, 1), Clo, B, 1), plo. B, 1))
= (f(a. B), g, f), P, P)explior)  (2.15)

From equations (2.11-2.15) it follows easily that

i L k08 9 2
&“’”“aﬁ+k55 (#+k)aﬁ(V1f) (2.16)
P _ e % 2 e
B —ipo k6a+(u+k)aa(v,f) 2.7
(ipjo + 2k)g = yVig + kV2f (2.18)
Eliminating P from (2.16) and (2.17), we have
ipaVif + kVig — (u+ kVIVif =0 (2.19)

and eliminating g using (2.18) and (2.19) we obtain the following differential equation for

Jie, By

W + KV S — {kQu + k) + ipaly + ju + jKIVES
+ ipalipjo + 2k)V2f =0 (220

The function g(a, f) is expressible in terms of f(x, f) in the form
k(2k + ipjo)g = y(u + KV f + (k* — ipay)Vif 221
Let the complex numbers a® and b? be defined by the equations
yp + kXa? + b2 = k(2u + k) + ipaly + ju + jk) (2.22)
W + K)a?b? = ipalipaj + 2K) (2.23)

The roots with their real parts positive are denoted by a and b. Equation (2.20) can be
written in the form

ViV —a®)Vi-b)f=0 (2.24)
and it is possible to write f in the form
f=h+fi+f (2.25)
where
Vife=0, Vifi, Vif,=0bY, (2.26)
The superposition of the three solutions in (2.26) to make up the solution f is on the tacit

understanding that a® and b? are distinct. The possibility of resonance (a® = b?) cannot
be ruled out in the case of micropolar fluids and this arises when

O = Qu + k)u + k)2 + 3k)
po = (2p + k)2u + 3K)/[2u + k)] (2:27)
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The case of resonance which arises also in circular and spherical geometry is significant
and merits separate discussion.

Equation (2.21) directly expresses g in terms of the derivatives ol f and specifically it
can be expressed in terms of f; and f, in the form

k(2k + ipjo)glon ) = yu + k)a*f; + b*f)
+ (K7~ ipay)a*fy + b*f) (2.28)

The problem of the oscillation of the elliptic cylinder therefore rests on the solution of the
differential equations in (2.26) subject to the prescribed regularity requirements at infinity
and hyperstick or superadherence condition on the boundary. It may be observed that
while alternative types of boundary conditions involving the microrotation vector arc
possible, the hypersticks condition is the most common among them all.

3. OSCILLATION PARALLEL TO THE MAJOR AXIS
The elliptic coordinates (a, §) are defined by the relation

X + iy = ccosh(x + iff) (3.1)
and the cylinder is given by a = a,. The scale factors of the frame are
hy = hy = h = ¢(cosh’o — cos?f)'/? (3.2)

The adherence condition on the cylinder means that the velocity of the fluid element on
the cylinder is U exp(iot) parallel to the major axis and the microrotation vector on the
cylinder equals 4 curl(@younqary) and this is equal to zero. Therefore, on the boundary a = .
we have the conditions

u(a, p,t) = th sinh o cos ff exp(iat)

o, 1) = — % cosh a sin ff expliat)
Clo, B,1) = Ofie)glo, ) = 0 (3.3)

These are equivalent to the statements

fla, )y = —Ucsinhasinf

(;f = —Uccoshasinf (3.4
GO
and
W+ KWV + (kK2 —ipayp)Vif =0 (3.5)

on o = gy. Far away from the body, as « — o0, the velocity and microrotation vanish.
The function fy(a, §) is harmonic (cf. equation 2.26), and the boundary conditions (3.4).
(3.5) suggest the solution of the form

Jolo, B) = ZV_: C,exp(—na)sinnf (3.6)
n=1

The function fi(«, ff) satisfies the differential equation

(Vi—a’fi=0 (3.7)
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and this can be written as

8t ake?
[ ot aE o (cosh2u cos 2[1)]]”1 =0 (3.8)
Putting
Jilo, B) = R(@)S(B) (3.9)
we find that
R"(e) — (4 + (a%c*/2) cos 2a)R = 0 (3.10)
SUB) + (4 + (a®c*[2) cos 2)S 3.11)

in which 4 is the separation constant. The Mathieu equation (3.11) has the periodic
solutions [10]

ce (B, —a*c?/4), se (B, —a*c?/4) (3.12)
corresponding to a discrete set of values of 4 which are functions of (a®c?/4). In this problem

we need Only the solutions S€m correspond to the characteristic numbers & = A2m+ 15 A= b2m+ 2 and have
the Fourier sinc series expansions

oo (B — PP [4) = Z (— " AGm Vsin(2r + DB (3.13)
=0

S s o, —a2c?/d) = 2 (= 1" "B 5V sin(2r + 2)p (3.14)
=0

In these Fourier expansions, the coefficients A, B are functions of the parameters (—a?c?/4).
The solutions of the modified Mathieu equation (3.10) that correspond to the solutions
n (3.13), (3.14) and vanish as o — oo are given by the functions Gek, (o, —a?c?/4) which
arc representable in the form [10, p. 248]:
Gk (o — a2 /8y = [paps (mAE™ Y]
S AR L (ace /2K, , (ace*)2)
+ I, (ace™ */2)K (ace®/2)} (3.15)
Gekopy oo, —a?c?/4) = [S2m+2/TBE™ ]
Y BEnL P I (ace */2)K, , Hlace?/2)
=0

+ I, 1 5(ace ™ */2)K (ace®/2)} (3.16)

in which I and K denote the modified Bessel functions. The solution fi(a, ) is thus
representabie in the form

fi(e, B) = i D,Gek (o, — a*c?/4)se (B, — a’c?/4) (3.17)
n=1
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The function f,(«, ) can similarly be represented in the form
flo By =Y. E,Gekfa, —b2c*/4)se (B, b2c*/4) (3.18)
n=1

The solution of (2.24) is obtained by the addition of f;, f; and f;, given in (3.6), (3.17) and
(3.18) respectively.

The constants {C,}, {D,}, {E,} are determined by the boundary conditions (3.4), (3.5)
and to enforce these, it is essential to recast the expansions of f; and f; in (3.17) and (3.18)
into Fourier series involving sine terms of f. This is done using the expansions for se,,, ,
and se,,, ., given in (3.13) and (3.14). We may write

Gek,(e, — a2 /A)sen(f, —a?c*/d) = 3" Fonfodsinnp (3.19)
n=1

and then it is easily seen from (3.13), (3.14) and (3.19) that

0,(n=24,6,...)

(— ™ AT DGk y(0, —a2c2/) (1= 2r + 1,r =0,1,2,..) U2

F2m+ l,n(a) = {

0,(n=1,3,5,...)

F = .
e = o o=+ 27 =012, B2

In a similar way, we can have
Gek, (o, —b*c*/A)se,(B, —b*c*/4) = Y, G (a)sinnf (3.22)
n=1

The functions G,,(«) are defined exactly as F,,(«} given in {3.20), (3.2) with the parameter
b%c?/4 instead of a*c?/4. The function f(x, f) can then be represented in the form

fp) = i (C, exp(—na) + i D, Fr(@)

+ ¥ Emen(a))SinnB (3.23)

m=1

From this we have

a0 " k
vif 4k - ;",;V Vif= z{zu,,.(a o f’,‘c’)” 2) Fonl)

n=1 im=1
$ | (e 4 Kooy 2) }
* m; bm(” W+ R b? |Gy psinnf  (3.24)

The boundary conditions (3.4), (3.5) can now be enforced and we have the following muster
of linear algebraic equations in the constants {C,}, {D,}, {E,}:

Cexp(—nog) + Y DpFpn(o) + Y. EpGpaltto) = — Ucsinhogd,, (3.25)
m=1 m=1

—nCexp(—nag) + Y, DpFo(e) + 3 EnGoalate) = — Uccoshagd,, (3.26)
m 1 me= 1
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& kK —ipay )
4 i2
E D + —_— F
m=1 "‘(u ’y(ﬂ k) ¢ mn(aO)

+ i E (b4+mbl>G ()=0 (=1 (327
= W + k) o - '

The prime on F,, and G,,, in (3.26) indicates differentiation with respect to «. Elimination
of C, from equations (3.25), (3.26) leads to the linear set of equations in the constants {D,,},

(En):

S DolnF ) + Folao)

+ Y EL[1G(20) + Gonlte)] = — Ucexp(ag)dyy  (3.28)
m=1

The systems of equations (3.27) and (3.28) can be used to determine the constants D, E,,
and then the constants C, are obtainable from (3.25). This leads to the determination of
the solution f(«, ). The function g(«, B) is thereafter determined from (2.28). The velocity and
microrotation components are then determined from the stream function Y, 8, £) = f(o, B)
exp(ict) and the function g(x«, f) expliat).

Pressure

The pressure distribution p(a, §,t) = P(o, f) exp(iot) is determined from (2.16) and (2.17).
From (2.16), we have

ﬁP . 8 . . i c e v—1
Pl lpffb‘/}(fo + fi + 1) + 2k + ipjo)

J . ) .
-%w+m@w%+wm+w24mm%Wh+mm}
e S @ ) (329

op
It can be seen that df,/Jff and df,/3f in the above add up to zero. Hence

A x
op_ ips > nC,exp(—nax)cos nfi (3.30)

-
du et

and on integration

AL

P(x,f) = —ips Y. C,exp(—na)cosnf (3.31)
1

The integration constant in (3.31) is chosen equal to 0.

Drag on the cylinder
The stress tensor t;; can be evaluated using (2.4) and the nonvanishing components of

I Are Ly, Loy, Lgy, Lgg, L. The stress vector on the cylinder is t,,€, + t,58; + 1,.€. and the
drag per length L of the cylinder is

2n

D=D,+ D¢ = CLJ (tySinhacos f — t,,coshasin f), -, df (3.32)

0
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where the pressure drag D, and the friction drag D; are given by

D, = ¢L§" (t,,sinh o), -, cos fdf

2n
D; = -CLJ (tygcosha),_, sin fdfs (3.33)
0
From (2.4) we have
t= — P+ 2u+ ke, (3.34)
Ly = Cu+ K)egy + ko, — v,) (3.35)

and elementary but long calculation shows that on the boundary of the cylinder

=0 (3.36)
€up = — (2(/jpi k)> {Uc sin g sin
+ Y C,exp(—nap)sin nﬁ} expliot) (3.37)
n=1
and
W, ~V, = €y (3.38)
It follows that
D, = inpacLC, sin agexp(— op)exp(iot) (3.39)
while
D, = inpocL coshay[ Ucsinh oy + C, exp(— op)]expliot) (3.40)
The total drag on the cylinder is thus
D = inpocL(Ucsinh gy coshag + Cylexp( (3.41)

The couple stress m;; defined in (2.5) has the nonvanishing components m,,, m,,, mg,
and m_y. The couple stress vector on the boundary is m,.€, and the couple on the cylinder
about the axis is zero.

Limiting case

By allowing «, to +0, we have the case of a flat plate harmonically oscillating along its
edge. The stream function ¥ = f(«, Blexp(iat) is found from (3.23) and the constants {C,},
{D,}, {E,} are determined from the linear equations after chosing ay = 0. The pressure
drag in this case is zero and the drag

D = D, = inpcLC expliot). (3.42)

4. OSCILLATIONS PARALLEL TO MINOR AXIS
This runs similarly in all details to the problem of oscillation parallel to the major axis
and results are only briefly stated.
Let the elliptic coordinates be now defined by the relation

x + iy = csinh(a + iff) 4.1)
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The cylinder is given by « = o, and
h = c(sinh?a + cos?f)*/? 4.2)
The boundary conditions are

f(a, )= —Uccoshasin
df /0o = — Ucsinhoasin (4.3)

and
W+ VIS + (K — ipoy)Vif =0 (4.4)

on o = a,. The differential equation for f{x, §) is (2.24) as before and the solution is the
sum of the three functions fy(a, 8), fi(=, B, fo(x, ) respectively satisfying the three differential
equations in (2.26). We have

fow )= 3, Gexp(—najsinnp (4.5)

The solutions fy(x, B), f3(a, f) are of a different type compared to those in the previous
section. The differential equation for fi{a, §)} is

(27
du?  OpF 2

(cosh 2t + cos 2{)’)})‘1 =0 {4.6)

which differs from (3.8). Taking fi(x, f) = R(0)S(B), we see that

R'(a) — (z + %ficosh 2a> R(@) =0 4.7)
S"(B) + (,1 - %"Zcos 2/3)5(/3) =0 (4.8)

The solutions of (4.8) are ce,(B,a%c?/4) and se,{B,a%c?/4) corresponding to a discrete set
of values of the separation constant 4 and in the problem we need the functions se,, only.
They correspond to the characteristic numbers 4 = b,,, .y, by, and have the Fourier
sine series expansions

seam+1(B,a*c?/4) = 3, BERYVsin(2r + 1) (4.9)
r=0

seam+o{fa’c?/4) = 3 BER LY sin2r + 2)p (4.10)
r=0

The solutions of (4.7) that correspond to the solutions in (4.9), (4.10) and which vanish as
a — oo are the modified Mathieu functions Gek,,+ ,, Gek,,,, given by

Gelgy s {o, —a%c?/4)
= (Sams o/ (RBP™TD) Y, BEED {I{ace /2K, 1 (ace®/2)
r=0

+ 1, (ace™ */2)K face”/2)} 4.11)
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Geky,, 4 o, —a*c?/4)
= [Spms 2/ BE™* )] Y BEWD I (ace™/2)K, . place®/2)
r=0
— I, ¢ face */2)K {ace®/2)}. {(4.12)

The functions fi{e, f) and f5{a, f) can be expressed in the form

fh) = 3 DGeK(t, — a’c?/A)se B a*c?/4) (4.13)
and
filo B =3 EGeko, —b2c*/4)se,(B.b*c*/4) (@.14)
n=1

These functions can be put into alternative forms involving a series of sines in f as in the
earlier section and the solution f(a, §) may be cast into the form

o

f@ap =13 {Cfexp(—naH i DLE ()

n=1
+ ‘2 E,‘,G;,,(oc)} sinnf {4.15)
m=1

The functions F,(a), G,(2} are defined in a way analogous to the corresponding relations
of the previous section:

Foms 1) = {?33(%; UzG:@iﬂga M=+ 1r=012.) 19
Fom 2.0 = {%é;;l’l(,}j;;,;+zza —actA),(n=2r+2,r=0,12,..) (@17)
G 1.0%) = {(;‘2(2:’2‘.;;’2(;2;@%“&, b2 A n=2r+ Lr=0,1,2,..) (4-18)
G 2,(8) = {OB’(Z(Z,’;:;“)I(,}E;;,;HEa, —b22A),(n=2r + 2,r =0,1,2,..) (“19)

The constants {G}, (D}, {E.} in (4.15) are determined from the boundary conditions
(4.3) and (4.4). The linear equations involving the unknowns {G}, {ID,}, {E,} are given
by

Goxpl—nag) + 3. Difito) + 3 EiGulao) = ~Uccoshmod,y (420

~nGexp(—nzo) + Y. DiFinfoo) + 3. EiGuleo) = ~Ucsinhaod,,  (421)
m=1 m=

X o 4 kZ —-ipO' 2) * & xk( 4 kZ ‘IPG'J’bz) * — 4.2
3 e e e+ $ B+ S qe <0 0
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Flimination of the constants G from the two equations (4.20), (4.21) leads to the set of
linear equations

> BilnEao) + Ealo} + 3 EilnGuleo) + Gulao)) = —Ucexplaoldy, (423)

From equations (4.22) and (4.23) it should, in principle, be possible to determine the
constants {D;} and {E,} and thereafter the constants {G'} from (4.20). This leads to the
determination of the solution f{(x, f) and the function g(x, 8) will then be available from
(2.28).

Pressure

The pressure p(a, f,t) = P(a, flexpliot) is determined from equations (2.16) and (2.17).
After elementary though lengthy calculation, we find that

P(o,B,t) = —ipo Z Gexp(— na)cos nfi exp(iat) (4.24)

n=1

Drag on the cylinder
It is seen that on the cylinder, the strain velocity component ¢,, = 0 and

(Uccoshogsinf + Z G exp(— nag)sin nf)expliot) 4.25)

Cap = z( + k)

Further, w, — v. = e, on o = «,. The stress components on the cylinder are therefore

= ipo i (G exp(— nag)cos nflexpliot) (4.26)

typ = — (ipo)( Uccosha,sin f§

+ i Gexp(— nag)sin nﬁ>exp(iat) 4.27)

The pressure drag per unit length L of the cylinder is

2n
D, = cLcosh %J (tywda=ao €08 Bdf = inpacL( cosh apexp( —ag)expliot)  (4.28)

0

The friction drag is

D, = —c¢Lsinh %J (tap)a=u, Sin Bdf
o]

= inpocL sinh ay(Uccoshay + Gexp(— ag))expliot) (4.29)
The drag D on the cylinder is
D =D, + Dy
= inpacL(Ucsinhagcosh oy + G)expliot) (4.30)

The nonvanishing couple stress components are m_,, m,,, m,, my,. The couple stress
vector on the boundary of the cylinder is m,,e, and the couple on the body is seen to be
Zero.
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Limiting case

By allowing a, to 0, we have the case of a flat plate performing harmonic oscillation
transverse to its plane. The constants {G'}, {D,}, {E,} are to be obtained from the muster
of linear equations (4.20) to (4.22) after the substitution x«, = 0. It is seen that the friction
drag in this case is zero and the total drag is given by

D = D; = inpacL(expliot) (4.31)

Numerical work

For the numerical information on the drag one has to solve systems of linear equations
involving the coefficients {C,}, {D,}, {E,} and {G}, {D;}, {E.}. The systems are of infinite
order and one has to deal with three sets of unknowns, in both the cases of oscillations
discussed in the paper. The matrices of the concerned linear systems have necessarily to
be truncated and the order of truncation is decided by the extent to which the elements
of the matrices can be numerically evaluated. These elements are transcendental functions
involving modified Matheu functions and each coefficient of the matrix involves an infinite
series expansion. The generic terms of these infinite series involve the coefficients A and
B connected with the Mathieu functions and the modified Bessel functions [ and K.
Further the separation constant 4 which is the eigenvalue parameter, involves an infinite
series expansion in powers of (ac/2)/(bc/2) and the order of truncation of the two linear
systems is controlled by the availability in explicit form of the individual terms in the
expansion for the parameter 4 in the standard source material [ 10, 11]. For the evaluation
of the constants 4, all the known terms in its expansion as presented in the above two
references have been utilized.

The functions Gek,, are evaluated forn = 1, 3, 5, 7, 9 and in the process of this evaluation,
the needed modified Bessel functions I, and K, are evaluated for the orders r = 0, 1 using
the standard expansions for them [12] and for r = 2, 3, 4, 5 the well known recurrence
relations have been utilized. The functions F,,(x) and F,,(a) are needed only for odd values
of m and n. These are obtained for m, n = 1, 3, 5, 7, 9. Thus the evaluation of the constants
{D,} and {E,} rests on a truncated system of 10 x 10 linear algebraic equations and the
constants C, are determined after the determination of {D,,} and {E,}. Aim to have a
larger sized truncation in the evaluation of {D,}, {E,} would involve the need for the
evaluation of an enlarged set of constants A7, By and the functions Gek,, F,, and G,,.
The numerical evaluation of the constants {G'}, { D}, { k) in the oscillation of the cylinder
parallel to the minor axis is treated on similar lines using a 10 x 10 linear system involving
D). (B

In both the instances, viz. oscillation of the cylinder parallel to the major axis and the
minor axis, the drag can be written in the form

D = —MUod(iK + K')explict) (4.33)
where
M = npLc?cosh aysinh ag (4.34)

measures the mass of the fluid displaced by a height L of the cylinder. The drag parameters
K, K’ are defined by

C
_K —iK =il1 ' '
l l( * Uccosh o, sinh (xo) (4.35)
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when the oscillation is parallel to the major axis. When the oscillation is parallel to the
minor axis, these parameters are defined by

. ) ct
—K —iK =il1 _ 4.36
: l< + Uccosh 2, sinh ao) ( )

Figures 1. 20 show the vanation of the drag parameters K and K’ for various values of
the frequency and material parameters of the fluid. The case of nonpolar fluids is also
included in the profile of figures. The symbols employed in the figures are as follows:

2 . )
PL:k(2u+k)c’ PJ:j(“+k),
P+ k) 7
. 2
AL:Z(#+M, PT — poc
k M+ k

PL PJ AL oo
10 05 15 22

0-99

1.0 12 14 16 1.8 20

Fig. 1. Variation of K (oscillation along major axis).

16
PL P} AL ag
0 05 15 20
1-5—
1.4
13

0-9 1 1 | 1 | I

Fig. 2. Variation of K (oscillation along major axis).
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Fig. 3. Variation of K (oscillation along major axis).
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Fig. 4. Variation of K (oscillation along major axis).
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Fig. 3. Variation of K’ {oscillation along major axis).
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Fig. 6. Variation of K’ {oscillation along major axis).
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Fig. 7. Variation of K’ (oscillation along major axis).
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Fig. 8. Variation of K’ (oscillation along major axis).
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Fig. 9. Variation of K (oscillation along minor axisk.
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Fig. 10. Variation

of K (oscillation along minor axis).
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Fig. 17. Vanation of K (oscillation along major axis; nonpolar case).
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Fig. 18. Variation of K’ (oscillation along major axis; nonpolar case).
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Fig. 19. Variation of K (oscillation along minor axis; nonpolar case).
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Fig. 20. Variation of K’ (oscillation along minor axis; nonpolar case).
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