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Abstract 

A simplified oil refinery model has been formulated as a fuzzy nonlinear goal programming problem, in which 
four non-compatible performance criteria (objective functions or goals) exist beside ten crisp constraints in the form 
of material balance equations. Total yearly profit of the refinery and the sensitivities of the profit to variations in 
refinery conditions have been assumed to be fuzzy goals. Linear and S-type membership functions have been 
assumed separately for all the fuzzy goals. Box's complex method has been used to solve the crisp equivalent of the 
fuzzy nonlinear goal programming problem. The "rain" operator has been used as the aggregator. A software 
developed in C implements the model. The results show that the present methodology gives the decision maker a 
good flexibility in setting up the goals, in that he/she is not forced to specify goals crisply simply for mathematical 
reasons. Also, the present treatment of the problem in a fuzzy framework enables the decision maker to consider any 
number of goals in any combination. © 1998 Elsevier Science Ltd. All fights reserved 
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1. Introduction 

From the time fuzzy set theory was first propounded 
by Zadeh (1965) it emerged as a new paradigm in which 
linguistic uncertainty could be modelled systematically. 
Literature on this exciting field grew by leaps and 
bounds and fuzzy logic has made inroads into many 
diverse fields, such as consumer electronic appliances, 
process control, decision making, economies, social 
sciences and, indeed, all other branches of science and 
engineering. Among other fields, optimization was one 
of the main beneficiaries of this "revolution". A number 
of researchers have contributed to fuzzy linear goal 
programming (Bellman and Zadeh, 1970; Zirnmermarm, 
1991; Tiwari etal. ,  1987, to mention but a few.). Sakawa 
and Yani (1991) introduced pareto optimality and 
augmented minimax methods to fuzzy nonlinear pro- 
gramming problems with fuzzy parameters. This is the 
only published report dealing with fuzzy nonlinear goal 
programming problems. As far as application to chem- 
ical engineering problems is concerned, Kraslawski et 
al., 1989 first applied fuzzy dynamic prograrmning to the 
synthesis of distillation columns. Very recently, Qian and 
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Tessier (1995) applied fuzzy relational modelling to a 
product quality control problem in the optimization of a 
wood chip refining process. In this paper, a new model to 
solve the fuzzy nonlinear goal programming problems 
has been developed, in which the goals themselves and 
not the parameters are assumed to be fuzzy in nature. 
Also, the material balances have been treated in a crisp 
manner, unlike the approach of Qian and Tessier (1995). 
Here a simple, real life steady-state optimization prob- 
lem in petroleum refineries, with multiple performance 
criteria, has been formulated and solved as a fuzzy 
nonlinear goal programming problem. 

2. Fuzzy nonlinear goal programming model 

Consider the conventional multi-objective nonlinear 
programming problem, with n decision variables, m 
nonlinear objective functions, and k nonlinear con- 
straints: 

Maximize f , (x , ,x2 , . . . . , x , ) , i=l ,  2 ...... m (1) 

subject to 

CiELLi<-g~(x, x 2 ....... x,)<-UL~, i= 1, 2 ..... k'] 

LB~--xi<--UBi, i= 1, 2 ..... n J (2) 
x~>--O, i= 1, 2 ...... n 

where, LL~, UL~ (i= 1, 2 ..... k) are respectively the lower 
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and upper limits for the constraints and LB I, UB t (i= I, 
2 ..... n) are respectively the lower and upper bounds for 
the decision variables. Let Zi be the maximized values of 
f, ( i - I ,  2,..., m). 

There are several methods of finding "good" solutions 
to the above problem, such as scalar maximization, goal 
programming, etc. However, more otien than not, the 
decision maker (DM) is confronted with the problem of 
not being able to fix the aspiration levels for the goals to 
be attained in a crisp fashion. Yet, he or she may be 
forced to give such levels in order to facilitate the proper 
modelling of the problem. However, since the advent of 
fuzzy set theory, this difficulty for the DM can easily be 
obviated (Tiwari et  aL, 1987; Zimmermann, 1991). 

Bellman and Zadeh (1970), while formulating their 
famous model, assumed that the objectives as well as 
constraints in an ill-structured situation can be repre- 
sented by fuzzy sets. A decision is then defined as the 
intersection of all the fuzzy sets represented by objec- 
tives and the constraints and is represented by its 
membership function as follows (Zimmermann, 1991): 

tzb(x)=(Ize,(x)*.....*l~t,(x))*(Iz~,(x)*..... *tzo,(x)) 

where,/) represents fuzzy decision, C7~ represents the ith 
fuzzy constraint (i= 1,...,k) and G1 represents the jth 
fuzzy goal, /zb(x) is the membership function of the 
decision and/ze,(x) is the membership function of the i 'h 
constraint and p~(x) is the membership function of the 
jth goal and * is an appropriate "aggregator" or 
connective. Depending on the context, the membership 
functions of some or all of the goals can be chosen to be 
linear or nonlinear. In view of the foregoing, assuming 
that only the goals are fuzzy and that constraints and 
parameters are crisp in nature, the fuzzified version of 
the model of( l )  is as follows: 

Find X=(xm, x2 ..... xn) such that "1 

Gi==-f i (x)~Zt i= 1, 2 ..... m ] 
subject to constraints and bounds given by Equation (2) 

(3) 

where, "-~" denotes the fuzzy version of ~ and has the 
interpretation as "essentially smaller than or equal to" in 
the parlance of fuzzy set theory (Zimmermarm, 1991). 
This means that though f~(X) is smaller than Z~, a 
"leeway" has been allowed for f , (X)  to go beyond Z,. 
Similarly, when minimization is involved in some of the 
goals, we use 5. to mean "essentially greater than or 
equal to". Within the framework of the Bellman and 
Zadeh (1970) model, and following Zimmermann 
(1991), a crisp equivalent of the model of(3) is given as 
follows: 

Maximize(txl  * la2 * ...... *t*=) 

subject to ] 
constraints and bounds given by Equation (2) and 
0--</z~ 1, i=1,2 . . . .  m 

(4) 

where,/~ is the membership function of the ith goal. The 
definitions of/z~ (i= 1 ..... m) are given later. 
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It is obvious that the symbol * is the aggregator which 
can be "addition operator" or "product operator" or "min 
operator". Also, it is quite clear from the above that the 
(4) is a crisp nonlinear programming problem. Thus the 
fuzzy nonlinear goal programming problem given by (3) 
has been converted to its crisp equivalent in (4). To solve 
it, Box's complex method has been resorted to and it has 
been found to be simple and powerful to solve problems 
of this nature. 

3. Fuzzy formulation of the refinery model 

First, fuzziness is introduced into the model through 
the four objective functions considered in Seinfeld and 
McBride (1970), viz. profit and the absolute values of  
the sensitivities in profit to variations in parameters w,0, 
w,l and h2. These sensitivities appear in the form of 
partial derivatives of profit with respect to Wio, w,~ and 
h2, respectively, in the original model. This way of 
introducing fuzzification into the problem guarantees the 
DM the strict satisfaction of the material balances. For 
details of the refinery model the reader is referred to 
Seinfeld and McBride (1970). 

In the present study membership functions are defined 
as follows. Using Box's complex method, the crisp 
maximum of the profit is found to be 105,392,664 
dollars. Similarly, using the two-phase simplex method 
(Rao, 1985), the absolute values of the three sensitivities 
are minimized in the crisp sense (as these sensitivities 
turn out to be linear). Let fbe  the profit, f~ the absolute 
value of the sensitivity of wl0 onf ,~  the absolute value 
of the sensitivity of w~, on fand~  the absolute value of 
the sensitivity of h2 on f respectively. The minimum 
values of f~, f2 and f3 are found to be 51,268A10; 
21,976,212 and 27,289,704A48, respectively. 

Thus the refinery model is reformulated as the fuzzy 
nonlinear goal programming problem as 

Find X= (X~ ~.~2~..~3~4~5~kT6~7~kFS~k'r9) such that 

f-~ 105,392,664 
fl 5.51,268,410 

f25.21,976,212 
f35"27,289,704,448 

subject to constraints given in Seinfeld and McBride 
(1970). 

This is done for illustrative purpose only. In practice, 
one need not find the crisp maximum of the profit and 
crisp minimum of the absolute values of the sensitivities 
in profit to variations in parameters wto, w, and h2. In 
general, the DM is aware of the profits and other 
quantities year-wise only and not the crisp maximum 
profit or crisp minimum of effects of the parameter 
sensitivities on the profit. Hence in such case, the DM 
can always use the best profit obtained so far or the worst 
sensitivities of the parameters on the profit as the 
aspiration levels, and during fuzzification a leeway can 
be given according to his/her choice. Then membership 
functions are defined for all the fuzzy goals as follows. 
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/ 1 105,392,664- f 

/A= ~105,600--~ - 10--0~,392,664 
k'-' 

i f f  < 105,392,664 
if 105,392,664--<f-- < 105,600,000 

if f >  105,600,000 (5) 
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Maximize min(/z.pa,/~,p4) 

Subject to ] 

constraints given in Seinfeld and McBride, 1970) 

and 0---/~,<-1, i = t  to 4 

/z2= 

l 
_ ~ - 50,000,000 

[ 51,268.410 - 50,000,000 

"0 

if ]1 >- 51,268,410 

if 50,O00,O00--<ft-<51,268,410 

if f~ <- 50,000,000 (6) 

i2- 2o,ooo,ooo 
021,976,212 - 20,000,000 

if f2>--- 21,976,212 
if 20,000,000--<f2<-21,976,212 

if f2<--20,000,000 (7) 

J1 f 3  - -  27,200,000,000 

/z4 = /07,289,704,448 - 27,200,000,000 

if f3 -> - 27,289,704,448 

if 27,200,000,000<--f3<--27,289,704,448 

if f<--27,200,000,000 (8) 

Apart from the linear membership functions, "S-type" 
(Zimmermann, 199 I) (for goals involving minimization) 
and "mirror image of S-type" (for goals involving 
maximization) membership functions are also attempted, 
The equations for such membership functions are 
omitted here for the sake of brevity. Once membership 
functions are defined the crisp equivalent of the fuzzy 
goal nonlinear programming model is given as follows: 

(9) 

Now, Box's method cannot be used directly to solve 
the above problem, as most of the constraints (which are 
mass balances), are in the form of equalities. Hence the 
method suggested by Reldaitis et al., 1983 has been 
resorted to. Accordingly, the entire problem has been 
reformulated with seven independent decision variables 
and seven constraints as follows. This is solved using 
Box's method. 

MaximizeA 
subject to 
- 13,560<-0.43xf - 0.678x3-<30,552.2 
49,400<-0.54xr + 1.596x3-80,520 
0.0<xf <-90,000 
14,700.6<x3-<20,000 
A-</~i-<l, i = l t o 4  
and the constraint in the form of equations (5) to (8). 

4. Results and discussion 

The study has been carried out in three cases as 
follows: (1)fandfj as fuzzy goals (2)fandf2 fuzzy goals 
and (3)fandf3 as fuzzy goals. The Table 1 shows that 
case (2) provided the best solution, from the DM's point 
of view, because, bothfandf~ are very much near their 
respective crisp optimum values. This is particularly 
significant because we are no longer working in a "crisp- 
single-objective" environment. The next best solution is 
the case (1), because, here, t b e f  value did not go far 
away from its crisp minimum value and, moreover, there 
is only a marginal decrement in the value of  profit f 
compared with its crisp maximum value. Finally, in case 
(3), the marginal decrement in profitfis accompanied by 
an enormous two hundred per cent increment in the 
value off3 compared with its crisp minimum value. In 
this way one can rank the parameters according the way 
they affect the profit. 

Thus, in the methodology presented here, the DM has 
got good flexibility, in that, (1) he/sbe can consider as 
many cases as be/sbe wants, (2) the decision variables 
and/or parameters and/or the material balances can be 
considered as fuzzy goals along with the existing ones. 

Table 1. Performance of the fuzzy nonlinear goal programming model 

Goals and decision vector* Case (1) Case (2) Case (3) 

f 0.980× l0 s 1.050 × 108 1.001 × 108 
ft 12.94× 107 
A 2.760 X 107 
f3 5.528 X 10'° 
x~ 46,650.473 18,683.166 74,963.039 
x 3 15,714.483 19,010.391 18,463.316 
CPU time (s) 26 22 13 
Function evaluation 80 79 53 

* Here the decision vector does not include p's and A 
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In the present paper, however, only the four objectives 
defined by Seinfeld and McBride (1970) have been 
assumed to be fuzzy goals. This was decided mainly 
because only then would a comparison with their results 
be possible and meaningful. For this very reason, none 
of the cases produced a solution wherein the value of any 
goal went beyond the crisp maximum value (in the case 
ofprofitJ) and crisp minimum value (in the case off,,f2 
and f3). Our experience shows that both kinds of 
membership functions performed equally well. 

5. Conclusions 

A new methodology has been developed to solve 
fuzzy nonlinear goal programming problems. A realistic 
steady-state optimization problem occurring in refineries 
has been modelled as fuzzy nonlinear goal programming 
problem and solved successfully using the methodology 
developed. Linear and S-type membership functions 
have been considered for the fuzz3, goals. Both per- 
formed equally well. The methodology presented was 
found to have tremendous flexibility in that fuzziness 
could be introduced not only via the goals but also 
through the independent variables and material balances. 
This treatment of the problem, within the framework of 
the fuzzy set theory, allows the DM to conduct a 
comprehensive study considering various combinations 
of  the goals at varied aspiration levels. 
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