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Abstract

A simplified oil refinery model has been formulated as a fuzzy nonlinear goal programming problem, in which
four non-compatible performance criteria (objective functions or goals) exist beside ten crisp constraints in the form
of material balance equations. Total yearly profit of the refinery and the sensitivities of the profit to variations in
refinery conditions have been assumed to be fuzzy goals. Linear and S-type membership functions have been
assumed separately for all the fuzzy goals. Box’s complex method has been used to solve the crisp equivalent of the
fuzzy nonlinear goal programming problem. The "min” operator has been used as the aggregator. A software
developed in C implements the model. The results show that the present methodology gives the decision maker a
good flexibility in setting up the goals, in that he/she is not forced to specify goals crisply simply for mathematical
reasons. Also, the present treatment of the problem in a fuzzy framework enables the decision maker to consider any

number of goals in any combination. © 1998 Elsevier Science Ltd. All rights reserved
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1. Introduction

From the time fuzzy set theory was first propounded
by Zadeh (1965) it emerged as a new paradigm in which
linguistic uncertainty could be modelled systematically.
Literature on this exciting field grew by leaps and
bounds and fuzzy logic has made inroads into many
diverse fields, such as consumer electronic appliances,
process control, decision making, economics, social
sciences and, indeed, all other branches of science and
engineering. Among other fields, optimization was one
of the main beneficiaries of this "revolution”. A number
of researchers have contributed to fuzzy linear goal
programming (Bellman and Zadeh, 1970; Zimmermann,
1991; Tiwari et al., 1987, to mention but a few.). Sakawa
and Yani (1991) introduced pareto optimality and
augmented minimax methods to fuzzy nonlinear pro-
gramming problems with fuzzy parameters. This is the
only published report dealing with fuzzy nonlinear goal
programming problems. As far as application to chem-
ical engineering problems is concerned, Kraslawski et
al., 1989 first applied fuzzy dynamic programming to the
synthesis of distillation columns. Very recently, Qian and
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Tessier (1995) applied fuzzy relational modelling to a
product quality control problem in the optimization of a
wood chip refining process. In this paper, a new model to
solve the fuzzy nonlinear goal programming problems
has been developed, in which the goals themselves and
not the parameters are assumed to be fuzzy in nature.
Also, the material balances have been treated in a crisp
manner, unlike the approach of Qian and Tessier (1995).
Here a simple, real life steady-state optimization prob-
lem in petroleum refineries, with multiple performance
criteria, has been formulated and solved as a fuzzy
nonlinear goal programming problem.

2. Fuzzy nonlinear goal programming model

Consider the conventional multi-objective nonlinear
programming problem, with n decision variables, m
nonlinear objective functions, and % nonlinear con-
straints:

Maximize fix,, Xps.erisXy), i =1, 2,...., m )
subject to

LB=x<UB;i=1,2,.,n

C=LL=g x), Xppouones X )<UL, i=1, 2,.... k
] @
x=20,i=1, 2,....n

where, LL, UL, (i=1, 2,..., k) are respectively the lower
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and upper limits for the constraints and LB, UB, (i=1,
2,..., n) are respectively the lower and upper bounds for
the decision variables. Let Z, be the maximized values of
fiG=1,2,.,m).

There are several methods of finding "good” solutions
to the above problem, such as scalar maximization, goal
programming, etc. However, more often than not, the
decision maker (DM) is confronted with the problem of
not being able to fix the aspiration levels for the goals to
be attained in a crisp fashion. Yet, he or she may be
forced to give such levels in order to facilitate the proper
modelling of the problem. However, since the advent of
fuzzy set theory, this difficulty for the DM can easily be
obviated (Tiwari et al., 1987; Zimmermann, 1991).

Bellman and Zadeh (1970), while formulating their
famous model, assumed that the objectives as well as
constraints in an ill-structured situation can be repre-
sented by fuzzy sets. A decision is then defined as the
intersection of all the fuzzy sets represented by objec-
tives and the constraints and is represented by its
membership function as follows (Zimmermann, 1991):

o) = (e, ()% * e O+ (g, (X)*.... xug (x))

where, D represents fuzzy decision, C; represents the ith
fuzzy constraint (i=1,...,k) and G, represents the jth
fuzzy goal, up(x) is the membership function of the
decision and u(x) is the membership function of the i
constraint and Mo (x) is the membership function of the
jth goal and * is an appropriate “aggregator’ or
connective. Depending on the context, the membership
functions of some or all of the goals can be chosen to be
linear or nonlinear. In view of the foregoing, assuming
that only the goals are fuzzy and that constraints and
parameters are crisp in nature, the fuzzified version of
the model of (1) is as follows:

G=f(0=Zi=1,2,.,m
subject to constraints and bounds given by Equation (2)
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where, "<" denotes the fuzzy version of =< and has the
interpretation as “essentially smaller than or equal to” in
the parlance of fuzzy set theory (Zimmermann, 1991).
This means that though f(X) is smaller than Z, a
"leeway” has been allowed for f(X) to go beyond Z,
Similarly, when minimization is involved in some of the
goals, we use = to mean "essentially greater than or
equal to”. Within the framework of the Bellman and
Zadeh (1970) model, and following Zimmermann
(1991), a crisp equivalent of the model of (3) is given as
follows:

Find X=(x,, X,,..., X,;) such that ]

Maximize(p,* pp*...... % i)
subject to
constraints and bounds given by Equation (2) and
O=u=1,i=12...m

4
where, 4, is the membership function of the ith goal. The
definitions of g, (i=1,..., m) are given later.
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It is obvious that the symbol * is the aggregator which
can be "addition operator” or "product operator” or "min
operator”. Also, it is quite clear from the above that the
(4) is a crisp nonlinear programming problem. Thus the
fuzzy nonlinear goal programming problem given by (3)
has been converted to its crisp equivalent in (4). To solve
it, Box’s complex method has been resorted to and it has
been found to be simple and powerful to solve problems
of this nature.

3. Fuzzy formulation of the refinery model

First, fuzziness is introduced into the model through
the four objective functions considered in Seinfeld and
McBride (1970), viz. profit and the absolute values of
the sensitivities in profit to variations in parameters w,,,
w,, and h,. These sensitivities appear in the form of
partial derivatives of profit with respect to w,q, w,, and
h,, respectively, in the original model. This way of
introducing fuzzification into the problem guarantees the
DM the strict satisfaction of the material balances. For
details of the refinery model the reader is referred to
Seinfeld and McBride (1970).

In the present study membership functions are defined
as follows. Using Box’s complex method, the crisp
maximum of the profit is found to be 105,392,664
dollars. Similarly, using the two-phase simplex method
(Rao, 1985), the absolute values of the three sensitivities
are minimized in the crisp sense (as these sensitivities
turn out to be linear). Let f be the profit, £, the absolute
value of the sensitivity of w), on f, f; the absolute value
of the sensitivity of w, on fand f; the absolute value of
the sensitivity of A, on f respectively. The minimum
values of f,, f; and f; are found to be 51,268,410;
21,976,212 and 27,289,704,448, respectively.

Thus the refinery model is reformulated as the fuzzy
nonlinear goal programming problem as

Find X=(X,.X;,X;,X0, X5, XX, X3, ;) such that

£=105,392,664
£1=51,268,410
£,221,976,212
£1227,289,704,448

subject to constraints given in Seinfeld and McBride
(1970).

This is done for illustrative purpose only. In practice,
one need not find the crisp maximum of the profit and
crisp minimum of the absolute values of the sensitivities
in profit to variations in parameters w,,, wy, and h,. In
general, the DM is aware of the profits and other
quantities year-wise only and not the crisp maximum
profit or crisp minimum of effects of the parameter
sensitivities on the profit. Hence in such case, the DM
can always use the best profit obtained so far or the worst
sensitivities of the parameters on the profit as the
aspiration levels, and during fuzzification a leeway can
be given according to his/her choice. Then membership
functions are defined for all the fuzzy goals as follows.
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105,392,664 — f
M= 1 105,600,000 — 105,392,664
0
if £<105,392,664
if 105,392,664 f<105,600,000
if £=105,600,000 )]

£, — 50,000,000
51,268,410 — 50,000,000
0
if f,251,268,410
if 50,000,000=<f,=<51,268,410
if £,=50,000,000 )

'UQ=

£,— 20,000,000
#5= 121,976,212 — 20,000,000
0
if £,221,976,212
if 20,000,000< f,=21,976,212
if £,=20,000,000 9

F— 27,200,000,000
27,289,704,448 — 27,200,000,000
0
if f,= —27,289,704,448
if 27,200,000,000= f,<27,289,704,448
if £<27,200,000,000 ®

Hg=

Apart from the linear membership functions, “S-type”
(Zimmermann, 1991) (for goals involving minimization)
and "mirror image of S-type” (for goals involving
maximization) membership functions are also attempted.
The equations for such membership functions are
omitted here for the sake of brevity. Once membership
functions are defined the crisp equivalent of the fuzzy
goal nonlinear programming model is given as follows:
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Maximize min(u;, 5,44, 4) ]
subject to
constraints given in Seinfeld and McBride, 1970)
and 0=u,=1,i=tto 4 )

Now, Box’s method cannot be used directly to solve
the above problem, as most of the constraints (which are
mass balances), are in the form of equalities. Hence the
method suggested by Reklaitis et al., 1983 has been
resorted to. Accordingly, the entire problem has been
reformulated with seven independent decision variables
and seven constraints as follows. This is solved using
Box’s method.

MaximizeA

subject to

- 13,560=<0.43x, — 0.678x,=30,552.2
49,400=0.54x, + 1.596x,=80,520

0.0=x,=<90,000

14,700.6=x,=20,000

A=p=l,i=lw4

and the constraint in the form of equations (5) to (8).

4. Results and discussion

The study has been carried out in three cases as
follows: (1) fand f; as fuzzy goals (2) fand f; fuzzy goals
and (3) fand f; as fuzzy goals. The Table 1 shows that
case (2) provided the best solution, from the DM’s point
of view, because, both f and f, are very much near their
respective crisp optimum values. This is particularly
significant because we are no longer working in a “crisp-
single-objective” environment. The next best solution is
the case (1), because, here, the f; value did not go far
away from its crisp minimum value and, moreover, there
is only a marginal decrement in the value of profit f,
compared with its crisp maximum value. Finally, in case
(3), the marginal decrement in profit f'is accompanied by
an enormous two hundred per cent increment in the
value of f; compared with its crisp minimum value. In
this way one can rank the parameters according the way
they affect the profit.

Thus, in the methodology presented here, the DM has
got good flexibility, in that, (1) he/she can consider as
many cases as he/she wants, (2) the decision variables
and/or parameters and/or the material balances can be
considered as fuzzy goals along with the existing ones.

Table 1. Performance of the fuzzy nonlinear goal programming model

Goals and decision vector* Case (1) Case (2) Case (3)
f 0.980Xx10® 1.050x10%  1.001Xx10®
fi 12.94%107

12 2.760% 107

fi 5.528 X 10"
x 46,650.473  18,683.166  74,963.039
X3 15,714.483  19,010.391 18,463.316
CPU time (s) 26 22 13
Function evaluation 80 79 53

* Here the decision vector does not include 1’ and A
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In the present paper, however, only the four objectives
defined by Seinfeld and McBride (1970) have been
assumed to be fuzzy goals. This was decided mainly
because only then would a comparison with their results
be possible and meaningful. For this very reason, none
of the cases produced a solution wherein the value of any
goal went beyond the crisp maximum value (in the case
of profit f) and crisp minimum value (in the case of £}, £,
and f;). Our experience shows that both kinds of
membership functions performed equally well.

5. Conclusions

A new methodology has been developed to solve
fuzzy nonlinear goal programming problems. A realistic
steady-state optimization problem occurring in refineries
has been modelled as fuzzy nonlinear goal programming
problem and solved successfully using the methodology
developed. Linear and S-type membership functions
have been considered for the fuzzy goals. Both per-
formed equally well. The methodology presented was
found to have tremendous flexibility in that fuzziness
could be introduced not only via the goals but also
through the independent variables and material balances.
This treatment of the problem, within the framework of
the fuzzy set theory, allows the DM to conduct a
comprehensive study considering various combinations
of the goals at varied aspiration levels.
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