
Electric Machines And Power Systems

ISSN: 0731-356X (Print) (Online) Journal homepage: www.tandfonline.com/journals/uemp19

POWER SYSTEM NETWORK TOPOLOGY
PROCESSING BASED ON ARTIFICIAL NEURAL
NETWORKS

D. M. VINOD KUMAR & S. C. SRIVASTAVA

To cite this article: D. M. VINOD KUMAR & S. C. SRIVASTAVA (1998) POWER SYSTEM NETWORK
TOPOLOGY PROCESSING BASED ON ARTIFICIAL NEURAL NETWORKS, Electric Machines And
Power Systems, 26:3, 249-263, DOI: 10.1080/07313569808955820

To link to this article:  https://doi.org/10.1080/07313569808955820

Published online: 07 May 2007.

Submit your article to this journal 

Article views: 127

View related articles 

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uemp20

https://www.tandfonline.com/journals/uemp19?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07313569808955820
https://doi.org/10.1080/07313569808955820
https://www.tandfonline.com/action/authorSubmission?journalCode=uemp20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uemp20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07313569808955820?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07313569808955820?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=uemp20


POWER SYSTEM NETWORK TOPOLOGY PROCESSING
BASED ON ARTIFICIAL NEURAL NETWORKS

D. M. VINOD KUMAR

Department of Electrical Engineering
Regional Engineering College
Warangal - 506 004, India

ABSTRACT

S. C. SRIVASTAVA"

E.P.S.M., Energy Programme
Asian Institute of Technology
Bangkok 10501, Thailand

In this paper, a new approach for the determination of power system network topology
based on Artificial Neural Networks (ANN) has been suggested. For the determination
of power system network topology, three models of ANN based on Multilayer perceptron
using Backpropagation Algorithm (BPA), Functional Link Network (FLN) and
Counterpropagation Network (CPN) have been utilized and tested for both noisy as well
as noise free data sets. ANN models based on BPA, FLN and CPN have been tested on
IEEE l4-bus, IEEE 57-bus and a 75-bus practical Indian system. It has been established
that the CPN based model predicts network topology more accurately as compared to the
FLN and BPA based models in all test cases. Further, the CPN model is able to determine
the network topology even if the network is unobservable for which the conventional
network topology algorithm [8] fail to determine the topology.

1. INTRODUCTION

A modem Energy Management System (EMS) is a sophisticated information and control
system which uses advanced software and hardware techniques to perform its functions.
The problem of automatic connectivity determination for a power network is a necessary
and important step in EMS. In real-time environment, system configuration changes
dynamically. Real-time power system modeling rely on the correctness of the topology,
previously determined from telemetered data by the system network topology processor.
Two types of measurements are collected by the supervisory control and data acquisition
(SCADA) system, namely the logic measurements, which consists of status of breakers
and switches and analog measurements consisting of real and reactive power line flows,
bus voltage magnitudes etc. A set of these measurements can be used by a topology
processor to determine the real-time topology of the power system network. The updated
topology information is utilized by various EMS functions such as, state estimation, power
flow etc .
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Two types of conventional topology processing methods have been used namely the direct
and indirect methods [I]. Topology of the network can be determined directly by using
the circuit breaker and switch status measurements. This information has to be updated in
real-time whenever there is a connectivity change in the network. Sasson et al [2] updated
network configuration in real-time using tree ~earch algorithm. Singh and Alvarado [3]
formulated the topology processing similar to state estimator algorithm and solved it by
using Least Absolute Value (LAV) method. Singh and Glavitch [4] used a rule based
approach. Yehsakul and Dabbaghchi [5] used the algorithm for tracking network
connectivity of islands for the determination of the network topology. Prais and Bose [6]
introduced tree search algorithm to avoid reordering and/or refactorizing the whole state
estimation matrix from the previous solution. However, any error in breaker status
measurements resulted into misconfiguration of the system, significantly affecting the state
estimation results. Simoes-Costa and Leao [7] determined topology errors by utilizing the
state estimator recursive Iy.

Alves da Silva et al [9] used pattern analysis approach based on artificial neural network
using multilayer perceptron model and optimal estimate training to determine network
iopology. In [10] Alves da Silva et al used modified Optimal Estimate Training (OET2)
for the topology determination. However, in the presence of noisy breaker status
information their method could not determine accurate topology in many cases.

In general the network topology processor based on algorithmic methods utilizes
computation intensive search algorithms. Further it has been found [8] that the algorithmic
models fail to predict the topology, when the system becomes unobservable such as in case
of removal of some of the branches from the original network.

Hence, in this paper, Artificial Neural Network (ANN) models have been tried out for the
network topology processing. Multilayer perceptron based on Backpropagation Algorithm
(SPA) , Counterpropagation Network (CPN) and Functional Link Network (FLN) models
of ANN have been used. The effectiveness of the proposed ANN models have also been
tested for unobservable cases. The studies have been conducted on IEEE 14-bus, IEEE 57­
bus and 75-bus practical Indian system to establish the accuracy and effectiveness of the
proposed artificial neural network based models for the network topology prediction.

2. CONVENTIONAL NETWORK TOPOLOGY PROCESSOR

A conventional topology processor program uses circuit breaker status information and
network connectivity data to determine the topology of the network. The data base
describes the network connectivity in terms of bus-section and the circuit breakers. All
equipment, such as generators, load feeders, shunt reactors, transformers, transmission lines
etc., are connected to bus-sections. Bus sections within one voltage level at a substation
may be connected together by circuit breakers.

As the status of circuit breakers changes in real-time, the bus-branch topology is expected
to change. The network topology processor must determine the new topology whenever
there is a change. Thus this program is required to be re-run only if there is a status
change.
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The output of the network topology processor is the traditional data that describe a bus­
ranch oriented network. Thus each of the buses must be identified together with the
generation, loads and shunts connected at these buses. Also the connectivity between the
buses through the transmission lines and transformers has to be described.

Topological errors arise from the misconfiguration of one or more network elements, as
a consequence of erroneous input data to the network configurator connecting the status
of circuit breakers and switches. The system topology provided by the configurator thus
becomes inconsistent with the actual network topology. State estimator based models have
been used [8] to detect and identify the topology errors.

A topological error may be single, if the misconfiguration involves only one network
element, or multiple, ifmore than one element is involved. Single topological errors may
occur two forms: exclusion error, when a network element is in operation but does not
appear in the topology provided by the configurator and inclusion error, when the opposite
situation occurs.

The effect of topology error is reflected in the Jacobian matrix. Let the H, be the true
measurement Jacobian matrix, H be the one from the topology processor with errors and
B be the resulting error in the measurements Jacobian matrix, i.e.,

The true linearized equation for the state estimation should be

where v is the measurement error vector.

However, due to topology error, the equation becomes,

z=Hx+v

The estimated state lC is given by following WLS equation

lC = (H' W H)" H'Wz

The' residual vector can be defined as [8]

r = (I - M) (B x + v)

where

M = H (H1R" H)"' H1W

The expected value and covariance of the residual vector will be
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where
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E(r) = (I - M) Bx

Cov (r) = (I - M) W"

With topology error, the residual will be nonzero and equal to (I - M) Bx.

Let t = Bx be the basis vector. We can analyze the structure of the error
matrix B for branch outages. The branch outage includes transmission line
or transformer outage. In most practical cases, errors in recognizing line
or transformer outages may involve a single outage.

For the outage p (p~ I) branches 1,.12•.. lp that is not recognized by the topology
processor, the real power state estimation should be used. Let us call any line flow
measurement of 1,.12•••• , l, or any injection measurement on a bus with connection to I"
12..... I, a measurement related to 1,.12••• , , Ip•

One can notice that, only rows corresponding to the related measurements are non-zero
in B. Furthermore, these rows have the following structures.

(i) Flow Measurement: For a flow measurement that is related to an outage branch with
susceptance b. connecting buses hand k, the corresponding row of B looks like:

h k

EEJ
(ii) Injection Measurement: For an injection measurement on bus h that is related to an
outage branch with susceptance hI' the corresponding row of B looks like

h k

~
The bias vector € = Bx, can be expressed in terms of the state variables. Since the non­
zero rows of B are the related measurements and each corresponding row of € is actually
either a branch flow. say

fj = -bj [x(h) - x(k)]

or a combination of several branch flows (if an injection measurement is related to several
branches of 1,.12•••• , Ip) ' We may also express the bias vector in teTf!lS of branch flows
fj , j = 1,.12.... , l, . Let us define the vector f and the matrix L as follows:

Bx = Lf
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Suppose the branch -j connects buses h and k if the i-th measurement includes the flow
from h to k, then the (i,j) th element of L is +1, if it includes the flow from k to h, then
the (i.j) th element is -1, otherwise it is zero.

Detection and identification of the' topology error can be carried out based on (normalized
residue) hypothesis testing [8].

From the above description of the conventional topology processor and the literature
survey, it is found that,

(i) The state estimation is a part of the determination of network topology.

(ii) The process for detection and identification of topology error is recursive in
nature. Hence, these methods are tedious and time consuming.

(iii) Non-detectability of branch outages may occur due to,

(a) The outage of irrelevant branch (i.e., outage of a branch that has
neither a flow measurement nor an injection measurement at the nodes
it is connected).

(b) The removal of branch from the original network that makes the rest of
the network unobservable.

3. ARTIFICIAL NEURAL NETWORK MODELS

ANNs are adaptable learning systems [12, J3,14,15] based on the methods of information
processing. They consist ofa large number ofmassively interconnected simple processing
units. Such processing architectures have capability to create its own subsymbolic
representation to learn and recall associatively,

Following ANN models have been used to predict the topology of the network.

(i) Multilayer perceptron using Backpropagation Algorithm (BPA)
(ii) Functional Link Network (FLN)
(iii) Counterpropagation Network (CPN)

3.1 Multilayer Perceptron Using Backpropagation Algorithm

A Multilayer perceptron is a feed forward neural network architecture in which a number
ofperceptrons are arranged in layers with weighted interconnections as shown in Figure-I.
The multilayer perceptron employs a learning rule as Backpropagation Algorithm (BPA).
The BPA uses a gradient descent technique and backward error propagation. The training
set for the network must be presented many times in order for the interconnection weight
between the neurons to settle to a stable value. In essence it learns a mapping from a set
of input patterns (e.g., extracted features) to a set of output patterns (e.g., class
information). The BPA has been popularly utilized for several applications and covered
in the text books [12,13,14,15].
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Input

Hidden layer (j)

Figure I: Multilayer Perceptron Feedforward Network

3.2 Functional Link Network

In Functional link network [12] the input patterns are enhanced by means of functional
transformations, before feeding to the input layer of the actual network. That is an
enhanced input pattern is used in addition to the actual pattern. The enhanced input/output
pair is learnt with a flat net, that is a net with no hidden layer. Problems which might be
difficult in the original pattern space generally become quite straight forward, in the
enhanced representation space. The functional link net is illustrated schematically in
Figure-2.

Outputs

X, x2 ••••

I
Original Features

fnputs.
Enhanc,d Representation

Figure 2: Functional Link Newtork

There are two models for the FLN [12], the tensor (or outer product) model and the
functional expansion model. In this paper supervised tensor model of FLN has been used.
In the tensor model, each component of the input pattern multiplies the entire input pattern
vector. The functional link in this case generates an entire vector from each of the
individual components. If {Xi' i = I, ...,n} represents set of original inputs or features, FLN
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model utilizes enhanced inputs along with these original inputs obtained through a
sequence of transformation such as,

In the present work only up to second order products of inputs (x.x, , X2X3 , ... ,x".,x") have
been considered as enhanced inputs (as shown in Figure-2). The original inputs to the
ANN and the outputs for topology processing is shown in Figure-3. Since functional link
network does not have hidden layer, simple delta rule [13] can be used for training.

Switch and Breaker
status information

.
Real power line flow
measurements

(Input)

ANN Model

Topology number
(Bipolar)

(Output)

Figure 3: ANN Based Topology Processor

3.3 Counterpropagation Network

The Counterpropagation network architecture [11,14, IS] as shown in Figure-4, is a
combination of self organizing map of Kohonen and out star structure of Grossberg. The
advantages of the CPN are that it forms a good statistical model of its input vector
environment. It functions as a look up table capable of generalization. It functions as a
look up table capable of generalization. CPN requires a number of Kohonen units (hidden
units) to achieve high mapping approximation accuracy.

Outputs

Output (Grossberg) layer

Hidde.n (Kahonen) layer

Input layer

Inputs

Figure 4: Counterpropagation Network
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The Kohonen layer classifies the input vectors into groups that are similar. The Kohonen
layer functions in a winner take-all-fashion, that is for a given vector, one or more than
one neuron outputs a logical one and all others output a zero. The learning rule to update
the weight (W) of the winner is,

W""w = Wold + >. (x - Wold)

Where

W""w =

Wold =
>. =

the new value of a weight connecting an input component x to the
winning neuron
the previous value of the weight
a training rate co-efficient that may vary during the training process

The training rate co-efficient (>.) is usually [l4] taken as 0.7 in the beginning and may
be gradually reduced during training.

Each weight in the Grossberg layer is adjusted only if it connected to Kohonen neuron
having a non-zero output. In the present work, only one neuron (say neuron q) in the
Kohonen layer has been considered as winner having output as unity. The amount of the
weight adjustment is proportional to the difference between the weight and desired output
of the neuron to which it connects. The training rule to update weight V is,

Where
kq = the output of Kohonen neuron q
Y, = component r of the vector of desired outputs

Initially (3 can be set [14] to 0.1 and is gradually reduced as training progresses.

4. DEVELOPMENT OF ANN BASED TOPOLOGY PROCESSOR

The ANN based topology processor is shown in Figure-3. In the present application of the
ANN models to topology processing the inputs considered to the neural networks were
telemetered status data of circuit breakers, switches and also the real power line flow
measurements. The real power line flow measurements have been considered to generate
redundant set of data because when any change in network topology occurs, sudden
variations in flow measurements appear in the branch. The output of the ANN models
were a string of bipolar numbers (+ J and -I) representing the topology number
corresponding to the base case and network outages. The length of output string depends
on the topology cases simulated in a system. For example, in IEEE l4-bus system total
16 topologies were considered which can be represented by a bipolar string of four
numbers as given in Table-I. Input information of the breaker status has been represented
in bipolar form, that is, when a breaker is closed, its value was taken a + I and when
opened, its value was -I. Though lines may consist of two breakers one at each end, only
one breaker status has been used as input to the ANN models to determine the topology
of the network.
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TABLE I. IEEE 14 - Bus Network Topology and Respective Topology Number

S.No. Network Topology ~opology Number

I. Base Case -I -I -I -I
2. Outage of Line I -I -I -I I
3. Outage of Line 2 -I -I I -I
4. Outage of Line 3 -I -I I I
5. Outage of Line 4 -I I -I -I
6. Outage of Line 5 -I I -I I
7. Outage of Line 6 -I I I -I
8. Outage of Line 7 -I I I I
9. Outage of Line 13 I -I -I -I

10. Outage of Line 14 I -I -I I
II. Outage of Line 15 I -I I -I
12. Outage of Line 16 I -I I I
13. Outage of Line 17 I I -I -I
14. Outage of Line 18 I I -I I
15. Outage of Line 19 I I I -I
16. Outage of Line 20 I I I I

The number of nodes in hidden layer of BPA and CPN were obtained by hit and trial. A
general rule to select the hidden nodes in the CPN is that it should not be greater than the
number of input training pattern-s, The output of CPN remains a string of bipolar numbers
(+1 and -I) even for the unknown test patterns, as it provides a kind of look-up table,
whereas the outputs ofBPA and FLN can assume string of any positive or negative values.
For the purpose of topology determination, the BPA and FLN outputs were approximated
to + I if they were positive and -I if they were negative.

All the three ANNs have been trained using the training patterns generated corresponding
to different topologies and loading conditions of the system. After training, the accuracy
of the models have been tested for the set of patterns not utilized during the training.
These sets were generated for different network loading conditions (not included in the
training set).

The topology of the network has also been determined by using Counterpropagation
network for network unobservable cases, specially when a node becomes unobservable due
to lack of measurements during outage of a branch.

5. SIMULAnON RESULTS

The proposed ANN based models viz. BPA, CPN and FLN were trained and tested for
IEEE 14-bus, IEEE 57-bus and practical 75-bus Indian systems. The 75-bus Indian system
represents 400-kV and 220-kV network of Uttar Pradesh State Electricity Board (UPSEB).
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5.1 Training of the ANN Based Topology Processor

For the determination of ANN based network topology, training patterns were generated
for base case and different network outages using a load flow program by varying the
loads at each bus randomly covering the whole range of operating conditions upto 120%
of the base case loading value. For each of the power systems, total 1000 patterns were
generated. Out of these 800 patterns were used to train the BPA, ePN and FLN and
remaining 200 patterns were used to test the accuracy and robustness of the trained ANN
models.

The total inputs to each of the ANNs were equal to twice the number of lines in the
system (20 lines in case of IEEE 14-bus system, 80 lines in case of IEEE 57-bus system
and 95 lines in case of 75-bus practical Indian system) which consists of switch and
breaker status information and real power Iine flow measurements. ln IEEE 14-bus system,
total 16 topologies and in IEEE 57-bus as well as 75-bus practical Indian system, total 10
topologies were considered. Hence four bipolar outputs were selected for all the three
systems. An error criterion on outputs used for training the ePN and FLN based topology
processor was 0.001 p.u. at a base power of 100 MVA.

The number of hidden nodes in BPA model for 14-bus, 57-bus and 75-bus systems were
70, 275 and 350 respectively. In all the three cases, Backpropagation algorithm did not
converge to prespecified tolerance even after 45,000 iterations. The sum of square errors
at the end of 45,000 iterations were 27.70%,30.37% and 31.43% for the 14-bus, 57-bus
and 75-bus systems respectively.

The number of hidden nodes in ePN model for the IEEE 14-bus, 57-bus and 75-bus
practical Indian systems were 475, 350 and 325 respectively. For FLN the learning rate
(11) and momentum (a) for the three systems were taken as 0.8 and 0.3 for the first 100
iterations and 0.65 and 0.35 in subsequent iterations. It was experimentally found that the
change in 11 and a values after 100 iterations helped accelerating the convergence.

5.2 Testing of the ANN based Topology Processor

After training BPA, ePN and FLN models for the topology processing, these were tested
for the unknown loading patterns corresponding to different topologies. The test results
were obtained for the cases assuming no bad data in the breaker status information and
also with the presence of bad data. The bad data in breaker status was introduced by
assuming a closed breaker as open and vice versa. Bad data in upto four breakers' status
were considered to test the robustness of the ANN models.

Some of the results for the three systems without bad data in the breaker status
information are presented in Table-2 to 4 and with bad data in the breaker status
information are presented in Tables-5 to 7. In all the test systems the topology number
predicted by the ePN based model was found to be the same as the actual number (true
number). From the results shown in Tables-5 to 7, it is observed that the ePN based
topology processor predicts accurate topology number in each of the three systems even
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with considering the noise in the breaker status information. BPA and FLN models, on
contrary, has provided wrong topology information in almost all the cases. In the present
work only single line outage cases have been considered to illustrate the approach of the
suggested ANN models. However, it can be extended to the multiple branch outages of
the power system elements, on similar lines, to determine the network topology.

TABLE 2. Results of Topology Processor for IEEE I4-Bus System
Without Bad Data

Test Lase Topology Topology Number with
Number

(True) CPN FLN BPA

Base Case -1-1-1-1 -1-1-1-1 1-1-1 I I I I I
Outage of Line # I -1-1-1 I -1-1-1 I -I I-I I I-I I-I
Outage of Line # 2 -1-1 I-I -1-1 I-I -I I I I -I I I-I
Outage of Line # 5 -I I-I I -I I-I I I I-I I I-I I-I
Outage of Line # 6 -I I I-I -I I I-I I I-I-J I-I I I

TABLE 3. Results of Topology Processor for IEEE 57-Bus System
Without Bad Data

Test Lase Topology Topology Number with
Number

(True) CPN FLN BPA

Outage of Line # 10 -1-1-1-1 -1-1-1-1 -I I-I I 1-] I-I
Outage of Line # 25 -I-I I-I -1-1 I-I -1-1-1 I -I I-I I
Outage of Line # 40 -I 1-1-1 -I 1-1-1 -I I-I I I I-I I
Outage of Line # 60 -I I I-I -I I I-I -1-1 I I -1- J I I
Outage of Line # 70 -I 1 I I -I I I I -1-1 I-I I I-I I

TABLE 4. Results of Topology Processor for Practical 75-Bus Indian System
Without Bad Data

Test Lase Topology Topology Number with
Number
(True) LPN FLN HPA

Outage of Line # 35 -1-1-1 I -1-1-1 I -I I-I I I-I I-I

Outage of Line # 60 -I I-I I -I I-I I 1-1-1 I I I-I I
Outage of Line # 75 -I I I I -I I I I -I I I-I -1 I-I I
Outage of Line # 85 1-1-1-1 1-1-1-1 -1-1 I-I I I-I I
Outage of Line # 90 1-1-1 I 1-1-1 1 -1-1-1 1 I I I I
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TABLE 5.
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Results of Topology Processor for IEEE 14-Bus System
With Bad Data

Test Case Topology Topology Number with
Number

(True)
CPN FLN BPA

Base Case -1-1-1-1 -1-1-1-1 1-1-I I -I I-I I
Outage of Line # I -1-1-1 I -1-1-1 I -I-I I I I-I I-I
Outage of Line # 2 -I-I I-I -I-I I-I I-I I I 1-1-1 I
Outage of Line # 5 -I I-I I -I I-I I 1-1-1 I 1-1-1 I
Outage of Line # 6 -I I I-I -I I I-I I 1-1-1 -I-I I-I

TABLE 6. Results of Topology Processor for IEEE 57 - Bus System
With Bad Data

Test Case Topology Topology Number with
Number

(True)
CPN FLN BPA

Outage of Line # 10 -1-1-1-1 -1-1-1-1 -I I I-I -I I-I I
Outage of Line # 25 -I-I I-I -I-I I-I -1-1-1 I 1-1-1-1
Outage of Line # 40 -I 1-1-1 -I 1-1-1 -I I-I I 1-1-1-1
Outage of Line # 60 -I I I-I -I I I-I -I-I I I -1-1-1-1
Outage of Line # 70 -I I I I -I I I I -I 1-1-1 I I I I

TABLE 7. Results of Topology Processor for Practical 75-Bus Indian System
With Bad Data

Test Case Topology Topology Number with
Number

(True)
LPN )<'LN Hf'A

Outage or Line # 35 -I-1-1 1 -\-1-\ \ -I I 1 1 -I 1-\-\
Outage of Line # 60 -I I-I I -I I-I I 1- I-I 1 I-I I I
Outage of Line # 75 -I I I I -I I I I -1-1 I I -1-1-1-1
Outage of Line # 85 1-1-1-1 1-1-1-1 -I 1-1-1 I-I I I
Outage of Line # 90 1-1-1 I 1-1-1 I -1-1-1-1 -I 1- I-I
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6. NETWORK TOPOLOGY DETERMINATION FOR UNOBSERVABLE
CASES

Wu and Liu [8] showed that the algorithmic method (normalized residual method) may
not detect branch outages, if the removal of the branch from the original network, makes
the rest of the network unobservable. To establish the potential of the proposed ANN
model to overcome this limitation, the Counterpropagation network based model was
utilized, to determine the network topology in such cases. Only CPN based model was
tested since it provided more accurate results for the network topology determination as
established in section 5.2 in comparison with BPA and FLN based models. Different
unobservable cases in two of the sample systems (14-bus and 57-bus) were simulated as
following.

Suppose at a bus-i, two lines-j and k are incident. If the outage of line-j is considered and
at the same time if line flow measurement of line-k is assumed to be missing, the node-i
and hence the system becomes unobservable.

Three different unobservable cases were simulated for each of the IEEE 14-bus and IEEE
57-bus systems, shown in Table-8 and Table-9 respectively. For each of the cases the
results were obtained for various system loading patterns to determine the network
topology using the CPN model already trained (as described in section 5.1). The results
for the two systems are given in Table-IO and Table-II. From these tables, it can be
observed that the proposed ANN based topology processor using CPN model has provided
almost accurate (more than 90%) results for different unobservable cases of the network.

TABLE 8. IEEE 14-Bus System: Examples of Unobservable Cases

Case Studies Line Outage Measurement (s) Unobservable
Between Buses Not Available Bus

(Line Flow I
Bus Injection)

Case - 1 13 - 14 14 - 9 14
Case - II 2 - 3 3 - 4 3
Case - III 13 - 12 12 - 6 12

TABLE 9. IEEE 57-Bus System: Examples of Unobservable Cases

Case Studies Line Outage Measurement (s) Unobservable
Between Buses Not Available Bus

(Line Flow I
Bus Injection)

Case - I 30 - 31 31 - 32 31
Case - II 22 - 23 23 - 24 23
Case - III 45 - 44 44 - 38 44
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TABLE 10. IEEE 14-Bus System: Results for Unobservable Cases

Case Studies Number of Number or Accuracy
Patterns Tested Patterns Correctly (in %)

Identified
Case - 1 100 95 95
Case - II 100 94 94
Case - III 100 90 90

TABLE 11. IEEE 57-Bus System: Results for Unobservable Cases

Lase Studies Number or Number or Accuracy
Patterns Tested Patterns Correctly (in %)

Identified
Case - I 100 93 93
Case - II 100 90 90
Case - III 100 91 91

7. CONCLUSIONS

In this paper, three different ANN models for network topology processing based on the
Backpropagation algorithm, Counterpropagation network and Functional Link Network
have been developed and tested for the IEEE 14-bus system, IEEE 57-bus system and a
75-bus practical Indian system. The test results of the three systems provide the following
observations.

(i) The Counterpropagation network model process the network topology without
any error even in the presence of noisy breaker status information.

(ii) The Backpropagation algorithm and Functional link network models, however
were unable to determine accurate topology of the network in almost all the
cases.

(iii) The CPU time required to test the ANN models is less than 0.1 seconds in all the
cases. Hence, the proposed CPN model can be used for real-time applications to
the topology processing.

(iv) The CPN based model also provided almost accurate results for the network
topology determination even when the network was made unobservable in
different cases of branch outages. Thus it offers a distinct superior feature over
the conventional methods.

In view of the above, the CPN based model can be used for real-time determination of the
network topology as it is extremely fast and accurate.
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