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Abstract

With the proliferation of multimedia group applications, the construction of multicast trees satisfying quality of service (QoS) require-
ments is becoming a problem of prime importance. Multicast groups are usually classified as sparse or pervasive groups depending on the
physical distribution of group members. They are also classified based on the temporal characteristics of group membership into static and
dynamic groups. In this paper, we propose two algorithms for constructing multicast trees for multimedia group communication in which the
members are sparse and static. The proposed algorithms use a constrained distributed unicast routing algorithm for generating low-cost,
bandwidth and delay constrained multicast trees. These algorithms have lower message complexity and call setup time due to their nature of
iteratively adding paths, rather than edges, to partially constructed trees. We study the performance (in terms of call acceptance rate, call
setup time and multicast tree cost) of these algorithms through simulation by comparing them with that of a recently proposed algorithm
(V. Kompella, J.C. Pasquale, G.C. Polyzos, Two distributed algorithms for the constrained Steiner tree problem, in: Proc. Comp. Comm.
Networking, San Diego, CA, June 1993) for the same problem. The simulation results indicate that the proposed algorithms provide larger
call acceptance rates, lower setup times and comparable tree costs.q 1998 Elsevier Science B.V. All rights reserved
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1. Introduction

A majority of the current and future distributed real-time
applications such as teleconferencing, remote collaboration
and distance education require the underlying communica-
tion network to provide multicast services. Also, these
applications involve the transmission of multimedia infor-
mation and therefore it is essential to satisfy QoS constraints
(such as bounded end-to-end delay, bounded delay-variation
and bandwidth requirement). At the routing level, these two
requirements are translated into the problem of determining
a multicast tree, usually rooted at the source node and
spanning the set of receiver (destination) nodes. The QoS
constraints typically impose a restriction on the acceptable
multicast trees.

In multicast communication, messages are concurrently
sent to all the members of a given multicast group. These
groups are usually classified based on the physical distri-
bution of group members [6] and the temporal characteris-
tics of group membership. Sparse groups are those, which
have very few members when compared with the size of the

network. Real-time applications such as the ones mentioned
previously typically fall into this category. They can be
contrasted with pervasive groups which have a large number
of members attached to most of the links in the network.
Applications such as widespread directory services and net-
work distribution groups fall into this category. Another
classification that is of importance to routing is the division
of groups into static groups (where group membership is
constant) and dynamic groups (where changes in group
membership are allowed, i.e. members are allowed to join/
leave the group).

In this paper, two algorithms for constructing delay-con-
strained multicast trees for static sparse groups, are
described. The rest of the paper is organized as follows. In
Section 2, we describe some of the existing approaches to
multicast tree construction and also discuss the motivation
for our work. The formal problem specification and the
proposed routing algorithms are presented in Section 3. In
Section 4, we provide proofs of correctness of the
proposed algorithms. Section 5 discusses the simulation
results and compares the performance of our algorithms
with that of a previously published algorithm. Section 6
concludes the paper highlighting the advantages of our
new algorithms.
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2. Background and motivation

Multicast route determination is traditionally formulated
as a problem relating to tree construction. The tree structure
allows parallel transmission to the various destination nodes
and also minimizes data replication. In the following
section, we will describe some of the general approaches
to multicast tree construction.

2.1. General approaches to multicast routing

From the existing literature, three fundamental techni-
ques for multicast routing have been identified in [7].
They are:

1. Source-based routing: this approach is essentially based
on the reverse path forwarding (RPF) algorithm
(proposed by Dalal and Metcalfe) and involves the com-
putation of an implicit spanning tree per source node that
is usually the shortest delay tree. The RPF algorithm, in
conjunction with pruning techniques, has been wide-
spread throughout it’s employment in IP-multicast
(Distance-Vector Multicast Routing Protocol
(DVMRP) [6], Protocol Independent Multicast (PIM)
[5]). It’s main advantage is it’s simplicity. However it
is most suitable for broadcasting and performs poorly
when applied to sparse multicast groups (which is the
focus of our paper).

2. Center-based trees: this approach is ideal for multiple-
sender/multiple-recipient communication. The unifying
feature of this class of algorithms is that they identify
a center node for each multicast group and construct
a distribution tree rooted at this center. The core
based tree (CBT) algorithm [1] comes under this
category.

3. Steiner-tree approach: this approach models the multi-
cast tree construction problem in terms of the graph-
theoretic Steiner problem. The key focus of algorithms
that come under this category is their emphasis on overall
tree cost minimization. The algorithms proposed in this
paper come under this category.

Non-Steiner approaches (such as those proposed or
employed on the internet, including DVMRP, PIM and
core-based trees) are suitable for datagram environments
such as the internet in which the routes taken by multicast
packets may vary [3]. For such environments, there is no
point in emphasizing cost minimization and more impor-
tance is given to minimization of algorithm overhead
[3,7]. However, Steiner tree heuristic approaches apply to
virtual-circuit environments such as ATM networks [3]. In
such networks, the route (virtual circuit) selected for a
certain connection is used to forward all packets of that
connection. Hence, it makes sense to model the cost of a
connection in terms of the cost of the corresponding tree and
to concentrate on cost-minimization so as to improve
overall network utilization [3].

2.2. The Steiner tree approach

It has been shown that the multicast tree problem can be
modelled as the Steiner problem in networks [11,18], which
is NP-complete [9]. Consequently a number of centralized
algorithms that construct low-cost multicast routes such as
those in Refs. [4,12,23] are based on approximation algo-
rithms for Steiner tree construction [15,22]. Some of these
algorithms produce solutions that are provably within twice
the cost of the optimal solution and run in polynomial time,
usually ranging betweenO(n3) andO(n4). However, to be
implemented as a working protocol, distributed heuristics
are required. Introduction of the QoS requirements into the
Steiner problem results in the constrained Steiner tree
problem, for which, once again, distributed heuristics are
required.

A number of centralized and distributed algorithms, some
dealing with pure tree cost minimization and others dealing
with both cost minimization and QoS constraints, have been
proposed. In [2] distributed SPH (shortest path heuristic)
and K-SPH (Kruskal type SPH) heuristics have been
described that deal only with the construction of uncon-
strained Steiner trees. In [12], a problem that involves opti-
mization on both cost and delay metrics is studied.
However, the algorithm assumes that the two metrics are
related functions and exploits this dependency to achieve a
compromise between minimizing average source-
destination delay and reducing tree cost. The idea of desti-
nation biasing is employed in [21], along with the greedy
strategies of shortest path trees and minimal spanning trees
to construct low-cost unconstrained multicast trees. In Ref.
[20], the cost metric has been dropped from consideration
and instead, an attempt has been made, to construct multi-
cast trees that satisfy an upper bound on the delay along the
source-destination paths as well as an upper bound on the
delay-variation between these paths. This bound on delay
variation allows for synchronization between the various
receiver nodes. To construct trees for video distribution,
the Steiner problem has been modified in [16] to include
non-constant link costs. Here, link cost is assumed to be an
increasing function of bandwidth and length of the link and
is not dependent on the utilization or availability of the link.

2.3. Motivation for our work

It is obvious from the above discussion that a great variety
exists in both the nature of multicast routing problems and
in the types of solutions that have been proposed for them.
In this paper, we consider the problem of constructing low-
cost multicast trees that satisfy a specified bound on the
delay between source and any receiver. Delay constraint is
a very common and fundamental requirement of many mul-
timedia applications. Cost minimization captures the need
to distribute the network resources efficiently amongst the
various multicast channel establishment requests. Therefore
this problem specification captures the requirements of both
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the application (delay constraint) as well as the network
(effective utilization). The above problem has been formu-
lated in [13] as the constrained Steiner tree problem.

In Ref. [13], two centralized heuristic algorithms
(adapted from the KMB algorithm [15]) for this multicast
tree construction problem are described. Both the algo-
rithms are source-based routing algorithms which assume
that the source has all the information (network topology,
link delays and link costs) necessary to construct the tree.
The algorithms have a common initial stage that involves
the computation of a closure graph on the source node and
the set of receiver nodes. However, the two algorithms use
different heuristic functions to construct a spanning tree of
the closure graph which then yields the required multicast
tree. Distributed versions of these two algorithms are
presented in [14].

The centralized algorithms proposed in [13] are unsuita-
ble for larger networks as the process of maintaining con-
sistent network information at every node becomes
prohibitively expensive. The distributed versions of these
algorithms [14] avoid this problem by using only local
information at each node. However, because the algorithms
construct the tree by adding only one edge at a time, the time
required to actually setup the tree could be very large. This
is especially true for sparse, widely distributed multicast
groups where the multicast tree could include a large
number of links. This large setup time also means that if
we attempt to include resource reservation along with the
tree construction process, then resources (such as link band-
width) might be reserved for a long time before they are
actually needed. This results in poor network utilization,
decreased overall throughput and lower call acceptance
rates. Another disadvantage of the algorithms is that they
do not provide for any tunable parameters, which could be
used to achieve a compromise between the optimality of the
tree and the time required to setup the tree.

In this paper, we describe two algorithms for delay-
constrained low-cost multicast routing that overcome the
disadvantages described above. The algorithms are general,
in the sense that, they can be used in conjunction with any
constrained cost-minimizing unicast routing algorithm
[10,17].

3. The proposed algorithms

In this section, we will first describe the network model
and formally state the problem using this model. We will
then present a detailed description of our proposed
algorithms.

3.1. Network model

In this paper, the network is modelled as an undirected
graphG ¼ (V,E), whereV is the set of nodes andE is the set
of links. An edgee [ E connecting nodesu andv will be

denoted by (u,v). We associate the following four functions
with each linke [ E.

Delay function D: E → Rþ

Cost function C: E → Rþ

Total bandwidth function TB: E → Rþ

Available bandwidth functionAB: E → Rþ

A path P ¼ (v0, v1, v2,…,vn) in the network, has two
associated characteristics

Cost C(P) ¼
∑n¹ 1

i ¼ 0
C(vi ,vi þ i)

Delay D(P) ¼
∑n¹ 1

i ¼ 0
D(vi ,vi þ 1)

Similarly, a treeT ¼ (VT, ET) which is a subgraph ofG has
an associated cost defined as

C(T) ¼
∑

e[ET

C(e)

Given a pathP and two nodesv1 andv2 belonging to this
path, the portion ofP connecting these two nodes will be
denoted by SubP(v1, v2). DP(v1, v2) and CP(v1, v2) will
denote, respectively, the delay and cost of this portion of
P. Similarly, given a treeT and two nodesv1 andv2 belong-
ing to this tree, we will letPT(v1,v2) denote the path between
v1 andv2 in this tree. Then, the delay and cost of this path are
respectively denoted asDT(v1, v2) and CT(v1,v2). We
assume that for eache [ E, C(e), D(e) and TB(e) are
fixed, thoughAB(e) varies depending on the usage of the
link.

3.2. Problem formulation

We model a multicast tree-establishment request (also
referred to as a multicast call request) in the network
described previously, as a 4-tuple:

C¼ (s,R,B,D), where

s [ V is the source node for the call;R¼ { d1, d2,…, dm} ,
V is the set of receiver nodes for the call;B is the bandwidth
requirement for the call; andD is the delay constraint to be
satisfied for each source receiver pair.

Given such a callC on the networkG ¼ (V, E), we define
a bandwidth and delay constrained spanning tree to be a tree
T ¼ (VT, ET) rooted at s and satisfying the following
conditions:

• VT # V & ET # E
• s [ VT & R # VT

• DT(s,v) , D ; v [ R
• AB(e) . B ; e [ ET

Let S(C) denote the set of all such spanning trees corre-
sponding to callC. The problem can now be formulated as:
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find a spanning treeTS such thatC(TS) ¼ min[C(TS):T [ S
(C)]

Such a tree is a bandwidth and delay constrained Steiner
tree (BDCST).

3.3. Routing strategy

In this section, we will first informally describe our two
algorithms and then develop notations that will facilitate
their formal description.

The proposed algorithms assume the existence of a uni-
cast routing strategy that constructs low-cost delay-bounded
loop-free paths between a given pair of nodes. A preferred
link approach for developing such algorithms along with a
set of three heuristics is presented in [17]. Another such
unicast routing algorithm that uses distance vector tables
at the various nodes is described in [10]. In both the algo-
rithms presented in this paper, the unicast routing strategy is
responsible for ensuring that only those links that have an
available bandwidth that is greater than the bandwidth
requirement of the call are selected. The algorithms pre-
sented in [17] satisfy this requirement.

3.3.1. Algorithm A1
In this algorithm, two distinct phases can be identified.

The first phase will be distributed, provided, the underlying
unicast routing strategy is distributed. The second phase of
the algorithm is a centralized computation to be performed
at the source node.

Phase 1 : the first phase involves the construction of
delay-constrained least cost paths between source and
every destination, using the unicast routing strategy. At
the end of this phase of the algorithm, the source node
will have a set ofm( ¼ lRl) paths, (P1, P2,…, Pm) with
the following properties:

;1 # i # m pathPi connects source nodes to the ith
destination nodedi

;1 # i # m delayD(Pi) , D

;e [ Pi, 1 # i # m AB(e) . B

Phase 2 : this phase constructs a multicast routing tree
rooted at the source, using them paths produced at the end
of the first phase. Starting with an empty tree, the computa-
tion proceeds by adding one new source-destination path at
a time (at each stage), to an existing tree. While augmenting
an existing tree by adding another path, loops have to be
removed in such a way that the resulting structure produced
is connected and none of the delay constraints are violated.
This is accomplished as follows.

The computation proceeds by constructing a sequence of
m treesT1, T2,…,Tm where treeTi is constructed using paths
P1, P2,…, Pi.Let us consider the stage in the computation

when the pathPj, connectings anddj, is to be added to the
treeTj ¹ 1. Let Ij ¼ (xj1, xj2,…, xjk) be the sequence of nodes
at which Pj intersectsTj¹1, ordered in increasing order of
their distance (alongPj) from dj. By definition,xjk ¼ s. This
sequence of nodes is called the intersection set (I-set) ofPj.
This sequence of nodes is scanned in the above specified
order to augmentTj¹1 and produce treeTj. If k ¼ 1, the scan
terminates immediately andTj is obtained fromTj¹1 by
merely attaching the pathPj at s. Fork . 1, let us consider
the stage in the scan when intersection nodexjt is under
consideration. The following condition (C) is tested at this
intersection point:

DT(s,xjt ) þ DPj
(xjt ,dj) , D

The following two cases arise depending on the outcome of
the test.

If condition (C) is satisfied, then, the portion ofPj

between nodesxjt anddj is attached toTj¹1 usingxjt as the
point of attachment. This gives the required treeTj. The
condition guarantees that the delay betweens and dj in
this new tree will satisfy the delay bound.

If condition (C) is not true, then the portion ofPj between
xjt andxjt þ 1

will also need to be included in the treeTj. Since
both xjt and xjt þ 1

are already nodes ofTj ¹ 1, there is a
possibility of a loop being created. To break this loop, the
path betweenxjt ands in Tj¹1 is scanned, starting fromxjt ,
until a nodex which falls into one or more of the following
categories is encountered:

• case 1:x ¼ s;
• case 2: degree ofx in Tj¹1 is greater than 2;
• case 3:x is a member of the destination setR;
• case 4: x is one of the vertices in the set in

{ xj1,xj2,…, xjt ¹ 1
}

Once such nodex has been determined, the portion ofTj¹1

connectingxjk and x is deleted and condition (C) is now
tested for the next intersection point.

The scan continues until the condition (C) becomes satis-
fied and treeTj is generated. In the worst case, this will
definitely happen when the scan reaches vertexxjk ¼ s.
This tree augmentation step is executed repeatedly until
all thempaths have been added to the tree. Fig. 1 illustrates
the steps involved in a particular stage in Phase 2 of the
algorithm when nodedi is being attached toTi¹1. Fig. 1(a)
and (b) depict the case where condition (C) is not true at
nodesx andy, respectively. Fig. 1(a) is an example of case 1
before, whereas Fig. 1(b) is an example of case 2. In
Fig. 1(c), condition (C) is satisfied at nodey and the scan
stops at this point (the portionsabzof the path is neglected).

3.3.2. Algorithm A2
This algorithm is a purely distributed algorithm, provided

the unicast routing strategy is distributed. In this algorithm,
as in algorithm A1, the multicast tree is constructed by
adding one destination node at a time to the tree. In A1,
this addition was purely computational and all the decisions
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were made at the source node as part of Phase 2. However,
in algorithm A2, the decision about how to attach to the
existing tree is taken by the destination nodes, from a set
of options provided by the nodes of the already existing tree.
We will let (T1, T2,…, Tm) denote the sequence of partial
trees constructed by adding one destination at a time.

At any given stage in the construction of the multicast
tree, a priority list of nodes currently in the tree, is main-
tained. The nodes in the list are stored in decreasing order of
their priorities. The priorities of the nodes are defined by the
following function:

PF(x) ¼ D ¹ DT(s,x)

wherePF(x) denotes the priority of nodex andT is the tree
currently constructed. Nodes with largerPF values have a
higher priority. This priority function for each node captures
the residual delay at that node. This is the maximum delay
of any path that can be attached to the tree at this node
(without violating the delay constraint for the other end of

the path). The intuitive reasoning behind this priority func-
tion is that nodes with larger residual delays have a better
chance of constructing low-cost paths to other destination
nodes. Hence, they must be given a higher priority.

To attach a destinationdj to the treeTj¹1, the following
steps are performed.

1. The firstk nodes in the priority list (if there are less thanr
nodes in the tree, then all nodes are used) initiate delay-
constrained low-cost path setup to nodedj, using the
unicast routing strategy. Nodex will attempt to construct
a path todj with a delay constraint of(D ¹ DTj ¹ 1

(s, x)),
where DTj ¹ 1

(s,x) is the delay betweens and x in the
partial multicast treeTj¹1.

2. If the unicast path setup initiated by some nodex reaches
a nodey that is already in treeTj¹1, theny kills the path
setup initiated byx. Instead,y initiates low-cost path
setup todj with a delay constraint of(D ¹ DTj ¹ 1

(s,y)).
3. Oncedj receives setup packets from the nodes specified

previously, it computes a selection function for each path

Fig. 1. Illustration of a stage in Phase 2 of Algorithm A1.
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generated by the previous step. If the unicast routing
strategy is unable to construct a path that satisfies the
delay-constraint, thendj will receive failure packets
from such nodes and will not use these paths in the
later stages. For a non-failure pathP connecting nodex
and nodedj, the selection function is defined as:

SF(P) ¼
C(P)

D ¹ DTj ¹ 1
(s, x) ¹ D(P)

The denominator of the selection function denotes the
residual delay (¼priority value) of dj in the resultant
tree if P was chosen as the attachment path. If
preference is given to paths with lowerSFvalues, the selec-
tion function can be used to simultaneously minimize the
cost of the path, at the same time, maximizing the priority
value ofdj.
4. dj selects the path with the leastSFvalue to attach itself

to the tree. TreeTj¹1 augmented with this selected path

constitutes the next treeTj in the sequence.dj updates the
priority list to possibly include nodes in this newly
attached path. It then sends this updated priority list as
an attatch message up the treeTj towardss.

5. Nodes which receive this attach message, check to see if
their node number occurs within the firstk values in the
list. If so, then they initiate constrained path setup
towards the next destination nodedjþ1 as in step 1 before.
All nodes also propogate this attached message up the
tree towards the source nodes.

6. Whensreceives this attach message, it determines the set
Y of nodes that have a priority that is within the firstr
values and which did not occur on the path through
which the attached message was forwarded. It then
sends a message, via the shortest delay paths, to all the
nodes inY. (The message will contain the address of the
next destination nodedjþ1).

7. On receiving this message, nodes inY initiate delay-con-
strained path setup todjþ1 as in step 1.

Fig. 2. Illustration of a stage in Algorithm A2.
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The set of steps above are repeated until all themdestina-
tion nodes are attached. The final treeTm is the required
multicast tree.

Fig. 2 illustrates how a particular destination attaches
itself to an existing tree in algorithm A2. In Fig. 2(a) five
nodes parallely attempt to setup unicast paths towards the
destination node. Two of these paths intersect the tree (at
points indicated with crosses in the figure), in which case
these intersection points initiate unicast path setups to the
destination. Fig. 2(b) depicts the augmented tree, where the
destination node has attached itself to the tree via the chosen
path (path with lowestSF value).

3.3.2.1. Special Cases.Case 1: depending on the value ofk,
it is possible that at some stage in the algorithm there may be
less thank nodes in the tree constructed upto that point. In
this case, the next destination needs to be informed that it
will receive less thank packets (either through successful
unicast call setups or failures as in step 3 above). This can be
achieved by the source informing the destination about the
number of attachment paths that it can expect to receive
(this can be done as part of the unicast path that the source
will attempt to establish to that destination). For ease of
presentation, from now on we will assume that all partially
constructed trees have at leastk nodes.

Case 2: in the case when the next destination to be
attached is already part of the tree, the following can be
done. As soon as that destination node receives a unicast
call setup packet(s) (step 1) mentioning itself as the destina-
tion, it can generate an attached message, with an
unchanged priority list (step 4) and containing the node
number of the next destination to be attached and propogate
it up the tree towards the source. It can then ignore any other
setup packets, mentioning itself as the destination, that it
receives.

3.3.3. Formal description of algorithm A1
In this section, we will formally present algorithm A1

using the notations given below.

1. UR(s, d, D, B): denotes the low-cost path betweensandd
determined by the unicast routing strategy for a delay-
constraintD and bandwidth requirementB.

2. Attach(P, T, x): returns a tree obtained by attaching path
P to treeT at the attachment pointx.

3. degT(x) :denotes the degree of a nodex in treeT.
4. GetISet(P, T): let T be a tree rooted ats and letP be a

path joining some nodex and nodes. This function
returns the I-set ofP with respect toT, i.e. it returns a
sequence of nodes (x1, x2,…, xk ¼ s) at whichP intersects
T ordered such thatxi is closer (alongP) to x thanxiþ1 ; 0
, i , k.

5. CutT(xi): let T be a tree that is rooted at sourcesand letxi

be a node in the tree that belongs to the I-set {x1, x2,…,
xn}. Then this function scans the path (inT) connectingxi

ands, starting atxi. The scan continues until a nodey,

which satisfies one or more of the following conditions,
is encountered:

• y ¼ s
• degT(y) . 2
• y [ R whereR is the set of destination nodes
• y [ { x1,x2,…,xi¹1}

The function returns a tree, obtained fromT, by removing
PT (x, y).

Using the above notations, the steps to be executed by a
source nodes, attempting to construct a multicast tree, span-
ning the receiver setR ¼ { d1, d2,…, dm}, satisfying the
delay constraintA and the bandwidth constraintB are as
follows:

A1 (s, R ¼ { d1, d2,…, dm}, D, B)
begin

For i ¼ 1 to m

Pi ¼ UR(s, di, D, B)

T1 ¼ P1

For i ¼ 2 to m

Let {x1, x2,…, xk} ¼ GetISet(Pi , Ti¹1)
If (k ¼ 1) thenTi ¼ Attach(Pi , Ti ¹ 1, s)
else

Set j ¼ 1 and joined¼ false
while (joined¼ false) do

If (DTi ¹ 1
(s,xj) þ DPi

(xj ,di) , D) then

Ti ¼ Attach (SubPi
(xj ,di), Ti ¹ 1,xj)

joined¼ true

else

Ti ¹ 1 ¼ CutTi ¹ 1
(xj)

j ¼ j þ 1

TreeTm is the required multicast distribution tree.
end

3.3.4. Formal description of algorithm A2
We will describe the algorithm A2 as a set of actions to be

taken by the nodes upon receipt of various kinds of mes-
sages. The response by a node to the receipt of a message, is
dependent on whether the node is a source node, one of the
destination nodes or any other node. The description of
the various message types and the procedures enumerating
the actions to be taken by the nodes are presented in
Appendix A.

4. Proofs of correctness

In this section, we will establish the correctness of the two
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algorithms described in the previous sections. To establish
the validity of A1 and A2, we assume that the unicast rout-
ing strategy that is employed as part of these algorithms is
correct.

In both the unicast and multicast models, we say that an
algorithm for constrained routing is correct, if the route
chosen by the algorithm satisfies both the delay and band-
width constraints. Cost minimization is just an objective of
the algorithms and does not play a role in defining their
correctness. Formally, the correctness of a multicast routing
algorithm is defined as follows:

Definition of correctness: IfT is the tree constructed by a
multicast routing algorithm A in response to a call request
C ¼ (s,R ¼ { d1, d2,…, dm}, B, D), then A is correct ifT
satisfies the following properties:

1. AB (e) . B ; e [ T
2. DT(s,di) , D for 1 # i # m

4.1. Proof of correctness of algorithm A1

In the following proofs, we will use the same notation that
was used in the formal description of algorithm A1 in
Section 3.3.3.

Lemma 1. If the underlying unicast routing strategy is cor-
rect, then all the links chosen by algorithm A1 to construct
the multicast tree satisfy the bandwidth requirement.

Proof. Since the unicast routing strategy is assumed to be
correct, all the links that constitute the paths chosen as part
of Phase 1 will satisfy the bandwidth requirement. Since
Phase 2 does not introduce any new links but merely
removes some of the links that are part of loops, it is obvious
that the lemma holds.A

Lemma 2. If the underlying unicast routing strategy is cor-
rect, the tree constructed by algorithm A1 in response to a
given call request satisfies the delay-constraint for every
source destination pair in the multicast group.

Proof. We will prove this statement by induction on the size
of the destination set. For a destination set of sizem¼ 1, the
final multicast tree is just the pathP1 constructed by the
unicast routing strategy in Phase 1. Therefore, by the
assumption that the unicast routing strategy is correct, it
follows that this multicast tree satisfies the delay constraint.
Let us assume that the lemma is true for all destination sets
of size less than or equal tok.A

Consider a callC ¼ (s, R ¼ { d1, d2,…, dk, dkþ 1}, B, D)
and letP1, P2,…, Pk, Pkþ1 be the set of (kþ 1) paths chosen
by the unicast routing strategy in Phase 1. Since Phase 2
operates by adding one destination at a time to the tree, the
treeT constructed afterk stages in Phase 2 will be a tree that
spanss, d1,…, dk and which, by the induction hypothesis,

satisfies the delay constraint for each pair (s, di), i ¼ 1 to k.
Let I ¼ { x1, x2,…, xt} be the I-set ofPkþ 1 with respect toT.
Let j be the smallest integer in [1,t] such that

DT(s,xj) þ DPkþ 1
(xj , dkþ 1) , D (1)

Then, the final treeTf will be constructed fromT by apply-
ing the CutT operation at nodesx1, x2,…, xj¹1 and then
attaching the pathSubPkþ 1

(xj , dkþ 1) at node xj. By the
above inequality, the delay constraint fordkþ1 is satisfied
in Tf. It remains to show that this constraint is also satisfied
for the other destination nodes.

If a destination node is part of the pathSubPkþ 1
(xj , dkþ 1),

then the delay constraint is obviously satisfied by the con-
dition Eq. (1) above. Consider some destination nodey in
the final treeTf that is not part of this path. We identify the
following cases.

• PTf
(s, y) does not include any of the intersection nodes

x1, x2,…, xj¹1. In this case, the pathPTf
(s, y) is the same

as the corresponding path inT. Hence, the delay-
constraint is trivially satisfied.

• Let xl, for some 1# l # j ¹ 1, be the intersection node
that is closest toy in the pathPTf

(s,y). Then:

DT(s,y) ¼ DT(s,xl) þ DT(xl ,y) (2)

DTf
(s,y) ¼ DTf

(s, xl) þ DT(xl ,y) (3)

Now, xl being an intersection vertex at which the CutT

operation was performed, it means that

DT(s,xl) þ DPkþ 1
(xl , dkþ 1) $ D (4)

By the nature of the construction, inequality Eq. (1) also
implies that

DTf
(s,xl) þ DPkþ 1

(xl , dkþ 1) , D (5)

Inequalities Eqs. (4) and (5) together imply that
DTf

(s,xl) , DT(s,xl). This, along with Eqs. (2) and (3)
givesDTf

(s,y) , DT(s, y): Since the delay constraint is satis-
fied in T, this means that it is also satisfied inTf.

Thus, the Lemma holds for any destination set of sizek þ

1. By induction, the Lemma is proved.

Theorem 1. If the underlying unicast routing strategy is
correct, so is algorithm A1.

Proof. Follows directly from Lemmas 1 and 2.A

4.2. Proof of correctness of algorithm A2

The correctness of the unicast routing strategy also guar-
antees the correctness of the algorithm A2. This is proved in
the following theorem.

Lemma 3. If the underlying unicast routing strategy is cor-
rect, all the links chosen by algorithm A2 to construct the
multicast tree satisfy the bandwidth requirement.
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Proof.Algorithm A2 initiates the construction of the multi-
cast tree by making a call to the unicast routing strategy to
setup a path between the source and the first destination
node. Every other destination node is included in the tree
via a path constructed by the unicast routing strategy which
connects that destination node to some attachment point in
the partially constructed tree. Therefore, any link that is part
of the final tree would be part of a path constructed by the
unicast routing strategy. Consequently, all links will satisfy
the bandwidth constraint.A

Lemma 4. If the underlying unicast routing strategy is cor-
rect, the tree constructed by algorithm A2 in response to a
given call request satisfies the delay-constraint for every
source destination pair in the multicast group.

Proof. In the final multicast tree, the first destination noded1

is connected to the source nodes by a path that is con-
structed by the unicast routing strategy. Hence, the delay-
constraint is satisfied for this noded1. Consider a stage in the
algorithm when a treeT spannings, d1,…, dk has been
constructed. Destination nodedkþ1 will attach itself to this
tree through a pathP (chosen by applying the selection
function to the various paths that it received) that connects
it with some nodex in the tree. This path would have been
determined by the unicast routing strategy in response to a
call with a delay requirement ofD ¹ DT(s,x). Therefore

D(P) , D ¹ DT(s,x)

Hence, the delay between source anddkþ1 in the final tree¼

DT(s,x) þ D(P) , D. Thus, the delay constraint is satisfied
for all destination nodes.A

Theorem 2. If the underlying unicast routing strategy is
correct, so is algorithm A2.

Proof. Follows directly from Lemmas 3 and 4.A

5. Experimental results

In this section, we present the results of the simulation
experiments conducted to analyse and compare the per-
formance of the proposed algorithms with the distributed
algorithms proposed by Kompella et al. [14] (discussed in
Section 2.3). We will first define the performance metrics,
then describe the simulation model and finally present and
discuss the results.

5.1. Performance metrics

For an accepted tree establishment requestC let us define
the functions:

• accepted(C) ¼ 1;

• setup(C) ¼ time required to setup the multicast tree
constructed forC;

• surcharge(C) ¼ ðCA ¹ CMCPHÞ=CMCPH, whereCA is the
cost of the tree constructed by some algorithm A and
CMCPH is the cost of the tree constructed using the mini-
mum cost path heuristic (MCPH) defined in Ref. [22]. A
low surcharge value indicates that the algorithm is close
to achieving the pseudo-optimal tree cost. The MCPH
heuristic was used instead of the optimal tree since con-
struction of the optimal cost tree is extremely expensive
for large networks. It should be noted however, that the
trees built using MCPH do not take delay constraint into
account and construct only unconstrained trees.

For a call requestC that is rejected, all the functions
return a value of 0. LetN be the total number of call-requests
generated for simulation. The following metrics were used
to analyse the performance of the routing algorithms:

Average call acceptance rate: the average probability of
successfully constructing a constrained multicast tree.

ACAR ¼

∑
N
i ¼ 1accepted(C)

N

Average call setup time: the average time required to setup a
multicast tree, measured in terms of number of messages
sent.

ACST¼

∑
N
i ¼ 1setup(C)∑

N
i ¼ 1accepted(C)

Average normalized surcharge: the average of the surcharge
values for all the accepted call requests.

ANS¼

∑
N
i ¼ 1surcharge(C)∑
N
i ¼ 1accepted(C)

The first metric is important as it is a measure of overall
network throughput and utilization. The second metric is
important in the context of real-time multimedia applica-
tions that require a call to be put through quickly. Metric 3
is useful in analysing the cost competitiveness of the
proposed algorithms with respect to a pseudo-optimal
algorithm such as MCPH. It also indicates the relative
efficiency of the various algorithms with regard to cost
minimization.

5.2. Simulation model

To conduct the simulation studies, we have used ran-
domly generated networks on which the algorithms were
executed. This ensures that the simulation results are inde-
pendent of the characteristics of any particular network
topology. Using randomly generated network topologies
also provided the necessary flexibility to tune various net-
work parameters such as average degree, number of nodes
and number of edges and to study the effect of these
parameters on the performance of the algorithms.
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5.2.1. Random graph generation
In generating random graphs, we have adopted the

method used in [23], where vertices are placed randomly
in a rectangular coordinate grid by generating uniformly
distributed values for theirx andy coordinates. The graphs
connectivity is ensured by first constructing a random
spanning tree. This tree is generated by iteratively consider-
ing a random edge between nodes and accepting those edges
that connect distinct components. The remaining edges of
the graph are chosen by examining each possible edge (u,v)
and generating a random number 0# r , 1. If r is less than a
probability function P(u,v) based on the edge distance
betweenu and v, then the edge is included in the graph.
The distance for each edge is the Euclidean distance
[denoted asd(u,v)] between the nodes that form the end-
points of the edge. We used the probability function
P(u,v) ¼ be¹ d(u, v)=2an wherea andb are tunable parameters
and n is the number of nodes in the graph. Increasinga

increases the number of connections between far off nodes
and increasingb increases the degree of each node.

5.2.2. Simulation parameters
The parametersa andb were tuned to produce networks

with average node degree in the range 4 to 10. Random
edge costs were generated uniformly in the range 1 to
10. Edge delays were made proportional to the Euclidean
distance of the edges in the coordinate plane. Link
capacity (total bandwidth) was randomly generated
within the range [100,300] units. For algorithm A2,
except in Fig. 1(a) and (b), the value of the parametern
was chosen to be approximately 12% of the size of the net-
work on which the algorithm was run. Except in the case of
Fig. 2(a), (b) and (c), where network size is the variable
parameter, the average number of nodes in the network
was maintained at 100.

The multicast requests were generated with the following
parameters

• Source and destination nodes were chosen uniformly

from the node set. The requests involved destination
sets whose cardinality was chosen to be within 10%–
30% of the total number of nodes in the network. This is
so that sparse multicasts can be represented.

• Call duration, bandwidth requirement and delay con-
straint were uniformly distributed between their respec-
tive maximum and minimum values.

• The inter-arrival time of call establishment requests fol-
lowed exponential distribution with mean 1=l.

• Bandwidth reservation was carried out as part of the
unicast path setup. In the case of algorithm A1, after
computation of the final tree at the end of Phase 2, the
reserved bandwidth is released in those links which do
not form part of the tree. At each stage in A2, the band-
width reserved in thek¹1 paths not used for attachment
is released.

5.2.3. Discussion of results
In Ref. [14], two distributed algorithms for multicast tree

construction have been proposed, namely, the DMCTC

heuristic and the DCMTCD heuristic. The authors have
shown through simulation that for larger network sizes
and sparse multicast groups, the DCMTCD heuristic, which
factors in delay into the edge selection metric, outperforms
the DCMTC heuristic. We have therefore compared the per-
formance of the proposed algorithms, A1 and A2, with this
DCMTCD heuristic. Since the A1 algorithm has a centralized
second phase, we have chosen not to compare it’s ACST
values with those for A2 and DCMTCD. However, it can be
intuitively seen that Phase 1 of A1 will be quite fast, since
unicast call setups can be parallely initiated from the source
to all the destination nodes, whereas this parallelism is not
present in either of the other two algorithms. For the purpose
of the simulation experiments, algorithms A1 and A2 used
the RDM heuristic proposed in [17], as the underlying uni-
cast routing strategy.

From the simulation results, the following salient features
can be observed

Fig. 3. (a)Effect of network size on ACAR; (b)effect of network size on ACST; and (c)effect of network size on ANS.
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1. Network size: Fig. 3(a), (b) and (c) represent the relative
performance of the three algorithms when the size of the
network is varied. As seen in Fig. 3(a), algorithms A1
and A2 accept a larger percentage of call requests than
DCMTCD because of their better management of network
resources and lower call setup times (resources are not
reserved unnecessarily for a long time). As expected, call
setup times for both A2 and DCMTCD increase with
increasing network size, as the multicast groups get
more widely distributed. The difference between the
ACST values for A2 and DCMTCD also increases with
increase in network size and, hence, a corresponding
increase in the average size of the trees). All three algo-
rithms provide similar performance with regard to the
ANS metric with the surcharge not exceeding 35%.

2. Delay constraint: Fig. 4(a), (b) and (c) illustrate the effect
of varying the delay tolerance level. For all the algo-
rithms, as expected, call acceptance increases with
increase in delay tolerance. As seen in Fig. 4(a), A1
and A2 once again outperform DCMTCD, accepting
around 30% more calls. Since A2 constructs the multi-
cast tree by attaching one new receiver to the tree at each
stage in the algorithm, it’s setup times [Fig. 4(b)] are

much lower than the setup times of DCMTCD (which
requires one cycle of message exchanges for every
edge added to the tree). The drop in ACST with increase
in delay tolerance is a result of employing the backtrack-
ing based RDM heuristic [17] as the unicast strategy.
When delay constraints are tighter, the RDM heuristic
requires a deeper search in order to establish a delay-
constrained path. This results in larger tree setup times.

3. Call arrival rate: Fig. 5(a) and (b) study the effect of
varying l, the call arrival rate, on the ACST and
ACAR metrics. The plots indicate that as the demand
on the network increases (higherl), the disparity
between the acceptance rates of A1 and A2 and the
acceptance rate of DCMTCD increases, suggesting that
the proposed algorithms respond better to increased load.

4. Parameterk: the parameterk for algorithm A2 is a
tunable parameter and provides a tradeoff between
ACST and ANS. Thus, depending on the nature of the
application, this parameter can be chosen to give more
importance either to speeding up tree construction or to
lowering tree cost. This is illustrated in Fig. 6(a) and (b),
where lower values ofk result in higher ANS but lower
ACST.

Fig. 4. (a)Effect of delay constraint on ACAR; (b)effect of delay constraint on ACST; and (c)effect of delay constraint on ANS.

Fig. 5. (a)Effect of call arrival rate on ACAR; and (b)effect of call arrival rate on ACST.
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In summary, we conclude that the proposed algorithms
provide better call acceptance rates and lower call setup
times than the best known DCMTCD heuristic. They also
provide similar performance with respect to tree cost mini-
mization with all three algorithms restricting the surcharge
values (with respect to the MCPH heuristic) to within 35%.

6. Conclusion

In this paper, we proposed two new algorithms for con-
structing delay-constrained low-cost multicast trees for the
distribution of multimedia information to sparse multicast
groups. We established the correctness of the two algo-
rithms and presented simulation results that studied their
performance (when used in conjunction with the unicast
routing heuristics described in [17]). The studies revealed
the following advantages of our algorithms over those
proposed in [14]

• Our algorithms provide better overall network utiliza-
tion and higher network throughput as evidenced by the
higher call acceptance rate.

• These algorithms also provide lower call setup times
(i.e. tree construction time) because of their ability to
build up the tree by adding paths (as opposed to the
algorithms in [14] which build the tree by adding one
edge at a time).

• These algorithms are very flexible and general, in that,
they can be used in conjunction with any constrained
unicast routing algorithm.

• The second algorithm A2 enjoys the additional advan-
tage of being parameterized by a tunable parameterk,
that represents a tradeoff between call setup time (lower
if k is lower) and average tree cost (lower ifk is higher).

Areas for future research include extending these algo-
rithms to support dynamic multicast groups. Algorithm A2,

because it adds one receiver at a time to the tree, is quite
suitable for handling additions of multicast group members.
However it will need some modification to support the case
when group members can also leave the group. It will also
be worth investigating whether it is possible, with some
minimum global information, to decide on the optimal (in
terms of tree cost) order in which destination nodes are to be
attached to the tree.

7. Further reading

For further reading see Refs. [8,19].

Appendix A Formal description of algorithm A2

To facilitate the description of this algorithm, we will use
the following kinds of messages.

Appendix A.1 Message types:

• Setup message: this is the path setup message that is
forwarded along a route chosen by the unicast routing
strategy. This message can be characterized by the tuple
(src, dest, srcdelay, delayc, next, plist) where the entries
have the following meaning:

• src: source of the call setup
• dest: intended destination node
• srcdelay: delay between the source of the multicast and

the source of this call setup along the currently con-
structed tree

• delayc: delay constraint to be satisfied¼ D ¹ srcdelay
• next: the next destination to be attached to the tree after

this one

Fig. 6. Effect ofk on AC; and (b)effect ofk on ACST.
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• list: current priority list.

• Attach message: This is the message used by a des-
tination node to inform the other nodes in the tree
about how it is going to attach itself to the tree. This
message is forwarded from the destination node along
the chosen attachment path and then up the tree from
the attachment point to the source node. Such a
message can be characterized by the tuple (current,
next, plist), where the entries represent the current
destination node being attached, the next destination
node to be attached and the updated priority list (i.e.
the priority list taking into account the nodes in the
attachment path).

• DoSetup message: this is the message sent by the source
node to some of the other nodes asking them to initiate
call setups to the next destination node. This message is
characterized by the tuple (dest) which contains the node
number of the destination node which needs to be
attached next.

• Failure message: this message is sent to a destination
node, via the shortest delay path, by some intermediate
node which has received a setup packet to be forwarded
to that destination. Such a message is sent when the
intermediate node decides that it is not possible to
reach the destination satisfying the delay and bandwidth
constraints. The identity of the node which makes this
decision is dependent on the details of the unicast rout-
ing strategy.

Notation:

1. Message: a message will be represented by the tuple
(type, path, other-entries) where type represents one of
the above message types, path represents the list of nodes
though which this message has passed and other-entries
represent the type-dependent entries as specified in the
above definitions. Componentx of a messageM will be
referenced using the notationM.x.

2. Msgget(): returns the message received at a particular
node.

3. Forward (dest,msg) : sends ‘msg’ to the destination node
‘dest’.

4. Bestpath: every destination node maintains details about
the best attachment path (i.e. the path with the lowest
selection function value) that it has received upto that
point, in this variable.

5. NumReceived: at every destination node, this variable
keeps a count of the number of setup and failure mes-
sages that it has received upto that point.

6. UpdateList(plist, attachpath): given the existing priority
list ‘‘plist’’, and the attachment path ‘‘attachpath’’, this
function returns an updated priority list that could possi-
bly include nodes of the attachment path.

7. UpdateBest (path): when executed by a destination, this
calculates the selection function SF for this ‘‘path’’ and
if this value is lower than the currently encountered best

value, the BestPath variable at this destination node is
updated.

8. Firstk(plist): returns the firstk values in this priority list.
9. Me: at any node, Me refers to the node number of that

node.
10. Mydelay: at any node that is part of the multicast tree,

this refers to the delay along the tree between the multi-
cast source and this node.

The following procedure describes the actions to be taken
by the source node of the tree-establishment request.

Appendix A.2 Actions taken by the source of the multicast

A2-source(s, R ¼ { d1, d2,…, dm}, D, B)

begin

Initiate UR(s,d1,D,B)
while (tree not fully setup) do

M ¼ Msgget()
if (M.type¼ Setup) then initiate UR(s,M.dest,D,B)
else if (M.type¼ Failure) Forward(M.dest,M)
else if (M.type¼ Attach) then

remaining¼ First k(M.plist) ¹ M.path
for each (v [ remaining)

Forward (v, (Do Probe,M.next))

end

The following procedure decribes the actions of a desti-
nation node before it becomes part of the tree. The actions
taken by a destination node once it becomes part of the tree
are the same as those taken by any other tree node and are
specified in the procedure following this. We assume that
the destination node does not become part of the tree before
it’s turn comes. If so, then the procedure can be modified as
described in special case 2 of Section 3.3.2.

Appendix A.3 Actions taken by destination nodes

A2-destination(s, R { d1, d2, dm}, A, B)

begin

Set NumReceived← and BestPath← empty
while (tree not fully setup) do

M ¼ Msgget()
if (M.type¼ Failure) then begin

if (M.type¼ Me) set NumReceived← NumReceived
þ 1
else Forward(M.dest,M)

else if (M.type ¼ Setup) then

if (M.dest ¼ Me) then
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Set NumReceived← NumReceivedþ 1
UpdateBest(M.path)

else Forward(M.dest,M) /*not yet part of tree*/

if (NumReceived¼ k) then

Set the Mydelay variable appropriately using the values
in BestPath
newlist¼ UpdateList(BestPath.plist, BestPath)
Forward(s, (Attach, Me, BestPath.next, newlist))

end

The following procedure describes the actions to be taken
by any tree node (and the destination nodes once they have
joined the tree) on receiving the different types of messages.

Appendix A.4 Actions taken by any other tree node

A2-anyother(s, R ¼ { d1,d2,…, dm}, D, B)

begin

while (tree not fully setup) do

M ¼ Msgget()
if (M.type ¼ DoProbe) then initiate UR(Me,M.dest,D
¹ Mydelay,B)
else if (M.type Setup) then initiate UR(Me,M.dest,D ¹

Mydelay,B)
else if ((M.type Attach) and (Me[ First(M.plist)))
then initiate UR(Me,M.next,D ¹ Mydelay,B)

end
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