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Signal-analysis and a heuro-logistic interpretation of multi-lead
electrocardiograms

RANJAN MAHESHWARIt, G. VIJAYAt, VINOD KUMAR§~ and H. K. VERMA§

This paper describes a personal computer (PC) based analysis of multi-lead electro­
cardiograms (ECGs) and their interpretation employing an approach which is a
combination of the two basic and conventional approaches, namely the heuristic
approach and the logistic approach. The ECG analysis part of the software has been
validated using the multi-lead ECGs of the common Standards in quantitative electro­
cardiography (CSE) database (Data Set 3). Using the spatial velocity approach. the
analysis software reliably detects the QRS complexes and then the other component
waves ti.e. P & T waves). More than 90% of the fiducial locations of various waves (i.e.
Pron. P-off, QRS-on, QRS-ojfand T-end) estimated by the analysis software using this
approach are found to be well within the tolerances recommended by the CSE. A
successful attempt has been made to evaluate the parameters of diagnostic importance
and interpret the multi-lead ECG analysis results using the heuro-logistic approach.
The computerized interpretation thus made is found to be in agreement with the visual
interpretation given by medical experts.

l. Introduction

Ever since the first attempts to automate ECG analysis
by digital computer in 1957 (as reviewed by Pipeberger
1978), there have been many efforts by researchers to
develop algorithms for ECG processing and interpreta­
tion through digital computers. The pioneering work of
Caceres et al. (1962) led to the first program for conven­
tional 12-lead ECG analysis. Nowadays, computerized
ECG analysis is being utilized widely in many medical
institutions. However, microprocessor-equipped ECGs
are proliferating and are on the verge of widespread
application in smaller hospitals, general practitioners'
offices and the health screening environment.

As a result of the cooperative study 'Common stan­
dards for quantitative electrocardiography' (CSE pro­
ject), summarized by Willems (1986), definite progress
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has been made since 1982 in the development of
reference standards aimed at the evaluation of ECG
measurement programs. Much research work is still
going on in this area in a variety of disciplines:
namely, assessment of the diagnostic performance of
ECG-criteria, development of less sensitive criteria for
wave measurement, the establishment of knowledge
bases, the integration of ECG systems into larger
departmentally-based consultation systems and so on.
Thus, researchers are continuing their efforts towards
improved methods of reliable and computer-based
ECG interpretation systems so that, as a by-product
of future cost-reductions and improvements in the com­
puter technology, automatic ECG-analysis programs
come into the hands of an ever-increasing number of
medical users. In this current scenario, this paper aims
at the propagation of the more effective auto-diagnostic
protocol in ECG analysis.

The interpretation of the electrocardiogram (ECG)
using computers often involves two major tasks:
namely, the ECG signal analysis and disease classifica­
tion. ECG signal analysis deals with the detection and
measurement of various component waves with the aim
of extracting those features of the ECG on which the
disease classification is made. Conventionally, the dis­
ease classification task allocates a given ECG to one
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or more diagnostic categories using one of the two
basic approaches, namely, the heuristic approach and
the statistical approach. While the heuristic approach
attempts to simulate the reasoning of the cardiologist,
the statistical approach, on the other hand, employs
multivariate statistical techniques for ECG interpreta­
tion. In the present work, a hybrid approach, which is
a combination of heuristic and statistical approaches so
as to derive the benefits of both approaches, has been
applied.

The method has been successfully tested on the ECGs
of Data Set 3 (DS-3) of the CSE database. It is a selected
collection of multi lead ECGs sampled at 500 samples
per second simultaneously over I I leads (i.e. I, II, V1­
V6 and X, Y, Z). The other leads (i.e. 111, aVR, aVL,
aVF) were mathematically derived. The ECG interpre­
tations provided by the software implemented on PC­
AT arc in agreement with those given by the medical
experts. The validation of the software is discussed to
demonstrate how well the ECG analysis software and
the ECG interpretation software performed on the
ECGs of a standard database and in the opinion of
the medical experts, respectively. The paper concludes
with a discussion.

2. ECG signal analysis

The objective of ECG signal analysis software is to
extract all the primary parameters of ECG in every
Icad, such as the amplitude and duration of all the com­
ponent waves, namely, P-wave, QRS complex, T-wave.
Later, the secondary parameters-such as the interwave
intervals, the frontal plane axis and so on, as required by
a particular classification strategy-are derived from the
primary ECG parameters.

The ECG signal analysis often commences with the
detection of the QRS complex. A variety of ECG signal
analysis programs have been reported in the literature
with a recent one using artificial neural networks
reported by Vijaya et al. (1997). A brief description of
various QRS detection methodologies has also been pre­
sented in the paper. In the development of the software
for the present work, it is assumed that the ECG signal
has been acquired simultaneously over either the three
orthogonal leads X, Y and Z or a minimum of three out
of the standard 12-leads (namely I, II, 111, aVR, aVL,
aVF, VI-V6). The basic detection function employed is
the spatial velocity (SV) function, one that has a band
pass characteristic in the frequency domain, and which
results from a second-order least square approximation
of the first time derivative of each signal channel, as
defined by Zywietz et al. (1990).

If Xi,k is the amplitude of the ith sample in the kth
lead, where i can be any integer between I and N
(N = 1000, in the present work) and k can be any

integer between I and L (L = 12, in the present work)
then the spatial velocity (SV) is given by:

{

L }1/2
SV, = ± L[2(x,+2,k - X,-2,k) + 6(X,+I,k - X,-"k)f

k~1

(I)

Figure I depicts, as can be seen from top to bottom,
the ECGs over the leads V2, VI, Ill, II, I, respectively,
of an ECG recording from the CSE Data Set 3 (Record
No.6) and the spatial velocity function (the bottom­
most curve of the figure), as computed over all 12
leads using (I). It can be observed from the figure that
the spatial velocity in the QRS region is very high
compared with the iso-electric zones of the ECG
signal. Thus, approximate locations of the onset and
offset of a QRS complex are obtained using the SV
function.

In the term defined by (I), the spatial velocity, besides
not having the dimensions of velocity, has its spatial
part basically refer to an average over 12 points of the
anterior thorax. As a result of its bandpass characteristic
in the frequency domain it has been successfully
employed as the basic detection characteristic for the
wave complex localization. Its use, as reported by
Zywietz et al. (1990), avoids false positives in the QRS
complex detection both in the presence of tall T-waves
of pediatric ECGs and low voltage ECGs. While
attempting to understand its bandpass characteristics,
due consideration has to be given to the fact that, for
the surface ECGs numerous researchers have calculated
the frequency spectrum. Scher and Young (1960) have
found the spectra in the range approximately, 0-170 Hz.
It has also been established by them that, so as not to
underestimate the ECG's upper frequency content, the
ECG's length of time period be computed not from the
repetition interval (heart rate) but from the cycle length
Ponset to Tend or QRSonset to Tend' These are not only
some of the factors that have forced the choice of the
function under the square-root of (I) but they have also
contributed to the success in the correct identification
and estimation of parameters of the QRS wave com­
plex.

An identification of the base line is then taken up
through a backward search from the QRS onset to a
sample point, which is 0.3 s before the QRS onset,
using a 0.04 s sliding window. A base level is identified
as the signal level at an instant at which, for about 0.02 s
on either side, the signal variation is very small. This is
considered as the base level for all the QRS and T meas­
urements. Following the recommendations of the CSE
working party (1985), another base level is estimated in
the T-P segment following the same criteria and it is
considered as a base level for the P-wave measurements.
However, an estimation of the base level for P-wave
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Figure I. Spatial velocity function.

Spatial velocity is computed for all points in a search
region, which is between the previous ECG cycle's T-end
and a point which is 8 ms before the present ECG cycle's
QRS-onset. The point of maximum spatial velocity in
the search region is noted as the P-peak. Threshold
values of the spatial velocity, for use in identifying the
P-onset and P-offset, are computed from 'quiet areas' at
the beginning and end of the search region. P-offset is
established by scanning backwards in time from the end­
point of the search region. P-offset is detected as that

measurements is made only after identifying the P-wave,
as described below.

To identify the P-wave, smoothed derivatives of volt­
age with respect to time, i.e. the linear velocity function,
are derived in each lead using the following equation:

linear velocity ex (Xi+1 - Xi_I) (2)

where i is as defined in (I) and is denoted as XI> XII,
XIII' .. , corresponding to the leads: I, II, III and so on.
lt can be observed that the linear velocity term here is
essentially the same as the slope of the ECG signal in the
single lead under consideration, unlike the spatial velo­
city term which takes into account all 12 standard leads.
The spatial velocity term in this context is computed as
given below:

{( 2 2 2 )}1/2SV = XI + XII + XIII +... . (3)

point which, by itself, is less than the spatial velocity
offset threshold, but is succeeded by eight consecutive
points that exceed the offset threshold. P-onset is estab­
lished during a region that commences at a point which
is 156ms preceding the P-offset and ends at the point of
maximal linear velocity. P-onset is declared as that
point which, by itself, is less than the spatial-velocity­
onset-threshold but is preceded by a sequence of eight
consecutive points that exceed the onset threshold. The
8-point sequence-length requirement is relaxed first to
seven and then to six and so on to a minimum of 4,
until the P-onset or P-offset is determined. If either P­
onset or P-offset is still not found, or if the P-duration is
computed to be less than 48 ms, a flag is set to signal the
absence of a valid P-wave.

To detect and measure the parameters of a T-wave, a
criteria similar to the one described above for the detec­
tion of the P-wave has been employed. The search
region is chosen as the one in the interval between the
QRS offset of the current ECG cycle and a point 8 ms
before the P-onset of the succeeding ECG cycle.

In order to detect the l-point, a forward search has
been carried out from the QRS offset towards the T­
wave peak. The J-point (i.e. the junction of the QRS
complex and the ST segment) marks the end of QRS.
Thus, it is detected as a point of discontinuity in the
slope of the terminal part ofQRS complex. The terminal
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part of the QRS complex is, quite often, a part of either
the S- or R-wave. That is, the slope at (J - I)th point is
much higher than that at the (l + I)th point.

The elevation or depression of the ST segment is
found by measuring the signal level 40 ms beyond the
1 -point (i.e. at 1 + 40) and comparing it with the base
level.

The frontal plane axis is calculated based on the signal
parameters in the two leads, i.e. lead I and lead II as
given by Arzbaccher and Brody (1976). For example,
considering the Einthoven traiangle as an equilateral
triangle, the QRS axis can be computed as:

QRS ' -I (2 [net deflection in lead II] )aXIs = tan M .. - 0.5 .
v 3 net deflection 111 lead I

(4)

If the net deflection in lead I is less than zero then the
axis will be shifted by 1r/2, as shown in figure 2, so as to
represent the right axis deviation, or else the deflection
in lead aYF will decide the sign of the axis.

Thus, the ECG signal analysis program in the present
work derives a number of ECG parameters, such as:
R-R interval, heart rate, the amplitude of P, Q, R, S
and T-waves and that of R' or S' waves (if present),
the onset and the offset of P-wave, the QRS complex
and the T-wave end, the QRS frontal plane axis and the
corrected QT duration (QTd, and the elevation/
depression of the ST segment (i.e. that at 20, 40 and
60 ms from the l-point).

The flow chart shown in figure 3 depicts all the steps
in extracting the features of a given ECG record. Before

Cstart

Read the ECG signal samples
over all the the 12 leads

Compute the spatial velocity (SV) function I

Detect a sample point
corresponding to a peak in the qrs complex

by using the
appropriate SV threshold criteria

Estimate onsets and
offsets ofQRS complex

Detect P and T wave
using Linear Velocity function

Estimate onsets and offsets of
p-and T-waves

I Detect J-point.J

Compute other ECG parameters
such as QRS frontal plane axis,

QTC, ST segment elevationldepresssion,
PR interval, RR interval, QRS morphology,

and Heart rate

(Stop

Figure 3. Flow chart for the extraction of ECG parameters.
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(5)

attempting disease classification, the analysis software is
successfully validated using all the ECGs of the CSE
multilead measurement library (Data set 3) for which
the human referee estimates of the wave fiducial points
(namely, P onset, P offset, QRS onset, QRS offset and T
end) are available. The validation results are described
separately later.

3, Disease classification

The ultimate goal of almost every ECG analysis system
is the classification of ECGs into various diagnostic
categories. Since the early days of computer electro­
cardiography, one can observe that there are two basic
approaches. In the first, the deterministic approach, car­
diologists' methods of analysing ECGs are simulated,
generally using decision-tree logic and conventional
criteria, coded with the help of Boolean statements.
In the second, the statistical approach, multi-variate
statistical classification techniques are applied with the
aim of improving conventional methods of ECG
interpretation and minimizing the overall number of
misclassifications. The most widely used classification
model in this approach is based on the classical linear
discriminant analysis (LOA) which assumes a normal
distribution of the ECG variables in each of the disease
classes. Since various ECG measurements show a
skewed and far from Gaussian distribution, Willems
and Lesaffre (1987) not only applied the LOG (logistic
discriminant analysis) method, which does not assume
any particular distribution, but also compared this
method with the LOA technique.

In the present work, a heuro-logistic approach is
employed to discriminate various ECGs into different
diagnostic categories. Using the features extracted, as
described in the previous section, the feature vector is
constructed. The feature vector is then evaluated for
each diagnostic category.

If F = (I, 1,,12, ... ,/p) denotes the feature vector, in
which 11,/2,"" I p are a total of the p-features that
constitute it, then, in what is known as the logistic
approach by Kors and van Bemmel (1990), it is assumed
that the posterior probability P for each feature vector
would be of the form:

P(D
i
) = cexp (ai)

Lexp(aj)
j=1

where a is I plus the normalized probability of the dis­
ease class and is equal to (aOi' ali, a2i>"" api), and
ac = 0; G denotes the number of diagnostic classes
under consideration, and D, denotes the ith diagnostic
class.

The diagnostic classes are assumed to be exhaustive
and mutually exclusive. Kors and van Bemmel (1990)
reported that many distributions including multivariate
normal distributions with equal and unequal covariance
matrices satisfy this assumption. Estimates of the para­
meter vector a are supplied by a database of ECGs. The
minimum probability of misclassification is attained by
assigning an ECG to the category for which the pos­
terior probability is largest.

Enhancement of diagnostic performance, less vulner­
ability to noise and measurement errors, and a flexible
modification of diagnostic results, are some of the basic
advantages of the multivariate statistical approaches of
which the logistic approach described in (5) is a sub­
class. On the other hand, the requirement for a large
database, a change in statistical parameters if used in
other populations of patients, the absence of insight
into measurements that contribute to diagnosis, the sen­
sitivity of diagnosis to prior probabilities and ignoring
physiological knowledge and interpretative experience,
are the disadvantages of the multivariate statistical
approach.

Due to the non-availability of access to a good ECG
diagnostic database and to avoid several other inherent
disadvantages, the authors employed a modified
strategy of Maheshwari (1996) in which the heuristic
knowledge provided by the skilled medical experts was
used in the feature vector in the form of a multivariable
matrix. As reported by Maheshwari (1996), Wagner
(1994) and Okajima et al. (1990), this is based on the
point scoring pattern, as is normally employed in the
heuristic approach to disease classification. In the pres­
ent work, the seven diagnostic classes considered are 'a
normal ECG' and the broad variants of a couple of
basic disease classes, namely (1) myocardial infarction
(inferior, lateral or anterior), and (2) ventricular hyper­
trophy (left, right or bi-ventricular). The reader may
refer to the medical terminology of Wagner (1994),
given in the Appendix, to have a precise understanding
about the diseases and their variants.

The clinicians widely use the point scoring pattern,
described below, to arrive at the diagnosis while reading
the ECGs. Point scores are obtained by summing the
scores for the leads meeting the respective criteria.
Every ECG is labelled with an appropriate diagnostic
statement mentioned along with the point scoring
pattern, given in tables I, 2 and 3, depending on the
total value of the point score.

The heuristic probability (ai) of each diagnostic class
is calculated by a point scoring algorithm. Its loga­
rithmic function is then evaluated, and the posterior
probability is evaluated using (5).

The CSE database contains recordings validated
according to seven categories: namely, normal, left
ventricular hypertrophy (LVH), right ventricular hyper-
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Table t. Scoring pattern for myocardial infarction (Okajima et al. 1990)

Anterior Lateral Inferior

Position V2 V3 V4 I V5 V6 II III aVF
criteria (The numbers underneath denote point scores)

QI R 2: 1/3 & 3 3 3 3 3 3 3 2 3
Q 2: 36, 34, 32 ms

QIR 2: 1/3 & 2 2 2 2 2 2 2 2 2
Q 2: 28, 26, 24 ms

QIR 2: 1/4 & °Q 2: 24, 22, 20 ms

-vc T < -O.lmV

Threshold values for Q durations are aligned in the following order: criterion for adults aged over 18, for those
agcd 12-17, and for those aged below II years. Incidentally, 'abnormal Q-wave' instead of myocardial infarction
is given as the interpretation if the criteria are fulfilled for those aged below 17.

If the total point score is:
2: 8: definite infarction,
2: 6: possibility of infarction,
2: 4: cannot rule out infarction.

Table 2. Scoring pattern for left ventricular bypertropy
(Okajima et al. 1990)

Table 3. Scoring pattern for right ventricular bypertropy
(Maheshwari 1996)

The threshold values for voltages mentioned are aligned in
the following order: threshold for adults, boys aged 12-18
years, girls aged 12-18 years, children aged 3-11 years and
children under 2 years respectively.

High voltage (left ventricle): total points=4 or 5.
Possible left ventricular hypertrophy: total points> 6.
Definite left ventricular hypertrophy: total points> 4 in

addition to abnormal ST-T on leads V5 and V6. or R > 4.0
(4.5,4.5) 5.0, 5.0mV (V5, V6)

trophy (RVH), bi-ventricular hypertrophy (BY H), an­
terior myocardial infarction (AM I), inferior myocardial
infraction (1M I) and combined infarction (MIX), as
explained by Willems (1990). So, all such ECGs that
cannot be classified into one of the six disease categories
arc labelled as 'Normal' ECGs.

This classification methodology has been successfully
implemented in software as depicted in the flow chart

4. Software validation

This section mainly deals with the validation of the ECG
analysis part through a comparison of the software esti­

mated parameters namely: Ponsel' PotTsel' QRSonsel,

shown in figure 4. The ECGs in Data Set-3 of the CSE
database are subjected for a disease classification using
this heuro-logistic approach and the classifications made
by the software are successfully compared with the diag­
nostic opinion of the medical experts.

2: 8 points
2: 6 points
2: 4 points

2 points

Begin scoring
3 points
3 points
I point
2 points
I point each
I point

The threshold values for voltages mentioned are aligned in
the following order: threshold for adults, boys aged 12-18
years, girls aged 12-18 years, children aged 3-11 years and
children under 2 years respectively. The RVH is not indicated
if there is MI or Complete or incomplete RBBB (see the
Appendix).

Definite hypertrophy if the score is
Possible hypertrophy if the score is
Cannot rule out hypertrophy if the score is

axis> 90'
axis> 110'
RV5 or RV6 > 2/6mY

R" R II, Rill or R"VF > 2/5
R VI or R~I > 0.5(2.0, 1.5)2.0,2.0mV
ST depression> 0.2 & T < -0.1 (VI, V2, V3)
RV4 < 512 and R > OmV (V4)
RIS < or R < I.5mV (V5, V6)

or 5 < -1.5mV (V5, V6)

3 points
3 points
2 points
I point
2 points
3 points
2 points
2 points

I point
I point

Amplitude in millivolts

RV(o > 2.6,3.0,2.5,3.0 or 2.5
RVs > 2.6,4.0,3.5,4.0 or 3.5
R"VL > 1.2, 1.5, 1.5,2.0 or 2.0
RI,II ,II I ,,,VF > 2.5
IQvsl < IQv61 and QV6 < -0.5
Rv(o + ISvl1 > 3.5,5.0,4.0,5.0 or 4.0
Rvs + ISvl1 > 3.5,6.0,5.0,6.5 or 5.0
RI > 1.5,2.0,2.0,2.5 or 2.5

-300 2: axis> _900

-5 0 2: axis> _30'( < II years)
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(Start)

IInput Record No. I

ICalculate spatial velocity I

visual output I

Estimate QRS onset & offset
Calculate RR interval

-
Rewind tilt for,

Individual lead measurments

ILocate wave onset offsets I
and measure peaks

I visual output I

~
No

Find Median for onset & offset I

Calculate prior probabilities
ofdisease group

No
j =7?

yes

Calculate posterior probabilities I
ofeach group

I Output all the posterior probabilities and
the most probable disease groups into a file

I visual output]

(Stop)-
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Figure 4. Flow chart depicting
the implementation of both
the ECG signal analysis and
the ECG interpretation algo­
rithms.
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Deviation from Recommended Tolerances
(All ECGs from CSE Data Set-3)

40 60 80 100
CSE Multi-lead ECG Record Number

o QRSon !J. QRS off

120

X Tend

Figure 5. A graph summarizing the results of ECG analysis software's validation.

QRSoffsCI and Tend with the corresponding estimates
given by the expert ECG readers of the standard ECG
database. In addition, this section also includes the
authors' efforts to validate their program's assignment
of an ECG into one of the specific clinical diagnoses.

Thc software developed for the ECG signal analysis
and the disease classification was validated using all 125
ECG records of thc CSE database (Data Set 3) which
has a collection of ECGs representing a variety of
pathological events. All the ECGs of this database are
acquired simultaneously using a uniform sampling
interval of 2ms and with a minimum resolution of
5 fIV while converting the analogue ECG to digital
dala (IO-bit ADC), as specified by Willems et al. (1990).

Thc five-wave fiducials, namely, P-onset, P-offset,
QRS-onsct, QRS-offsct and T-end as obtained by the
human referees arc supplied for every fifth record (as
reported by Willems 1988 on CSE data Set 3) which
contain a total or 125 ECGs. Using the ECG signal
analysis software, for every fifth ECG of the database,
all five measurements are made and are compared with
thc mcdian of those provided by fivc human referees of
thc databasc. It is found that more than 90% of the
program's mcasurcment estimates are well within the
admissible deviations recommended by The CSE
Working Party (1985). Table 4 shows a comparison of
thc program estimates (symbolized as 'Pgm') of the

typical ECG fiducials: P-onset, P-offset, QRS-onset,
QRS-offset, T-end with the corresponding median (sym­
bolized as 'M R') of the estimates of five CSE referees.
At the end of the table are given the recommended tol­
erances (Rec, Tol.), i.e., the CSE recommended average
standard deviations of these five ECG fiducials in milli­
seconds (ms) as cited by The CSE Working Party (1985).
The results are further depicted in figure 5,

The ECG signals of the CSE database are digitized
using a uniform sampling interval of 2 ms. So, a recom­
mended tolerance of 10.2ms, for P-onset, would mean
that a difference of ~ 5+ sample positions between the
statistical median of the five referees' estimate and the
program's estimate is admissible. It may be noted from
the table that, in Record Nos 21, 31, 56 and 66, all five
fiducial locations, namely, P-onset, P-offset, QRS-onset,
QRS-offset and T-end as estimated using the metho­
dology described in this paper, are well within the
recommended tolerance limits from their respective
median referee values.

Thus, in a total of 125 measurement estimates
reported in table 4, over90% of the program's estimates
are well within the recommended tolerance limit. This
can be easily verified from figure 5. The figure shows
the normalized deviation of the parameters, namely

Ponsel' Poffset> QRSonset, QRSofTset and Tend for all the
CSE Multi-lead ECG records for which the visual
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Table 4. Typical results of the ECG analysis software

Record P-onset P-offset QRS-onset QRS offset T-end

No. MR Pgm MR Pgm MR Pgm MR Pgm MR Pgm

I 22 24 87 86 139 136 202 198 370 366
6 22 19 74 70 87 84 129 130 270 265

II 22 20 77 78 97 94 145 138 281 288
16 35 33 86 80 102 102 144 138 283 289
21 105 100 164 162 181 178 233 231 420 416
26 40 38 99 100 141 140 225 220 365 355
31 38 37 100 100 124 122 173 172 311 321
36 53 48 106 106 124 124 185 184 320 322
41 56 54 106 104 127 126 193 192 340 342
46 26 22 80 74 104 100 172 168 340 327
51 13 13 68 66 90 90 135 131 246 262
56 78 74 132 134 170 170 218 214 391 393
61 53 49 123 120 165 168 210 208 366 363
66 63 61 120 115 137 140 190 190 353 347
71 44 41 97 97 119 118 161 157 301 299
76 35 36 99 104 124 128 199 195 320 323
81 40 42 100 93 122 120 180 174 326 332
86 38 41 94 90 120 118 186 193 370 355
91 36 35 96 92 116 113 175 182 331 334
96 21 26 79 79 142 142 201 198 340 340

101 24 19 76 75 93 90 134 133 268 268
106 65 62 120 113 130 130 177 174 346 349
III 10 80 96 93 145 140 307 297
116 50 46 109 102 120 118 163 162 314 318
121 25 20 85 98 124 122 182 176 325 326

Rec, ToL 10.2ms 12.7ms 6.5ms 11.6 ms 30.6ms

Pgm: Program estimated fiducial location (in sample numbers)
MR: Statistical median of five human referees' fiducial estimates

estimates are known. The parameter on the ordinate
, of the graph is a normalized deviation of a parameter

(say, Pon,et). That is, a parameter's deviation
(i.e. 1M R - Pgrnl) from the median value of the visual
estimates provided by the human ECG readers of
the CSE database, is normalized with respect to the
recommended tolerances of the measurement standards,
given by The CSE Working Party (1985). It can be
observed from the graph that estimation of the pro­
gram's estimate of the parameters Poff,et' Ponset,
QRSon,et' QRSoff,et and Tend are well within the recom­
mended tolerances except in the case of three records
for P offset, a record each for QRSonset and QRSorrset.
Through a look at the table, it can be observed that
in all three records, namely: 81, 106 and 116, Poffset
deviates by 1.3ms more than the specified tolerance
band (i.e. the band between 0 and I of the graph).
A similar observation reveals that while the estimation
of the QRS onset in record number 76 deviates by
1.5 ms, that in the QRS offset in record number 86
deviates by 2.4 ms. The fact that the deviation from a

specified tolerance band of the graph does not occur in
all the parameters of a given record reveals that the
reasons for their deviation are purely subjective, and
thus record dependent. Out of a total of 125 fiducial
location estimates (i.e. five fiducial locations in each of
the 25 ECG records) just five estimates deviate from the
tolerance band by about one sampling interval (i.e.
2 ms), hence it does not significantly affect the estimation
of diagnostically significant parameters of the ECG ana­
lysis. Thus, the algorithm's estimation is well within the
tolerance band in 96% of the estimates.

The diagnostic interpretation of the ECGs of the CSE
database is not yet disclosed. In the absence of the CSE
diagnostic codes of these ECGs being used in the present
work, the authors sought the help of local medical
experts for the diagnostic interpretation of the ECGs
so as to enable the validation of the disease classification
part of the software. It is found that the ECGs inter­
preted by this software, in respect of the diagnostic
classes namely, IMI, AMI, LYH, RYH and Normal
were in agreement with the interpretation of the local
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Figure 6. Output of the software for Record No. MA_03I.DCD.
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medical experts. An example interpretation provided by
the ECG interpretation software is shown in figure 6.
The figure shows the ECG tracing for one cycle over all
12 leads with the ECG at the top corresponding to lead-I
and that at the bottom corresponding to lead-V6 in the
order I, II, III, aVR, aVL, aVF, VI, V2, V3, V4, V5 and
V6. On the right side and the bottom of the ECG
tracing, along with the details such as the position of
the Q, R, S wave in terms of the sample number within
the ECG cycle shown, typical parameters such as heart
rate, R_R interval, typical global fiducials (P-on, P-off
and so on) and the QRS axis are also mentioned. The
probable diagnostic statement as arrived at by the
software is mentioned along with the values of the
posterior probabilities for the diseases under considera­
tion. This is one of several ECGs in which the program's
interpretation has coincided with that of the medical
experts.

5. Discussion

The accuracy of the diagnostic statement improves when
it is made on the basis of ECGs acquired simultaneously
as against that based on the ECGs acquired sequentially
over several leads. This viewpoint has been verified by
a number of researchers who were involved in the
development of the CSE ECG database. The present
authors employed spatial-velocity based ECG signal
analysis, which assumes the ECG data have been
acquired simultaneously over at least three leads, thus
leading to an improved detection of various component

waves and a higher accuracy in the measurement of
corresponding wave fiducials.

The heuristic approach to ECG classification is
directly based on knowledge from cardiologists,
irrespective of whether one uses a decision tree or
fuzzy c1assifiiers. So, the highest accuracy of the
diagnostic statement attainable can at most be that of
cardiologists. On the other hand, the motivation for
using the statistical methods is to surpass the inter­
pretation accuracy limit to a value beyond that

I attainable by the best human interpreter. But this is
only possible when the statistical classifier has been
constructed using a database, consisting of a large
number of ECGs for every diagnostic category, and in
which every ECG has been validated by ECG­
independent evidence.

In the present work, heuristic knowledge provided
by skilled medical experts has been used in the feature
vector of the logistic approach in addition to the use of a
multivariable matrix that represents the scoring pattern,
as in the heuristic approach. This hybrid approach has
been employed in the classification methodology due to
the non-availability of access to a diagnostic database.
The program's interpretation is found to be in agree­
ment with those of the medical experts in respect of all
the diagnostic categories selected in the present work.
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Appendix

Axis: Direction of an ECG waveform in the frontal
plane measured in degrees.

Anterior: Located towards the front of the body.
Superior: Situated above and closer to the head than

another body part.
Inferior: Situated below and closer to the feet than

another body part; the opposite of superior.
Lateral: Situated toward either the right or left side of

the heart or of the body as a whole.
Precordial: Situated on the thorax, directly overlying

the heart.
Endocardium: The inner aspect of a mycardial wall

adjacent to the blood filled cavity.
Epicardium: The outer aspect of a myocardial wall

adjacent to the pericardial lining that closely en­
velopes the heart.

Left-Bundle-Branch-Block (LBBB): Partial or complete
failure of conduction in the left bundle branch of the
ventricular purkinje system.

Right-Bundle-Branch-Block (RBBB): Partial or com­
plete failure of conduction in the right bundle
branch of the ventricular purkinje system.

Complete bundle branch block: Total failure of conduc­
tion in the right or left bundle branch; defined by
QRS duration> 0.12s with RBBB and> 0.14 with
LBBB.

Incomplete bundle branch block: Partial failure of con­
duction in the right or left bundle branch; defined by
QRS duration of 0.10-0.11 s with RBBB and 0.11­
0.13s with LBBB.

Hypertrophy: Increase in muscle mass; most common in
the ventricles when compensating for pressure or sys­
tolic overload.

Infarct: An area of necrosis (i.e. the death of a piece of
bone or tissue) in an organ resulting from an obstruc­
tion in its blood supply.

Ischemia: an insufficiency of blood flow to an organ
which is so severe that it disrupts the function of
the organ; in the heart it is often accompanied by
precordial pain and diminished contraction.

Aerobic metabolism: The intra-cellular method for con­
verting glucose into energy which requires the pres­
ence of oxygen and produces enough energy to
nourish the cell and also to cause it to contract.

Anaerobic metabolism: The intra-cellular method for
converting glucose into energy which does not require
oxygen, but produces only enough energy to nourish
the cell.

Myocardial ischemia: Reduction in the supply of oxygen
below the amount required by the myocardial cells to
maintain aerobic metabolism.

Myocardial infarction: Death of myocardial cells as a
result of failure of the circulation to provide oxygen
to restore metabolism after the intra-cellular stores of
glycogen have been depleted.

References
ARZBAECHER, R. c., and BRODY, D. A., 1976. The lead field: vector

and tensor properties. In The Theoretical Basis of Electrocardio­
graphy edited by C. V. Nelson and D. B. Geselowitz (Oxford: Clar­
endon Press). pp. 175-201.

CACERES, C. A., STEINBERG, C. A., ABRAHAM, S., et al. 1962, Computer
extraction of electrocardiographic parameters. Circulation, 25, 356­
362.

KORS, J. A., and VAN BEMMEL, J. H., 1990, Classification methods for
computerised interpretation of the electrocardiogram. Methods oj
Information in Medicine, 29, 330-336.

MAHESHWARI, R., 1996, Multi-group logistic classification or Electro­
cardiograms. M.E. dissertation submitted to the Department or
Electrical Engineering, University of Roorkee, Roorkee, India.

OKAJlMA, M., OKAMOTO, N., YOKOI, M., !WATSUKA, T., and
OHSAWA, N., 1990, Methodology or ECG interpretation in the
Nagoya Program. Methods of Information in Medicine, 29, 341-345.

PIPEBERGER, H. V., 1978, Twenty years ECG data processing. What
has been accomplished? In ed. Modern Electrocardiology, edited Z.
Antaloczy (Amsterdam: Excerpta Media), pp. 159-163.

SCHER, A. M., and YOUNG, A. C.; 1960, Frequency analysis or elec­
trocardiogram. Ore. Res., 8, 344-346.

THE CSE WORKING PARTY, 1985, Recommendations for measurement
standards in quantitative electrocardiography. European Heart Jour­
nal, No.6, 815-825.

VIJAYA, G., VINOD KUMAR, and VERMA, H. K., 1997, Artificial neural
network based wave complex detection in electrocardiogram. inter­
national Journal of Systems Science, 28, 128-132.

WAGNER, G. S., 1994, Marriott's Practical Electrocardiography, 9th
Edition (New Delhi: BI Waverly).

WILLEMS, J. L., 1986, The CSE project: goals and achievements.
Computer ECG Analysis: Towards Standardization, edited by
J. L. Willems, J. H. van Bcmmel and Chr. Zywietz (Amsterdam:



334 Signal analysis of mull i-lead ECGs

Nonh-Hollund), PI'. 11-21; 1988. The CSE multilead atlas­
measurement results: DS·). Commission of the European Com­
munities (Medical and Public Health Research), Leuven, Belgium,
I'll". 92-341; 1990. Common standards for quantitative clcctrocardio­
graphy (CSE) 10th & final progress report. Published by the com­
mission of the European Communities (Medical & Public Health
Research) Lcuvcn, 31 December.

Wll.I.EMS. J. 1.., ARNAUD, P., VAN BEMMEL, J. H., DEGANI, R., MAC­
i'ARI.ANI!, P. Woo and ZVWIETZ, CHR., for the C.S.E. Working

Party; 1990, Common standards for quantitative electrocardio­
graphy-goals and main results. Methods of Information ill Medi­
cine. 29, 263-271.

WILI.EMS, J. 1.., and LESAFFRE, E., 1987, Comparison of multigroup
logistic and linear discriminant ECG and VCG classification.
Journal of Electrocardiology, 20, 83-92.

ZVWIETZ, CHR., Boaovsxv, D., GOTSCH, G., and JOSEPH, Goo 1990,
Methodology of ECG interpretation in the Hannover Program.
Me/hods oj Information ill Medicine, 29, 375-385.


