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A method of estimating the reliability of machine tool structures is developed. The reli-
ability analysis of horizontal milling machines in various failure modes, like static deflec-
tion, fundamental natural frequency and chatter stability, is considered for illustration.
The table height, distance of the cutter center from the arbor support, damping factor,
Young’s modulus of the material and the load acting on the cutter and the table are con-
sidered as random variables. The finite-element displacement method is used to idealize
the structure. The reliability analysis is based on the linearization of a function of several
random variables about the mean values of the random variables. Theoverdll reliability
of the machine tool structure is found by treating it as a weakest-link system having sever-
al failure modes. A sensitivity analysis is also conducted to find the variaion of reliability
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with a change in the coefficients of variation of different random parameters.

Introduction

When the parameters affecting the strength of a structure and
the loads acting on it are statistical in nature, the conventional analysis
and design approaches based on the concept of “factor of safety”
cannot be used to maintain a proper degree of safety. A more rational
criterion, in the presence of random design parameters, will be to base
the structural analysis and design on the concept of reliability or
probability of failure. Reliahility analyses in structural engineering
recognize that both loads and strengths have statistical frequency
distributions that must be considered in evaluating safety. Since the
design parameters like cutting conditions, dimensions of the work-
piece and the location of the tool are random in nature in machine
tools, an analysis, based on the principles of reliability, becomes im-
portant.

Freudenthal [1]! explained that the most rational way of describing
the overall safety of structures is in terms of reliability or probability
of failure. In reference [2], Moses and Kinser have demonstrated that
an overall level of structural safety can be prescribed in terms of a
rational criterion like probability of failure, and minimum-weight
structures can be designed to meet the prescribed safety level. In 1970,
Moses and Stevenson [3] considered the subject of sensitivity of sta-
tistical parameters and presented methods of incorporating reliability
analysis into optimum design of trusses and frames. Since then a
number of such applications have appeared in literature [4, 5, 6] which
show that a probabilistic design is a practical possibility.

Recently, the probabilistic design concepts have also been applied
in the design of mechanical systems. Mischke [7] presented a formal
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Contributed by the Production Engineering Division for publication in the
JOURNAL OF ENGINEERING FOR INDUSTRY. Manuscript received at ASME
Headquarters September 3, 1976.

882 / NOVEMBER 1977

relationship between the reliability and the factor of safety of a me-
chanical element. By treating the factor of safety as a random variable,
he used Bienayme-Chabyshev and Camp-Meidell theorems to derive
expressions for the mean and the variance of the factor of safety for
any specified value of reliability. In reference [8], Rao has developed
a probability based design method for the design of mechanical power
transmission systems like gear trains. By idealizing the transmission
system as a weakest-link kinematic chain (similar to a weakest-lifflk
structure), the design has been made to achieve a specified reliability
with respect to bending and surface-wear modes of failure.

In this paper, a method of analysing the reliability of machine tool
structures is developed. More specifically, the reliability analysis of
horizontal milling machines in various failure modes is considered
for illustrating the method. The finite-element method, using trian-
gular plate elements and frame elements, is used to idealize the ma-
chine tool structure. The reliability of the structure against the various
response quantities or failure modes is found by taking the table
height, i, the distance of the cutter center from arbor support, c, the
damping factor, ¢, the Young’s modulus of the material of the struc-
ture, E, and the load on the cutter and the fable, P, as random vari-
ables. The response quantities considered are: 1 the maximum static
deflection of the cutter center in any direction, d., 2 the first natural
frequency of vibration, w;, and 3 the minimum negative inphase cross
receptance of the cutter center relative to the table, Gan.

The location of the table and the cutter centre depend on the size
of the workpiece. Since the size of the workpiece will vary for different
jobs, h and ¢ are taken as random variables. From the present
knowledge, the modal damping factors of structures, particularly in
machine tool structures where joints are involved, cannot be estimated
precisely. Therefore modal damping factors, {;, are taken as random
variables. In actual practice, the material properties vary, hence the
Young’s modulus, E; is considered as a random variable in this work.
Finally the magnitude of the load, P, is also taken as a probabilistic
quantity since the cutting forces depend on various cutting conditions
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such as feed, depth of cut, speed and the materials of the tool and the
workpiece. All the random design parameters are assumed to follow
normal distribution. This assumption of normal distribution is jus-
tified from the central limit theorem, and also it simplifies the com-
putations involved. Finally the overall reliability of the machine tool
structure is calculated from the reliabilities in various failure modes
by considering the structure as a weakest-link system.

Probability of Failure of a Weakest-Link Chain

A weakest link is a series model in which the failure of any one link
constitutes the failure of the whole chain. Since the failure of a ma-
chine tool structure in any one of the failure modes is considered as
a failure of the whole system, the machine tool structure has to be
idealized as a weakest-link chain. Fig. 1 shows the fundamental case
which consists of a single member of strength R subject to a load L,
along with the probability density functions of R and L. Here the
strength R represents the allowable value of any response quantity
like material strength, deflection, natural frequency or cross recep-
tance, and the load L represents the induced value of the corre-
sponding response quantity.

The probability of failure is given by

Pr=P®<L)= " Fa)-ful0)-dl

=1—f_°° FLr) - fa(r) -dr (1)

where fx (x) and Fx (x) represent the probability density and distri-
bution functions, respectively.

If several loads act simultaneously on the structural system as
shown in Fig. 2(a), the failure probability is given by

p=1- " [,ﬁl P00 | ) - ar @)
AL

If a single member is subjected to several load conditions as shown
in Fig. 2(b), the probability of failure can be determined from the
relation

pr=1= (- Frt)| A0 &)

i=1

1o ln), 140

)

Fig. 1 A structural system consisting of one member and one load

ﬂV R Ry
R
Rz Ry
L
‘Lz Rq Rq
tls lL Py
*LP ‘ L2
tls

{c) A System
Consisting of q
Members And p
Loads.

(o) A System Consisting
of One Member And p
Loads.

(b) A System
Consisting of q
Members And One
Lood
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where /; is the force induced in ith member due to the load /. Since
this is a weakest-link chain, the term in braces in equation (8) repre-
sents the probability of survival of the chain and is based on all links
surviving under the load L = [. This term is evaluated from the
products of probabilities of individual links surviving under the load
L = 1. Equation (3) is often approximated as

Pr=1 =111~y @
i=1

where P, denotes the probability of failure of ith link. Finally the
probability of failure of a multicomponent, multiload system shown
in Fig. 2(c) is given by

q .\
X fr b)) - frola) -+ fr,(p) - dly - dly o dl,  (5)

where [, is the total force induced in ith member due to the loads {;,
lg, +, . Since the computation of the exact probability of failure is
a complex probabilistic problem, equation (4) is often approximated
as

q P
Pp~1-11 1L (1 =Fp) (6)
i=1j=1
where Py, denotes the probability of failure of ith member under jth
load.

Computation of Reliability in a Particular Failure
Mode

The reliability R, of a system is taken as one minus the probability
of failure Py. If R is the resistance and L is the load acting in the
specified failure mode, the reliability of the system can be analysed
as a single-member/single-load problem. For simplicity the resistance
and the load are assumed to be normally distributed so that

1 1/l —1N2 i
f“”‘m.o,,e"p[‘é( —) ] @
and
1 1 /r — Ry\2
= exp|--= 8
f(r) m-m“p[ 5 (o >] ®

where I and R represent the mean values and ¢;, and oy, the standard
deviations of L and R, respectively. Although equation (1) is appli-
cable, the following simpler procedure is used to find the reliability
of the system in this case. By defining a new random variable, £, as

¢=R-1L, (9)

the reliability of the system can be expressed as
Ry=Pz0)= " filn-dn (10)

where f;(5) is the density function of £ given by

1 1 /p—E\2
() = ———ex [~-(—) ] (11)
fitn Vor - ot P 2\ o
and  is the mean value and o; is the standard deviation of £. If R and
L are independent, the expressions for £ and o, are given by

t=R-L (12)
and
or = (g2 + 01,2112, (13)

Equations (10) and (11) give

1 © 1 n— E 2
1e=———f ex [——( )]d (14)
* Ver- ap JO P 2\ o !
By defining a standard normal variate, Z, as
Z.= _;E , (] 5)
L3
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Equation (14) can be rewritten as

@

1 1
Ry=—— (——Z2>-dZ, 16
° T Var Jz Py ao)
where the lower limit of integration, z, is given by
R-T
S o 3 an
o (or% + 0, 2)1/2

Once the value of z is calculated, the corresponding reliability R, can
be determined from equation (16). This value can be obtained more
readily from the standard normal tables [9].
In order to find the reliahility of a structural system using equations
" (17) and (16), the mean values and standard deviations of the gener-
alized load L and the generalized resistance R must be known. Since
L and R generally depend on several other random design parameters,
one has to determine L, R, ¢, and og in terms of the means and
standard deviations of the random design parameters. In general, if
Y is a nonlinear function of several random variables x i, xg, -, X, the
approximate values of the mean and the variance of Y can be found
by linearizing Y about mean values of x1, xo, -, x, using a Taylor’s
series expansion. The expressions of Y and oy are given by

Y =~ Y(T), Xg, -+, Ts) (18)
and
s ToY 2 1/2
oy & (Z I:““ ] ox,-2> (19)
i=1 L dx; | (x1,%0,55)

where the random variables x1, x5, -, xs are assumed to have zero
correlation.

Since the reliabilities against the response quantities d., w1, and
G are to be found, the partial derivatives of d;, wi, and Gy with
respect to the random design parameters h, ¢, {, E, and P (evaluated
at the mean values of the design variables) are required. These partial
derivatives are found by using a finite-difference scheme in this
work.

Computation of Response Quantities

In order to find the reliability of the machine tool structure in
various failure modes, the expected values and standard deviations
of the response quantities d,, w1, and Gmin have to be computed.
Since the reliability analysis of milling machine structures is con-
sidered in this work, the horizontal milling machine structure is ide-
alized by using triangular plate elements and frame elements. Since
the structure is a three-dimensional one, both in-plane and bending
effects are included in the analysis. The local displacement variations
in the plate element are taken as

u(x, y) = a1+ asx + agy (20)
v(x, y) = a4+ asx + agy (21)

w(x, y) = a7+ agx + agy + ajox?+ apxy + ajoy?
C o tanedtaulely +xy?) tasy’  (22)

where u, v, and w indicate the components of displacement along the
local x, y, and z directions, and the xy-plane represents the plane of
the plate. The displacements u, v, w, 8y, and 9, are taken as degrees
of freedom at each of the nodes of the triangle. For the frame element,
u, v, w, 0y, 0y, and 6, are taken as degrees of freedom at each of the two
nodes, where 8; represents rotation about the axis {(i = x, y, z). The
triangular plate elements are used to idealize the column, overarm
and table, and the frame elements are used to model the ribs on the
overarm, the overarm joint with the column, the arhor and the arbor
support.

The element stiffness and mass matrices of the two types of finite
elements are given in reference [11]. The transformation of element
matrices to global coordinate system and their assembly to derive the
master matrices follow standard procedures of structural analysis [11].
Since the orientation of cutting forces in up milling are generally more
unfavourable from the points of view of static rigidity of cutter center
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and chatter stability, only up milling is considered in the displacement
analysis of the milling machine structure. The static forces acting on
the milling machine are assumed to correspond to the following cut-
ting parameters: diameter of milling cutter = 0.1 m, width of en-
gagement = 0.09 m, number of teeth on milling cutter = 12, feed per
tooth = 0.0001 m, angle of engagement = 30 deg, helix angle of milling
cutter = 25 deg, material of the workpiece = mild steel. These pa-
rameters give the horizontal, vertical and axial forces on.the milling
cutter as 8237.88, 1647.58, and 1647.58 N, respectively [12].

The response quantity d. is found by solving the equilibrium
equations

K]Y=p " (23)

where [K] is the master stiffness matrix, Y is the displacement vector
and P is the load vector. Equations (23) are solved by using the Che-
lesky decomposition of symmetric band matrices, storing only the
upper triangular matrix, followed by forward and backward elimi-
nation technique. To find the response quantity, w, the linear ei-
genvalue problem

(24)

is solved where w is the natural frequency of vibration and [M] is the

‘master mass matrix of the structure. In this work, equation (24) is

solved to find the first few eigenvalues and eigenvectors by using the
Rayleigh-Ritz subspace iteration algorithm developed by Bathe and
Wilson for large structural systems [13]. The receptances of the cutter
centre relative to the table of the horizontal milling machine have heen
obtained by using modal coordinates taking the damping matrix as
a linear combination of the stiffness and mass matrices. The damping
factors are assumed to have a value of 0.06 for the first few modes in
the present work, From the dynamic analysis, the negative inphase
cross receptance of the cutter centre relative to the table is taken as
the response quantity Gmin.

The expected values d, @1, and Gyn are obtained by analyzing
the structure at the expected values of the random parameters, while
the standard deviations ¢4, 0., and oy are found by computing
the rates of change of the response quantities with respect to random
parameters and using equation (19).

Numerical Results

To illustrate the procedure developed, the reliability analysis of
the horizontal milling machine structure shown in Fig. 3 is considered
in each of the failure modes. The finite-element idealization of the
structure is shown in Fig. 4. The reliabilities of the machine tool
structure are found at two design points?; oneat X, = 0.50m, Xy =
0.028 m, X3 =0.32m, X4 =0.028 m, X5 = 0.42 m, and X¢ = 0.03 m,
and the other at X; = 0.50119 m, X5 = 0.00987 m, X5 = 0.28826 m,
X4 =0.00906 m, X5 = 0.41149 m, and Xg = 0.00896 m. The permis-
sible mean values of the response quantities are taken as:

(a) deflection of the cutter center, (d.)max = 0.00009 m

(b) fundamental natural frequency, (wi)min = 850 rad/sec and

(¢) minimum negative cross receptance of cutter center relative to
the table, ,EMINimax =3.059 X 1079 m/N.

The two design points are selected such that d. = 0.0000661 m, w; =

1003 rad/sec, and |G| = 0.6628 X 107 m/N at the first point and

d, = 0.0000893 m, w; = 913 rad/sec, and |G| = 2.039 X 1079 m/N

at the second point. Thus the response quantities in the case of the

second design can be seen to be closer to their permissible values than

in the case of the first design.

The values of the partial derivatives of the response quantities with
respect to the random design parameters are given in Table 1. The
reliability results obtained by using a coefficient of variation, V,,, of
0.05 for all the random variables are shown in Table 2. From these

2 X = depth of column at bottom, X = thickness of the overarm, X3 = width
of the machine, X 4 = thickness of the column and table, X5 = depth of column
at the top, Xg = square cross-sectional dimensions of the ribs on the overarm
and its joint with the column.
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Fig. 3 Horizontal knee-type milling machine Fig. 4 Finite-element idealization of milling machine (shown in Fig. 3)

Table 1 Partial derivatives of d,., w, and Gy with respect to the random design parameters

Random variable x;

h c 3
Partial
deriva- At design At design At At At At
tive point 14 point 20 point 1 point 2 point 1 point 2
1 2 3 4 5 6 7
od, . _ _
BA +0.32 x 1073 +0.76 x 10™ +0.56 x 10™ —-0.43 x 107 0.0 0.0
X
0w,
—182.0 —254.0 0.0 0.0 0.0 0.0
8.x,-
aGMIN -9 -y -9 ~ -9 -9
T +2.957 X 10 +9.687 X 10 +2.754 x 10 +9.484 X 107° —-12.240 X 10 —4.793 X 10
Xy
Random variable x;
E p
At point 1 At point 2 At point 1 " At point 2
8 ‘ 9 10 11
—0.4487 x 107! —0.5711 X 107!¢ +0.7546 x 107® +0.9687 X 107°
+0.3671 x 1078 +0.3263 x 107'° 0.0 - . 0.0
—~0.5928 x 107?° —2.392 x 107%° 0.0 0.0
@Point 1: X, =0.50 m, X, =0.028m, X,=0.32m, X, = 0.028 m, X, = 0.42 m, X, = 0.03 m .
bPoint 2: X, = 0.50119 n1, X, = 0.00987 m, X;.= 0.28826 m, X, = 0.00006 m, X, = 0.41149 m, X, = 0.00896 m
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results, it can be seen that the reliabilities are lower at the second
design point compared to those at the first point. This is to be ex-
pected in this case, since the response quantities are very near to their
critical values (and hence the design is less safer) in the case of second
design.

In many practical problems, one would be interested not only in
the reliability of a structure for a particular set of data, but also in
knowing how the reliability changes with a variation in the standard
deviations of the various design parameters. Hence the variation of

i i 1 P V
5% 10% 5%  20% = "
{g)

Ro 4
0,545}
0.535)
0525}

Q.515 4 L ! 1 » Vg

) 5% 0%  15%  20%

(i}
At Design Point 2

Ro .
0.53
O,5| .

Rﬂ
O.QQQQSt—‘\\
0.99994 -

reliabilities of the milling machine structure against d., w;, and Gy
for various coefficients of variation of the design parameters, V., are
shown in Figs. 5-7, respectively. From these figures, it can be seen that
the reliability in the deflection failure mode is most sensitive with
respect to Vp and least with respect to V at both of the design points.
The reliability against the fundamental frequency is most sensitive
to a change in Vg and least to a change in V, V¢, and Vp. Similarly,
the reliability against the response quantity, G'mn, can be observed
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Fig. 5 Reliability versus deflections
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Fig. 6 Reliability versus first natural frequency

to be most sensitive to V;, and least to Vp.

If the machine tool structure is considered as a weakest-link chain,
each link representing one particular failure mode, the overall reli-
ability of the system can be calculated from equation (4). This gives
the overall system reliability as (R, )overant = 0.9989564688 for the first
design and (R, )overan = 0.4816022724 for the second design.

Conclusions

A method of analyzing the reliability of complex machine tool
structures, using finite-element idealization, is developed. The reli-
ability analysis procedure is more realistic, since, in practice, most
of the parameters influencing the machine tool performance, like table
height, cutting forces and structural properties, are really random in

Journal of Engineering forylndustry

Downloaded From: http://manufacturingscience.asmedigital collection.asme.or g/pdfaccess.ashx?urI=/data/j our nals/j msefk/27666/ on 05/10/2017 Terms of Use: http://www.asme.

nature. Although normal distribution has been assumed in this work,
the basic approach will not change even if the variables follow some
other type of distribution. The reliability analysis procedure devel-
oped in this work can be coupled with formal optimization methods
and the problem of design of machine tool structures can be stated
as follows [10]:

Find X which minimizes F(X) subject to the constraint

R,(x) 2 k

where X = vector of design variables
F = objective function to be minimized (like weight, static or
dynamic rigidity)
R, = reliability
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k = constant denoting the minimum required reliability.
The sensitivity analysis of the reliability of the machine tool structure
is expected to give the machine tool structural designer an insight into
the reliability behavior of the structure so that he can alter the design
to satisfy any specified reliability condition.
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