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Reliability Analysis of Machine Tool 
Structures 
A method of estimating the reliability of machine tool structures is developed. The reli­
ability analysis of horizontal milling machines in various failure modes, like static deflec­
tion, fundamental natural frequency and chatter stability, is considered for illustration. 
The table height, distance of the cutter center from the arbor support, damping factor, 
Young's modulus of the material and the load acting on the cutter and the table are con­
sidered as random variables. The finite-element displacement method is used to idealize 
the structure. The reliability analysis is based on the linearization of a function of several 
random variables about the mean values of the random variables. The/overall reliability 
of the machine tool structure is found by treating it as a weakest-link system having sever­
al failure modes. A sensitivity analysis is also conducted to find the vdriaion of reliability 
with a change in the coefficients of variation of different random parameters. 

Introduction 

When the parameters affecting the strength of a structure and 
the loads acting on it are statistical in nature, the conventional analysis 
and design approaches based on the concept of "factor of safety" 
cannot be used to maintain a proper degree of safety. A more rational 
criterion, in the presence of random design parameters, will be to base 
the structural analysis and design on the concept of reliability or 
probability of failure. Reliability analyses in structural engineering 
recognize that both loads and strengths have statistical frequency 
distributions that must be considered in evaluating safety. Since the 
design parameters like cutting conditions, dimensions of the work-
piece and the location of the tool are random in nature in machine 
tools, an analysis, based on the principles of reliability, becomes im­
portant. 

Freudenthal [l]1 explained that the most rational way of describing 
the overall safety of structures is in terms of reliability or probability 
of failure. In reference [2], Moses and Kinser have demonstrated that 
an overall level of structural safety can be prescribed in terms of a 
rational criterion like probability of failure, and minimum-weight 
structures can be designed to meet the prescribed safety level. In 1970, 
Moses and Stevenson [3] considered the subject of sensitivity of sta­
tistical parameters and presented methods of incorporating reliability 
analysis into optimum design of trusses and frames. Since then a 
number of such applications have appeared in literature [4,5,6] which 
show that a probabilistic design is a practical possibility. 

Recently, the probabilistic design concepts have also been applied 
in the design of mechanical systems. Mischke [7] presented a formal 

1 Numbers in brackets designate References at end of paper. 
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relationship between the reliability and the factor of safety of a me­
chanical element. By treating the factor of safety as a random variable, 
he used Bienayme-Chabyshev and Camp-Meidell theorems to derive 
expressions for the mean and the variance of the factor of safety for 
any specified value of reliability. In reference [8], Rao has developed 
a probability based design method for the design of mechanical power 
transmission systems like gear trains. By idealizing the transmission 
system as a weakest-link kinematic chain (similar to a weakest-liffk 
structure), the design has been made to achieve a specified reliability 
with respect to bending and surface-wear modes of failure. 

In this paper, a method of analysing the reliability of machine fool 
structures is developed. More specifically, the reliability analysis of 
horizontal milling machines in various failure modes is considered 
for illustrating the method. The finite-element method, using trian­
gular plate elements and frame elements, is used to idealize the ma­
chine tool structure. The reliability of the structure against the various 
response quantities or failure modes is found by taking the table 
height, h, the distance of the cutter center from arbor support, c, the 
damping factor, f, the Young's modulus of the material of the struc­
ture, E, and the load on the cutter and the table, P, as random vari­
ables. The response quantities considered are: 1 the maximum static 
deflection of the cutter center in any direction, dc, 2 the first natural 
frequency of vibration, o>i, and 3 the minimum negative inphase cross 
receptance of the cutter center relative to the table, GMIN-

The location of the table and the cutter centre depend on the size 
of the workpiece. Since the size of the workpiece will vary for different 
jobs, h and c are taken as random variables. From the present 
knowledge, the modal damping factors of structures, particularly in 
machine tool structures where joints are involved, cannot be estimated 
precisely. Therefore modal damping factors, ft, are taken as random 
variables. In actual practice, the material properties vary, hence the 
Young's modulus, E, is considered as a random variable in this work. 
Finally the magnitude of the load, P, is also taken as a probabilistic 
quantity since the cutting forces depend on various cutting conditions 
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such as feed, depth of cut, speed and the materials of the tool and the 
workpiece. All the random design parameters are assumed to follow 
normal distribution. This assumption of normal distribution is jus­
tified from the central limit theorem, and also it simplifies the com­
putations involved. Finally the overall reliability of the machine tool 
structure is calculated from the reliabilities in various failure modes 
by considering the structure as a weakest-link system. 

P r o b a b i l i t y of F a i l u r e of a W e a k e s t - L i n k Chain 
A weakest link is a series model in which the failure of any one link 

constitutes the failure of the whole chain. Since the failure of a ma­
chine tool structure in any one of the failure modes is considered as 
a failure of the whole system, the machine tool structure has to be 
idealized as a weakest-link chain. Fig. 1 shows the fundamental case 
which consists of a single member of strength R subject to a load L, 
along with the probability density functions of R and L. Here the 
strength R represents the allowable value of any response quantity 
like material strength, deflection, natural frequency or cross recep-
tance, and the load L represents the induced value of the corre­
sponding response quantity. 

The probability of failure is given by 

Pf = P(R < L) •• £ FR(l)-fL(l)-dl 

1 - j°jL(r)-fR(r)-dr (1) 

where fx(x) and Fx(x) represent the probability density and distri­
bution functions, respectively. 

If several loads act simultaneously on the structural system as 
shown in Fig. 2(a), the failure probability is given by 

Pf=l- §l[flFLj(r)]fR(r).dr (2) 

If a single member is subjected to several load conditions as shown 
in Fig. 2(b), the probability of failure can be determined from the 
relation 

x: ft [!-**,-(«] h(D-dl (3) 

f R ( r ) , f , l H 

#*• f , I 

Fig. 1 A structural system consisting of one member and one load 
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where /,- is the force induced in j'th member due to the load /. Since 
this is a weakest-link chain, the term in braces in equation (3) repre­
sents the probability of survival of the chain and is based on all links 
surviving under the load L = I. This term is evaluated from the 
products of probabilities of individual links surviving under the load 
L = l. Equation (3) is often approximated as 

Pf"l-Ua-Pfi)- (4) 

where Pfi denotes the probability of failure of tth link. Finally the 
probability of failure of a multicomponent, multiload system shown 
in Fig. 2(c) is given by 

pf=i- c c . . . r [ftu-j^Uto,)}] 
X fUh) • fUh) • • • fLpdP) • dh -dl2..- dlp (5) 

where lim is the total force induced in tth member due to the loads l\, 
1% ••; lp- Since the computation of the exact probability of failure is 
a complex probabilistic problem, equation (4) is often approximated 

i-ft fi(i-iV„) 
1=1 y=i 

(6) 

where P;tj denotes the probability of failure of ith member under jth 
load. 

C o m p u t a t i o n of R e l i a b i l i t y in a P a r t i c u l a r F a i l u r e 
M o d e 

The reliability Ra of a system is taken as one minus the probability 
of failure Pf. If R is the resistance and L is the load acting in the 
specified failure mode, the reliability of the system can be analysed 
as a single-member/single-load problem. For simplicity the resistance 
and the load are assumed to be normally distributed so that 

fL(D 
•K • aL

 6 X P L 2 \ <sL ) J 

and 

/flW = - ^ - e X p [ - i ( ^ ) 2 ] 
v 2-rr -OR L 2 \ o-B / J 

(7) 

(8) 
V25T • OR L 'I \ OR 

where L and R represent the mean values and ox and CR the standard 
deviations of L and R, respectively. Although equation (1) is appli­
cable, the following simpler procedure is used to find the reliability 
of the system in this case. By defining a new random variable, £, as 

I = R - L, (9) 

the reliability of the system can be expressed as 

flo = P ( £ > 0 ) = j"°h(v)-dv, 

where /{(T/) is the density function of £ given by 

«"=^H-;(f)l 
and £ is the mean value and <rj is the standard deviation off. If R and 
L are independent, the expressions for f and o-j are given by 

(10) 

(11) 

| = fl-L 

and 

Fig. 2 Weakest-link system 

a j = ( o - f l
2 + a L 2)l«. -

Equations (10) and (11) give 

v 2ir • o( Jo L 2 \ o( I J 

By defining a standard normal variate, Z, as 

(12) 

(13) 

(14) 

(15) 
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Equation (14) can be rewritten as 

R„ = -^= f exp(--zA-dZ, (16) 

where the lower limit of integration, z, is given by 

" • { L (°7f2 + "X2)1/2J 

Once the value of z is calculated, the corresponding reliability R„ can 
be determined from equation (16). This value can be obtained more 
readily from the standard normal tables [9]. 

In order to find the reliability of a structural system using equations 
(17) and (16), the mean values and standard deviations of the gener­
alized load L and the generalized resistance R must be known. Since 
L and R generally depend on several other random design parameters, 
one has to determine L, R, ai, and <jR in terms of the means and 
standard deviations of the random design parameters. In general, if 
Y is a nonlinear function of several random variables x1; x2, —, x„, the 
approximate values of the mean and the variance of Y can be found 
by linearizing Y about mean values of xi, x2, —, xs using a Taylor's 
series expansion. The expressions of Y and ay are given by 

Y*>Y{xh x2, ••; xs) (18) 

and 

/ s [dY\ 12 „\l/2 , , 

\;=i LoXil tei,«,-,xs) J / 

where the random variables X\, x2, •••, xs are assumed to have zero 
correlation. 

Since the reliabilities against the response quantities dCl on, and 
GMIN are to be found, the partial derivatives of dc, wi, and GMIN with 
respect to the random design parameters h, c, f, E, and P (evaluated 
at the mean values of the design variables) are required. These partial 
derivatives are found by using a finite-difference scheme in this 
work. 

Computation of Response Quantities 
In order to find the reliability of the machine tool structure in 

various failure modes, the expected values and standard deviations 
of the response quantities dc, u>i, and GMIN have to be computed. 
Since the reliability analysis of milling machine structures is con­
sidered in this work, the horizontal milling machine structure is ide­
alized by using triangular plate elements and frame elements. Since 
the structure is a three-dimensional one, both in-plane and bending 
effects are included in the analysis. The local displacement variations 
in the plate element are taken as 

u(x, y) = ax + a2x + a3y (20) 

v(x, y) = a4 + a5x + a6y (21) 

w(x, y) - a7 + a8x + a9y + a10x2 + anxy + a12y
2 

+ aisx3 + a u ( x 2 y + xy2) + aisy3 (22) 

where u, v, and w indicate the components of displacement along the 
local x, y, and z directions, and the xy- plane represents the plane of 
the plate. The displacements u, v, w, BXt and By are taken as degrees 
of freedom at each of the nodes of the triangle. For the frame element, 
u, v, w, 0X, 6y, and Bz are taken as degrees of freedom at each of the two 
nodes, where 0; represents rotation about the axis i(i = x, y, z). The 
triangular plate elements are used to idealize the column, overarm 
and table, and the frame elements are used to model the ribs on the 
overarm, the overarm joint with the column, the arbor and the arbor 
support. 

The element stiffness and mass matrices of the two types of finite 
elements are given in reference [11]. The transformation of element 
matrices to global coordinate system and their assembly to derive the 
master matrices follow standard procedures of structural analysis [11]. 
Since the orientation of cutting forces in up milling are generally more 
unfavourable from the points of view of static rigidity of cutter center 

and chatter stability, only up milling is considered in the displacement 
analysis of the milling machine structure. The static forces acting on 
the milling machine are assumed to correspond to the following cut­
ting parameters: diameter of milling cutter = 0.1 m, width of en­
gagement = 0.09 m, number of teeth on milling cutter = 12, feed per 
tooth = 0.0001 m, angle of engagement = 30 deg, helix angle of milling 
cutter = 25 deg, material of the workpiece = mild steel. These pa­
rameters give the horizontal, vertical and axial forces on. the milling 
cutter as 8237.88,1647.58, and 1647.58 N, respectively [12]. 

The response quantity dc is found by solving the equilibrium 
equations 

[K]\ = P (23) 

where [K] is the master stiffness matrix, Y is the displacement vector 
and P is the load vector. Equations (23) are solved by using the Che-
lesky decomposition of symmetric band matrices, storing only the 
upper triangular matrix, followed by forward and backward elimi­
nation technique. To find the response quantity, a>i, the linear ei­
genvalue problem 

[K]Y = co2[M]Y (24) 

is solved where o> is the natural frequency of vibration and [M] is the 
master mass matrix of the structure. In this work, equation (24) is 
solved to find the first few eigenvalues and eigenvectors by using the 
Rayleigh-Ritz subspace iteration algorithm developed by Bathe and 
Wilson for large structural systems [13]. The receptances of the cutter 
centre relative to the table of the horizontal milling machine have been 
obtained by using modal coordinates taking the damping matrix as 
a linear combination of the stiffness and mass matrices. The damping 
factors are assumed to have a value of 0.06 for the first few modes in 
the present work. From the dynamic analysis, the negative inphase 
cross receptance of the cutter centre relative to the table is taken as 
the response quantity GMIN-

The expected values dc, 5>i, and GMIN are obtained by analyzing 
the structure at the expected values of the random parameters, while 
the standard deviations adc, aai, and aoum a r e found by computing 
the rates of change of the response quantities with respect to random 
parameters and using equation (19). 

Numerical Results 
To illustrate the procedure developed, the reliability analysis of 

the horizontal milling machine structure shown in Fig. 3 is considered 
in each of the failure modes. The finite-element idealization of the 
structure is shown in Fig. 4. The reliabilities of the machine tool 
structure are found at two design points2; one at X\ = 0.50 m, X 2 = 
0.028 m, X3 = 0.32 m, X 4 = 0.028 m, X 6 = 0.42 m, and X 6 = 0.03 m, 
and the other at Xi = 0.50119 m, X 2 = 0.00987 m, X3 = 0.28826 m, 
Xi = 0.00906 m, X 6 = 0.41149 m, and X 6 = 0.00896 m. The permis­
sible mean values of the response quantities are taken as: 

(a) deflection of the cutter center, (dc)max = 0.00009 m 
(b) fundamental natural frequency, (a>i)mjn = 850 rad/sec and 
(c) minimum negative cross receptance of cutter center relative to 

the table, |GMiN|max = 3.059 X lO"9 m/N. 
The two design points are selected such that dc = 0.0000661 m, a>i = 
1003 rad/sec, and | GM I N | = 0.6628 X 10~9 m/N at the first point and 
dc = 0.0000893 m, coj = 913 rad/sec, and |G M I N | = 2.039 X l O ' 9 m/N 
at the second point. Thus the response quantities in the case of the 
second design can be seen to be closer to their permissible values than 
in the case of the first design. 

The values of the partial derivatives of the response quantities with 
respect to the random design parameters are given in Table 1. The 
reliability results obtained by using a coefficient of variation, VXi, of 
0.05 for all the random variables are shown in Table 2. From these 

2 X i = depth of column at bottom, X2 = thickness of the overarm, X3 = width 
of the machine, X4 = thickness of the column and table, X5 = depth of column 
at the top, ^ 6 - square cross-sectional dimensions of the ribs on the overarm 
and its joint with the column. 
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AH Dimensions 
In Meters. 

Arbor Dia. =.04 
Column Thickness =,028 
Overarm Thickness =.028 
Table Thickness = .028 
Square Rib Section = .03 X.03 

Fig. 3 Horizontal knee-type milling machine 

sis y 
3> £ 

Idealization Of Overarm 

Fig. 4 Finite-element idealization of milling machine (shown in Fig. 3) 

Table 1 Partial derivatives of dc, ojt and GMIN with respect to the random design parameters 

Partial 
deriva­

tive 

1 

ddc 

BXJ 

9co, 

dxj 

3 G M T N 

dxg 

— 
+ 
— 
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po in t l a 

2 

+0.32 X 10"3 

- 1 8 2 . 0 

+2.957 X 10"9 

At po in t 1 

8 

0.4487 X 1 0 " ' s 

0.3671 X 10"" 
0.5928 X 10"2° 

h 

E 

R a n d o m variable Xj 

c 

At design At 
point 2b po in t 1 

3 4 

+0.76 X 10"4 +0.56 X 10"4 

- 2 5 4 . 0 0.0 

+9.687 X 10"9 +2.754 X 10"» 

R a n d o m variable 

At po in t 2 

9 

- 0 . 5 7 1 1 X 10" ' 5 

+0.3263 X 10"'° 
- 2 . 3 9 2 X 10"2° 

At 
po in t 2 

5 

- 0 . 4 3 X 10"4 
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+9.484 X 10"9 
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At po in t 1 

10 

+0 .7546 X 10"" 
0.0 
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At 
po in t 1 
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0.0 
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- 1 2 . 2 4 0 X 10 
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~9 

At 
poin t 2 

7 

0.0 

0.0 

- 4 . 7 9 3 X 10"9 

At po in t 2 

11 

+0.9687 X 10"8 

0.0 
0.0 

a Point 1: Xi = 0.50 m, X2 = 0 .028 m, X , = 0.32 m, X , = 0 .028 m, X 5 = 0.42 m, X 6 = 0.03 m 
" P o i n t 2: X, = 0 .50119 m, X 2 = 0.O09 87 m, X3 .= 0.2 8826 m, X 4 = 0 .00006 m, X s = 0 .41149 m, X6 = 0 .00896 m 

Journal of Engineering for Industry NOVEMBER 1977 / 885 

Downloaded From: http://manufacturingscience.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jmsefk/27666/ on 05/10/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



results, it can be seen that the reliabilities are lower at the second 
design point compared to those at the first point. This is to be ex­
pected in this case, since the response quantities are very near to their 
critical values (and hence the design is less safer) in the case of second 
design. 

In many practical problems, one would be interested not only in 
the reliability of a structure for a particular set of data, but also in 
knowing how the reliability changes with a variation in the standard 
deviations of the various design parameters. Hence the variation of 

reliabilities of the milling machine structure against dc, a>i, and GMIN 
for various coefficients of variation of the design parameters, Vxi, are 
shown in Figs. 5-7, respectively. From these figures, it can be seen that 
the reliability in the deflection failure mode is most sensitive with 
respect to Vp and least with respect to Vj- at both of the design points. 
The reliability against the fundamental frequency is most sensitive 
to a change in VE and least to a change in Vc, V$, and Vp. Similarly, 
the reliability against the response quantity, GMIN, can be observed 

0.515 

0.980 

0.92 •©»- V e 

Ro ( 

0.53 

0,5? 

0 

i 

5% 10% 

(a) 

~"°~ 

15% 

o 

' 

20% 

5% 10% 15% 2 0 % 

(e) 

At Design Point 2 

0.99998 

Vh 0 .99994 

Ro 

0.53 

0 5? 

0 

, 

5% 

i 

10% 15% 

1C) 

1 1 

2 0 % " 

0.99999 

j B=- v„ 0.99997 
0 

Ro 11 

0.99999?^ 

« j i 0 .99997 

_ i 1 1 1 fc. v . 
5% 10% 15% 2 0 % c 

(d) 

5% 10% 15% 20% 

( f ) 

At Design Point I 

—&• V^ | 

Fig. 5 Reliability versus deflections 

886 / NOVEMBER 1977 Transactions of the ASME 

Downloaded From: http://manufacturingscience.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jmsefk/27666/ on 05/10/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



R. i , 

0.901 

0.900 

-

I i 

57. 10% 15% 

(g) 

20% 

Ro k 

0.998 

0.996 
5% 

1 1 1 too. Va 
10% 15% 2 0 % 

(h) 

0.95 -

0.85 

0.75 

( i) 
At Design Point 2 

0.97 -

0.95 

0.91 
5% 10% 15% 20% 

t j ) 
At Design Point I 

•fr^ ' p 

0.90 

0.88 

0.86 

R»4 
< 

0.901 

0 5% 10% 15% 2 0 % 

(a) 

O o O O 

0.900 
0 

Ro A 

0.901 -

0.900 

_ i _ 

0.999 

0.998 

V„ 0.997 

5% 10% 15% 2 0 % " c 

(C) 

— ' & * • * , 

0.998 

J *» V. 0.996 

•Si 

&. vh 

R0 

0.998 

0.996 

0 

i 

5% 

i 

10% 

(d) 

i 

15% 

1 

2 0 % " 

5% 10% 15% 20% -» 0 5% 10% 15% 20% ' 

(e) ( f ) 

At Design Point 2 At Design Point I 

Fig. 6 Reliability versus first natural frequency 

to be most sensitive to V/, and least to Vp. 
If the machine tool structure is considered as a weakest-link chain, 

each link representing one particular failure mode, the overall reli­
ability of the system can be calculated from equation (4). This gives 
the overall system reliability as tR„)overaii = 0.9989564688 for the first 
design and (fl0)overaii = 0.4816022724 for the second design. 

Conclusions 
A method of analyzing the reliability of complex machine tool 

structures, using finite-element idealization, is developed. The reli­
ability analysis procedure is more realistic, since, in practice, most 
of the parameters influencing the machine tool performance, like table 
height, cutting forces and structural properties, are really random in 

nature. Although normal distribution has been assumed in this work, 
the basic approach will not change even if the variables follow some 
other type of distribution. The reliability analysis procedure devel­
oped in this work can be coupled with formal optimization methods 
and the problem of design of machine tool structures can be stated 
as follows [10]: 

Find X which minimizes F(X) subject to the constraint 

fl„(X)>k 

where X = vector of design variables 
F = objective function to be minimized (like weight, static or 

dynamic rigidity) 
R0 = reliability 
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k = cons t an t deno t ing t h e m i n i m u m requ i r ed re l iabi l i ty . 

T h e sensitivity analysis of t h e reliability of t h e mach ine tool s t ruc ture 

is expected to give the machine tool s t ruc tura l designer an insight into 

the reliabili ty behavior of t h e s t ruc tu re so t h a t he can al ter t h e design 

t o satisfy a n y specified rel iabi l i ty condi t ion . 
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