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Abstract--In this paper, a general formula for the drag experienced by an axisymmetric body 
oscillating rectilinearly along its axis of symmetry in an incompressible micropolar fluid which is 
otherwise at rest is derived. The oscillatory flow of an incompressible micropolar fluid arising from the 
harmonic oscillations of an approximate sphere along its axis of symmetry is also considered. 
Assuming that the oscillation amplitude is small, the velocity components are obtained in terms of 
Bessel functions and Gegenbauer's functions~ The drag experienced by the body is evaluated by using 
the formula derived and its variation is studied with respect to micropolarity parameter, frequency 
parameter and geometric parameter. The oscillatory flow generated by the sphere and spheroid are 
obtained as special cases © 1997 Elsevier Science Ltd. 

1. I N T R O D U C T I O N  

Payne and Pell discussed the Stokes flow of a viscous liquid past a class of axially symmetric 
bodies with uniform streaming at infinity parallel to the axis of symmetry, and obtained a 
general formula for the drag experienced by the body in terms of the stream function [1]. Using 
the formula in Ref. [1], they obtained expressions for the drag experienced by sphere, prolate 
spheroid, oblate spheroid, lense shaped body, hemisphere, spherical cap and a pair of separated 
spheres just by determining the stream function of the flow region without calculating the stress 
components on the surface of the body. Ramkissoon and Majumdar generalized the above 
formula of Payne and Pell to the case of incompressible micropolar fluid in their classic paper 

[21. 
In 1987, Lawrence and Weinbaum have derived a general formula for the drag on an 

axisymmetric body (analogous to that of Payne and Pell) performing rectilinear oscillation 
along its axis of the symmetry in an incompressible viscous liquid [3]. In the present paper, the 
authors obtain one such general formula in the case of an incompressible micropolar fluid. The 
theory of micropolar fluids was introduced by Eringen [4]. The formula is verified in the case of 
sphere, prolate and oblate spheroids and elliptic cylinder. To illustrate further the special case of 
an approximate sphere is considered in detail. The stream function of the flow generated by the 
rectilinear oscillations of an approximate sphere is determined. Using this expression for the 
stream function and formula developed, the drag on the approximate sphere is evaluated. Two 
drag parameters K and K' are introduced and their variation is studied through the graphs with 
respect to micropolarity parameters, frequency parameter and geometric parameter. 

This paper is divided in to two sections: Section 2 is devoted to derivation of the general 
formula and Section 3 to the special case of approximate sphere. 

2. D R A G  O N  A N  A X I A L L Y  S Y M M E T R I C  B O D Y  

C o n s i d e r  a s imp ly  c o n n e c t e d  a x i s y m m e t r i c  s m o o t h  b o d y  BI osc i l l a t ing  r ec t i l i nea r l y  wi th  t he  

s p e e d  o f  o sc i l l a t i on  U e  i ' '  a l o n g  the  axis o f  s y m m e t r y  in an  i n c o m p r e s s i b l e  m i c r o p o l a r  fluid.  

* Author to whom all correspondence should be addressed. 
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Assuming the oscillaion amplitude U to be sufficiently small, under the Stokesian assumption, 
the linearized version of the fluid flow equations is 

div q = 0 (2.1) 

0q 
- -  = V . I I  ( 2 . 2 )  

P Ot 

o3V 
p j - -  = - 2 k v  + k V  × q + V . m  (2.3) 

Ot 

where II is the stress vector and m is the couple stress vector at any point of the fluid.Let (n, s, 

~b) be intrisinic coordinate system with scale factors hi = 1, h2 = 1 and h 3 = 1/to and n, s and i+ be 
corresponding unit base vectors. The flow generated is axially symmetric and all the flow 
functions are independent of ~b. We can choose the velocity and microrotation vectors as 

q = [nu .  + s Us ]e  i'rt (2.4) 

V = v+i , / , e  w ' .  (2.5) 

We write the velocity components in terms of the stream function as 

- 1 O ~  1 O ~  
u, - - -  ; us - (2.6) 

CO O s CO On 

where 

Let 

= ~e i'~'. (2.7) 

P = p ca+'. (2.8) 

Substituting these values in equations (2.2) and (2.3), we get 

i t rp  O~b Op k 0 bt + k 0 
--  - -  + - -  - -  [COy+,] [E2~b] (2.9) 

go Os On CO Os CO Os 

io 'p O ~  _ Op k O [COy+] /z + k  a [E2@ ] (2.10) 
co On as co as go On 

ip j t rv+ = - 2kv+ + kE2~b + yEE(COv+). (2.11) 

From equations (2.9) and (2.10), by eliminating pressure term, we get 

[(/z + k ) E  4 -  i p o ' E 2 ] q t -  kE2(cov+)= 0 (2.12) 

where E 2 is the Stokes stream function operator. 
Equation (2.11) can also be written in the form 

(2k + ip j tr)cov , = yE2(  COv +) + kEZO. (2.13) 

From equations (2.12) and (2.13), by eliminating the function v+, we can obtain the following 
differential equation for the stream function 0 

[ y(/.t + k ) E  6 - {k(2/z + k) + i p t r ( y  +it+ + j k ) } E  4 + ip t r (Zk  + i p j t r ) E  z] ~O = 0. (2.14) 

The function v+ is expressible in terms of ~O in the form 

k(Zk  + ipj tr)( tove,  ) = [ y ( #  + k ) E  4 + (k 2 - ipo'y)EZ]~b. (2.15) 
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The equation (2.14) can also be written in the form 

E2(E 2 - aE)(e ~ - f12) g, = 0 

where a 2, r2  are the such that 

(2.16) 

0l 2 -4- 3 2 = 
k(2/z + k) + iptr(y + jlz + jk) 

r ( u  + k) 
(2.17) 

a2f12 = ipcr(2k + ipjtr) (2.18) 
y(/x + k) 

The problem thus reduces to the determination of the two scalar functions ~O(r,0) and ve~(r,O ) 
which are governed by the equations (2.15) and (2.16) subject to the following conditions: 

(1) Far away from the oscillating body there is practically no flow and the functions ~O, v~ 
tend to zero. 

(2) At the boundary of the oscillating body we have the hyperstick or superadherence 
condition and the velocity of a fluid element on the body equals that of the oscillating 
body, while the microrotation of the fluid element is zero. 

Using equation (2.6), the equations of motion can be written as 

1 ~0] (2.19) V.H = i p t r V ×  i s to 

We shall integrate the above equation over the domain D bounded by B1 and a large concentric 
sphere B2 of radius R. We convert the volume integrals to surface integrals using the Gauss 
divergence theorem and we retain only the z-component of the vector equation: 

L, fi 'n'ndS+L fi 'rl'"dS+iP' L, fi 'n×[i  ]dS 
+ i p o f n 2 f i z . n × [ i ,  O--~ ] d S = O  (2.20) 

where iz is the unit vector along z-axis and n is the local outward normal to the domain D. The 
first integral of equation (2.20) is simply force exerted by the body on the fluid, - F. The second 
integral of equation (2.20) can be evaluated individually as below. 

Following Happel and Brenner [5], the second integral can be put in the form: 

] f [ 1 ] + 2 &3 E2~ dS - 7rk tb 3 0 - -  --v,~ d S -  iTrptr go dS. (2.21) 
-fin 

The solution of equation (2.16), subject to q, II----> 0 as r ~  ~ in terms of spherical harmonics is 

with 

= ~0~'+ ¢2 ° + ~Of (2.22) 

~ ' =  ~A,r-"+'O,,(()  
~p~ = ~ B,,R~,t)(r) 0,,(() 

(2.23) 

(2.24) 
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~b D = ~ C.RC.2'(r) tg.( () (2.25) 

where 

; 1  
- -  - -  e - " r  (2.26~ 

x J 

r r 

' ; 1  
- -  - -  e - a t  (2.27) 
r r 

If there are no sources, then A0 is zero. R~)(r) and R~2)(r) are exponentially small at large r, and 
hence we neglect them in equation (2.22) if r is large enough. Then equation (2.21) reduces to: 

Using the property of O,(():  

f f O¢,'Or dS. (2.28) 

f~ tg.(()  d (  = 28.0 + (2/3)8.2 (2.29) 
1 

where 8,,, is Kronecker delta, the above equation can be written as 

f f i .n.ndS= 2 -~ 7rip,A2 (2.30) 

which is independent of R. The third integral in equation (2.20) using the condition q ~  Uo/~e ~'' 
takes the value ipaUV, where V is the volume of the body. The fourth integral in equation 
(2.20) is evaluated using the procedure that is similar to that just outlined for the second 
integral, and its value is determined to be (4/3)Triptr A2. A2 depends on ipa and the geometry 
of the body and that term seems to have no simple interpretation. Using equations 
(2.22)-(2.25), we may express A2 in the form 

A2 = 2 lim &----T" (2.31) 

Substituting the above results in equation (2.20), we obtain the force on the body as 

r3~b 
F = ip~UV + 47riper lim &-'--'T'. 

r - - ~  ~ c  

This is analogous to the result of Lawrence and Weinbaum [3]. 

2.1 Special cases 

2.1.1 Sphere 
The stream function 
micropolar fluid is [6] 

(2.32) 

in the case of a sphere oscillating rectilinearly in an incompressible 

= - -  +/3~ e -at  + ei"'sin2O (2.33) ~b C1 + c~1 e - " ' + C 2  r ptr r 

and using equation (2.32), the drag experienced by the sphere is 

(4/3)Ira2( ip~a U 3Bl a2 ) (2.34) 

which is the same as in Ref. [6]. 
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2.1.2 Prolate spheroid 
The stream function in the case 
incompressible micropolar fluid is [7] 

of a prolate spheroid oscillating rectilinearly 

~ e  

~b = ,:X/(s 2 -  1)(1 - t 2) 
n = l  

[A.Q~"(s)P~')(t) + B.n[3)(i ac,s)S~)(i ac,t) 

+ C.R~3)(itic~)S~l)(itic,t)] 

and using equation (2.32), the drag experienced by the prolate spheroid is 

(413)ipo'so S'V/~o - l[(l/2)Uc + Q~')(so)A,] 

which is the same as in Ref. [7]. 
2.1.3 Oblate sp,~eroid 

The stream function in the case 
incompressible micropolar fluid is [7] 

of an oblate spheroid oscillating rectilinearly 

= c~v/(z 2 + 1)(1 - t 2) 
~ c  

Z [A.Q~ l)(ir)P~')(t) + B.R~3)( ac,ir)S~2( ac,t) 

(3)  • ( I )  + C.R, .  (tic,re)S,. (tic,t)] 

and using equation (2.32), the drag experienced by the oblate spheroid is 

(4/3)ipo'roV~r2o + 1[(1/2)Uc + Q~')(i%)Ai] 

which is same as in Ref. [7]. 
2.1.4 Elliptic cylinder 

The stream function in the case 
incompressible micropolar fluid [8] 

(a) Parallel to major axis is 

of an elliptic cylinder oscillating rectilinearly 

= Z [C.e-"~" + Z D.,F., .(a) + Z 
n = l  m = l  m = l  

EmGm.( a)]sinnti 

and using equation (2.32), the drag is 

iTrptrcL2[Uc sinhao coshao + C,] 
which is the same as in Ref. [8]. 

(b) Parallel to minor axis is 

,~ ,=  [C~,e-"'~+ ~] D~,,F~,,.(a)+ ~] E*.,G*.m(ot)]sinnti 
n = |  r / l ~ |  n l ~ |  

and using the formula (2.32), the drag is 

2 iTrptrcL [Uc sinhao coshao + CT] 

which is the same as in Ref. [8]. 

I~S 35:10/11-0 

in an 

(2.35) 

(2.36) 

in an 

(2.37) 

(2.38) 

in an 

(2.39) 

(2.40) 

(2.41) 

(2.42) 
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3. THE R E C T I L I N E A R  O S C I L L A T I O N S  OF AN A P P R O X I M A T E  S P H E R E  IN AN 
I N C O M P R E S S I B L E  M I C R O P O L A R  FLUID 

In this section we study the oscillatory flow of an incompressible micropolar fluid arising from 
the rectilinear oscillations of an approximate sphere along its axis of symmetry 0--0. We find 
the drag on the approximate sphere making use of the formula developed in Section 2. 

3.1 Statement o f  the problem 

Let (r, 0, &) denote a spherical polar coordinate system with (er, eo, e~) as the corresponding 
unit base vectors and hi = 1, h E = r and ha = r sin 0 as the scale factors. 

Consider an approximate sphere in an infinite expanse of an incompressible micropolar fluid 
oscillating rectilinearly along its axis of symmetry and with the speed of oscillation Ue i". We 
assume that the oscillation amplitude U is small and omit the second-order terms in the 
equations of motion. Ignoring the body force and body couple, the basic equations of the flow 
can be written in the form 

divq = 0 (3.1) 

Oq 
p - -  = - Vp - k curly - (/.t + k) curl curlq (3.2) 

Ot 

tgV 
p j - -  = 2kv  + k curlq - y curl curl v + ( a  + /3  + y) grad(divv).  (3.3) 

Ot 

Since the flow generated by the oscillation is axially symmetric all the flow field functions are 
independent of the coordinate variable ¢. We may choose the velocity and microrotation of the 
flow in the form 

and 

q = [u(r,O)er + v(r,O)eo]e i~' 

v = [C(r,O)e,~]e i°~t. 

We introduce the Stokes stream function 0(r, 0) by means of the equations 

(3.4) 

(3.5) 

p(r,O) = P(r,O)e i". (3.7) 

As seen in Section 2, the problem reduces to the determination of the two scalar functions 
0(r, 0) and C(r, O) which are governed by equations (2.16) and (2.15) subject to the following 
boundary conditions: 

u = U cos 0, v = - U sin 0 and C = 0 (3.8) 

on the boundary. 
Equivalently, these can be written in the form 

~br = U r  2 sinE0, ~bo = - -  U r  2 sin 0 cos 0 and C = 0 (3.9) 

on the boundary. 

3.2 Solution o f  the problem 

From equation (2.16), we can obtain the solution ~ by superposing the solutions of 

EZ0 = 0 (3.10) 

and write the pressure in the form 

- 1 0 0  1 00 
u -  r2si n 0  0---0 ; v =  r s i n 0  0r (3.6) 
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a1-1.5 

sl-2.5 

4 
. . . .  i . . . .  i . . . .  i . . . .  

1.5 2 2.5 3 

pl 

Fig. 1. Parameter K vs pl for different values of al (pt = 0.4, pj = 0.6. ~ = 0.0). 

(E 2 - a 2) qt = 0 (3.11) 

(E 2 - / 3  z) 0 = 0 (3.12) 

in the form qt = 0; + #t2 + #t3. 
Following the technique of separation of variables, it can be seen that the solutions of 

equations (3.10)-(3.12) are. respectively. 
=¢ 

~b, = ~ [A.r" + B.r-"+'][a*.o.(()  + B~,H.(()]  (3.13) 
/ 1 = 2  

~c 

#t~ = ~ V~r[C.K._ ,a(err) + D. I ._ ,~(ar)][C*.O.(() + D*.H.(()] (3.14) 
e l = 2  

@, = ~ Vrr[E.K._ ,/z(flr) + F . I ._  ,/z(flr)][E*.O.(() + F*.H.(()] (3.15) 
n = 2  

-7 

-8 a l ~  
-9 

i -10 

-11 

- 1 2  . . . .  ' . . . .  ' ' . . . . . . . .  
1.5 2 2.5 3 

pl 

Fig. 2. Parameter K' vs pl for different values of al (pt = 0.4, pj = 0.6, ~ = 0.0). 
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Q_ 

a1-1.5 

1 ~ e . l . 2 . 5  

o 

. . . .  i . . . .  

1.5 
r . . . .  i . . . .  

2 2.5 3 

pl 

Fig. 3. Parameter K vs pl for different values of al (pt=0.4, pj=0.6, e =0.05). 

where ( =  cos0, 0 . ( ( )  and H . ( ( )  are Gagenbauer functions of the first and second kinds and 

K._l/z(ar), In-1/z(eer) are modified Bessel functions of the third and fourth kinds. Using the 
regularity conditions at infinity, we obtain 

0 = [B2r-' + C2X/rrK3/2(ar) + E3/2V~rK3/2(fir)] 02( s r ) 
~ c  

+ ~ [B.r -'+~ + C.~rrK._,/2(ar) + E.X/rrK._,/2(fly)]O.(() (3.16) 
n = 3  

C _  1 [{CzVrrA*K3/2(ar) + EzX/rrA~K3/z(flr)}O2(() 
r sin 0 

+ * + ~ {C.A~rrK._, /z(ar)  E.At3~rrK._,/2(flr)}O.(() ] 
n = 3  

(3.17) 

-10 

~( -12 

i -14 

-16 

1 1.5 2 2.5 3 

pl 
Fig. 4. Parameter K' vs pl for different values of al (pt=0.4, pj=O.6, E=0.05). 
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,,,( 

2 L 

-2 

a1-1.5 

al.2.5 

J 

i i i i I i i . . i . . . .  i . . . .  

1 . 5  2 2 . 5  3 

pl 

Fig. 5. Parameter K vs pl for different values of al (pt=0.4, pj= 0.6, • =0.1). 

where 

( #  + k ) c t Z -  ipto (lz + k ) f l Z -  ipto 
= • * = ( 3 . 1 8 )  A*~ k ' A °  k 

Let us introduce the following nondimensionalization scheme before proceeding to the 
implementation of the boundary conditions to determine the arbitrary constants in the 
expressions of qt and C: 

~b,=UaZ~;B. Ua"+'B - = = ,; t.;, Ua3/2C,, E,  = Ua3/2E, n; C = U/aC. (3.19) 

Introducing these in equations (3.16) and (3.17) and then dropping the tildes, the expressions 
for ~ and C in nondimensional form, respectively, become 

= [B2r -1 + C2Vrrr3/z(a ar) + E3rzV~rg3/2(aflr)] O2(() 

- ~ [B.r -"+' + C . ~ r K . _  1/2(a otr) + E.~/rrK._ lrz(aflr)] 0.(~') (3.20) 
n = 3  

-10 

-15 

-20 

-25 . . . . . . . . . . . . . . . . . . .  
1 1.5 2 2.5 3 

pl 

Fig. 6. Parameter K' vs pl for different values of al (pt=0.4, pj=0.6, •=0.1). 
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-10 

-15 

-15 

-5 ,,¢. 

. . . .  i . . . .  i , , , , l l l ,  I 

1.5 2 2.5 3 

pl 

Fig. 7. Parameter K vs pl for different values of al (pt = 0.4, pj = 0.6, e = 0.2). 

1 
C -  

r sin 0 
- -  [{C2V~rA*~a2K3/z(a ar) + E2~rrA*~a2K3/z(a /3r)} 02( ( )  

+ ~ {C.A*~Vrra2K. - ]/2(a ar) + E,c4*~X/rraZK._ ,/2(aflr)} 0 . (  ()]. (3.21) 

3.3 Determination o f  arbitrary constants 

We first propose to develop the solutions corresponding to the boundary r=a[ l+ /3 . ,O . , ( ( ) ]  
and assume that the coefficient/3., is sufficiently small, so that squares and higher powers of/3.,  
may be neglected, and we replace (r/a) k by 1 + k~mOm(() where k is positive or negative. 

If the oscillating body were the sphere r = a, the expression for to is given by [6] 

tO = [Bzr- ' + C2XFrK3/2(ear) + E2VrrK3/2(flar)] 02( ( )  (3.22) 
only. 

Comparing equation (3.20) with the above expression, the terms involving B., C., E .  for n > 2 
in equation (3.20) are the extra terms here which are not present in to for the sphere. The body 
in the present problem is an approximate sphere and the motion is expected not to be far 

-20 
A l l 1 •  

u • 

~" -25 

-30 

-35 

-40 . . . .  t . . . .  i . . . .  i . . , i 

1.5 2 2.5 3 

pl 

Fig. 8. Parameter K' vs pl for different values of al (pt = 0.4, pj = 0.6, ~ = 0.2). 
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3 ,,¢, 

_= 
2.5 

2 

1.5 

l l l l l l l . . i  . . . .  i . . .  I 

1.5 2 2.5 3 

pl 

Fig. 9. Parameter K vs pl for different values of al (pt=0.8, p]=0.6, • =0.05). 

different from that which occurs when the body is a sphere. All the coefficients B., C., E .  for 
n > 2 will be of tlae order/3,. .  Therefore in these terms involving B., C~, E.  we disregard the 
departure from a spherical form and set r=  1 (r is nondimensional) while implementing the 
boundary conditions. 

The condition equation (3.9) implies that 

- [B2 + C2K3/2(aa) + E2K3t2(a/3) + 1]Pl(g') + [B2 - 2]/3,, ,0, .(()P,(() 

+ ~. [B. + C.K._ .z(a a) + E.K._ l~(a/3)]P,,- ,  ( ( )  = 0 (3.23) 

[ - B2 - C2{K3/2(a a )  + a otKtn(a a)} - E2{K3,2(a/3) + a/3K,,2(a/3)} + 2] 02(()  

+ [2B2 + C2K3a(a a)  + EzK3/2(a/3) + 21/3,"0,"(¢) 02(~) 

+ ~ [ ( 1  - n ) B . -  C.{(n - 1)K._ m ( a o t ) +  a a K . _ s , 2 ( a a ) }  - E,l(n - 1)K._,,~(a/3) 

+ a/3K,,_3/z(a/3)}]O,,(() = 0 (3.24) 

and 

{C2A ~K3,2(a a )  + EzA ~K3/2(a fl)] O2(~') - {C2A ~,Ka/2(a a) + E2A ~K3,2(a/3)] fl,"O,"(() O2(()  

+ ~,[C,.A'~K,,_,r~(aa) + E,,A~K,,_I,z(a/3)]O,,(() = 0. (3.25) 

-6 

. !11-1 

-9 

-10 . . . . . . . . . . . . . . . . .  
1.5 2 2.5 3 

pl 

Fig. 10. Parameter K' vs pl for different values of al (pt=0.8, pj=0.6, ~ =0.05). 
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4 

x -  

2.5 

3.5 

1.5 

1 . . . .  I . . . .  i . . . .  i . . . .  

1 1.5 2 2.5 3 

pl 

Fig. 11. Parameter K vs pl for different values of al (pt=0.8, pj=0.8, ~ =0.05). 

Equat ing leading coefficients to zero in equat ions  (3.23)-(3.25), we obtain 

B 2 + C2K3/2(aot ) + E2K3/2(afl)  + 1 = 0 

- B2 - C2[K3/E(aa) + aaK1/2(aa)] - E2[Ka/2(aa) + aflKl/2 (a/3)] + 2 = 0 

C2A •K3/z(a ce) + EzA~K3/2(afl) = 0 

and these give the expressions 

B 2 = [A*K3/2(a a ) {a f lK~/ z (a f l )  - 3K1/2(a f l ) ]  

+ A*~K3/z(afl){aK3/2(a a)  - a aK1/2(a a ) } ] / D ( a , f l )  

C2 = 3K3/z(afl)A*~/D( a , f l )  

and 

where  

E2 = - 3 K3/z(a a ) A  *~/D ( a, fl) 

D( ol,~) = aaA*~Kl/z(aa)K3/2(afl) - aflA*,K,/2(afl)K3/2(aa). 

-6 

o. -9 

-I0 

"11 . . . . . .  ' ' ' ~ . . . .  J .... 

1.5 2 2.5 3 

pl 

Fig. 12. Parameter K' vs pl for different values of al (pt=0.8, pj=0.8, ~ =0.05). 
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Using these values B2, C2 and E2 in equat ions  (3.23)-(3.25), we obta in  

~ . [ B , , + C n K n _ I / 2 ( a a ) + E n K n _ I / z ( a / 3 ) ] P , , _ I ( ~ ) = E ~ / 3 . , O n , ( ( ) P 1 ( ( )  (3.33) 

~ .  [(1 - n)Bn  - Cnl(n - 1 ) K . _  i /2(aa)  + aotKn-3/2(aot)}  

- E . { ( n  - 1 ) K . _  vz(a/3) + a / 3 K . _ 3 / 2 ( a / 3 ) } ] O . ( ( )  = " 2 / 3 . , 0 n , ( ( ) 0 2 ( ( )  (3.34) 

[CnA*~K. _ ~/2(a a )  + E , , A ; K , , _  1/2(a/3)] O . ( ( )  = 0 (3.35) 

where  

el = [3A*t3K3/2(a/3)lK3/2(a a )  - a aKl /2(a  a)} 

- 3A~K3/2(aot)lK3/2(a/3) - K1/2(a/3)}]/D(ot,/3) (3.36) 

"2 = [9K3/2(a ot)Ki /2(a/3)(A ~ - A ~)] /D(a , /3) .  (3.37) 

To obta in  the remain ing  arbi t rary  constants  in equat ions  (3.33)-(3.35), we use the identit ies (see 

Ref. [5], p. 142) 

- ( m  - 2 ) ( m  - 3 )  m ( m  - 1) 
On,( S ~) O2(¢) = O.,_ 2(( )  + 0 . , (¢ )  

2(2m - 1)(2m - 3) (2m + 1)(2m - 3) 

(m + 1)(m + 2) 

2(2m - 1)(2m - 3) 
t9.,+2(( ) (3.38) 

and 

( m  - 2 )  1 
Ore( f  ) e l ( f )  = P . , - 3 ( ( )  + P . , - 1 ( ( )  

2(2m - 1)(2m - 3) (2m + 1)(2m - 3) 

(m + 1) 

(2m - 1)(2m + 1) 
P . , + I ( ( )  (3.39) 

then  we get 

Bn = C.  = E .  = 0 if n # m - 2 ,m,m + 2 (3.40) 

and when  n = m -- 2, m, m + 2, we have  the following sys tem 

Bn + C n K n -  l /2(aa)  + E , , K . _  1/2(ot'/3) = ",~3.,an (3.41) 

(1 - n)B,,  - C.{(n - 1)Kn_ v2 (aa )  + a a K . _ 3 / z ( a a ) }  

- G { ( n  - 1)K._,,2(a/3) + a/3K._3/2(a/3)}  = .2/3.,b,, (3.42) 

C,,A*~K,, _ ,/2( a a )  + E , ,a  t3Kn- ,/2(a/3) = 0 (3.43) 

where  

- ( m  - 2 ) ( m  - 3 )  m ( m  - 1) 

bin-2 = 2~-2~- S 1 ) ~  - 3) ' b.,  = (2m + 1)(2m - 3) ' b.,+2 = 

- ( m + l ) ( m + 2 )  

2(2m - 1)(2m - 3) ' 

(m - 2) 1 (m + 1) 

a . , - 2  = 2(2m - 1)(2m - 3) ' a., (2m + 1)(2m - 3) ' a.,+2 (2m - 1)(2m + 1) (3.44) 

The  expressions tor  Bn, Cn and En for  n = m - 2, m, m + 2 are given by 

B., = Jan' ,  {a ,~A ~K,,_ ,/2(a/3)Kn - 3/2(a a )  - a /3A  *~Kn - ,/2(a ce)K,,_ 3/2(a/3) 

+ (n - 1 ) A ~ K n - , / 2 ( a a ) K n - , a ( a / 3 )  - (n - 1)A*~K,,_ , / 2 ( a a ) K . _  ,/2(a/3)1 

+ bnezlA*~ - A*~}Kn - ,/2(a a ) K , , _  , /2(a/3)] /D(a, /3)  (3.45) 



1000 D. SRINIVASA CHARYA and T. K. V. IYENGAR 

C. = - {(n - 1)~,a. + ~2b.}A*aK ._  1/2(a/3)/D(a./3) (3.46) 

and 

E.  = {(n - 1)e,a. + ~2b.}A*.K._ ,r2(aa)/D(a./3) .  (3.47) 

Thus the stream function gt is determined completely. In case the equation of approximate 
sphere is r=a[l+Y~/3.,O,.(()],  we employ the same technique as above and determine the 
corresponding arbitrary constants in the expansion for 0. 

3.4 Determination o f  drag 

The drag experienced by the body is given by 

D = ip toUV + 4zripto lim r $  
r-.~ sin20 

(3.48) 

where V is the volume of the body. In the present case, using the above formula the drag is seen 
to be 

D = 41raipto(1 +/32)/3 + 4~'ipto[B2 + (1[5)B~'/32 + (2135)B~/34]e ~'~̀  (3.49) 

where 

B',, _2=am_2,  nm_2;B,'~ =amB,,; B,,+2 . . . .  - a,,+2Bm+2. (3.50) 

It is interesting to note that though the boundary surface is r = a [ 1  + ~2,=2B,,O,,(~')], the 
coefficients/32 and/34 only contribute to the drag. This implies that the drag on the approximate 
sphere is relatively insensitive to the details of the surface geometry. This is in tune with the 
observations made in Refs [9, 10]. 

If/32 =/34 = E, then the drag is 

D = (47r/3)ipto[(1 + 3B2) + (1 + (3/5)B~' + (6/35)B2')~]ze i''. (3.51) 

The nondimensional drag on the body can be expressed as 

(1 + 3B2) + (1 + (3/5)B~' + (6/35)B2'), = - K - iK '  (3.52) 

The drag parameters K and K' are numerically evaluated for various values of al= (tz + k)/k,  E, 
p t  = pto/(tz + k), pl  = k(2/z + k)/[r(/~ + k)] and pj = j (~  + k) /y  and their variation is presented in 
the graphs of Figs 1-12. 

Figures 1 and 2 pertain to the case of a perfect sphere ( ,  =0). Figures 3-12 concern an 
approximate sphere (E > 0). As the deformation parameter ~ increases, both K and K' decrease 
algebraically. Furthermore, with an increase in pl, a decrease in K and increase in K' is noticed. 
Keeping al, p j  and ~ fixed, and increasing the frequency parameter pt, an increase in both K and 
K' is observed for the selected range of parameter values. 

3.5 Special cases 

3.5.1 Sphere 
If ft,, = 0 for m > 2, we obtain the case of the sphere. In this case the drag simplifies to 

D = [(4 zraipto)/3 + 2 ,riptoB2] e i°'' (3.53) 

which is same as the drag on the sphere as obtained by Lakshmana Rao and Bhujanga Rao 
[6]. 

3.5.2 Oblate spheroid 
Consider the oblate spheroid given by 

x 2 + y2 Z 2 

a----T--- + - 1 (3.54) a2(1 _ , ) 2  
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whose equatorial radius is "a" in which e is so small that E 2 and higher powers may be 
neglected. Following Happel and Brenner [5] its polar equation can be put in the form 
r=c[1+2~#2(~')] where c=a(1  - e) (see Ref. [5], p. 144). This is similar to r=c[1 +/3202(#)] 
where a = c and/32 = 2~. 

Using equations (3.20) and (3.21), the expressions for ~(r, 0) and C (r, 0) can be determined. 
Utilizing equation (3.48), the drag is seen to be 

D = (4zraipto/3)[(1 + 3B2) + (4 - 6B 2 + (6/5)B~')E]. (3.55) 

It is to be noted tlaat the evaluation of the drag on an oblate spheroid is based on the neglect of 
e 2 and higher terms, while the drag formula obtained by Lakshmana Rao and Iyengar [7] is 
based on exact analysis. However, the numerical determination of the drag in Ref. [7] is through 
the solution of a Iruncated system of simultaneous equations, the details of which can be found 
in Ref. [7]. 
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