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DRAG ON AN AXISYMMETRIC BODY PERFORMING RECTILINEAR
OSCILLATIONS IN A MICROPOLAR FLUID

D. SRINIVASA CHARYA and T. K. V. IYENGAR*
Department of Mathematics and Humanities Regional Engineering College, Warangal-506 004, India

Abstract—In this paper, a general formula for the drag experienced by an axisymmetric body
oscillating rectilinearly along its axis of symmetry in an incompressible micropolar fluid which is
otherwise at rest is derived. The oscillatory flow of an incompressible micropolar fluid arising from the
harmonic oscillations of an approximate sphere along its axis of symmetry is also considered.
Assuming that the oscillation amplitude is small, the velocity components are obtained in terms of
Bessel functions and Gegenbauer's functions. The drag experienced by the body is evaluated by using
the formula derived and its variation is studied with respect to micropolarity parameter, frequency
parameter and geometric parameter. The oscillatory flow generated by the sphere and spheroid are
obtained as special cases. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

Payne and Pell discussed the Stokes flow of a viscous liquid past a class of axially symmetric
bodies with uniform streaming at infinity parallel to the axis of symmetry, and obtained a
general formula for the drag experienced by the body in terms of the stream function [1]. Using
the formula in Ref. [1], they obtained expressions for the drag experienced by sphere, prolate
spheroid, oblate spheroid, lense shaped body, hemisphere, spherical cap and a pair of separated
spheres just by determining the stream function of the flow region without calculating the stress
components on the surface of the body. Ramkissoon and Majumdar generalized the above
formula of Payne and Pell to the case of incompressible micropolar fluid in their classic paper
[2].

In 1987, Lawrence and Weinbaum have derived a general formula for the drag on an
axisymmetric body (analogous to that of Payne and Pell) performing rectilinear oscillation
along its axis of the symmetry in an incompressible viscous liquid [3]. In the present paper, the
authors obtain one such general formula in the case of an incompressible micropolar fluid. The
theory of micropolar fluids was introduced by Eringen [4]. The formula is verified in the case of
sphere, prolate and oblate spheroids and elliptic cylinder. To illustrate further the special case of
an approximate sphere is considered in detail. The stream function of the flow generated by the
rectilinear oscillations of an approximate sphere is determined. Using this expression for the
stream function and formula developed, the drag on the approximate sphere is evaluated. Two
drag parameters K and K’ are introduced and their variation is studied through the graphs with
respect to micropolarity parameters, frequency parameter and geometric parameter.

This paper is divided in to two sections: Section 2 is devoted to derivation of the general
formula and Section 3 to the special case of approximate sphere.

2. DRAG ON AN AXIALLY SYMMETRIC BODY

Consider a simply connected axisymmetric smooth body B, oscillating rectilinearly with the
speed of oscillation Ue'" along the axis of symmetry in an incompressible micropolar fluid.
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Assuming the oscillaion amplitude U to be sufficiently small, under the Stokesian assumption,
the linearized version of the fluid flow equations is

divqg =0 (21)
aq
— = V.11 2.
P (22)
av
pj? =—2kv+kVXq+Vm (23)

where I is the stress vector and m is the couple stress vector at any point of the fluid.Let (n, s,
¢) be intrisinic coordinate system with scale factors &, =1, h,=1 and h;=1/w and n, s and iy be
corresponding unit base vectors. The flow generated is axially symmetric and all the flow
functions are independent of ¢. We can choose the velocity and microrotation vectors as

q =[nu, + suje"" 24)
v = v,ie' (2.5)

We write the velocity components in terms of the stream function as

uﬁ%lﬂ;uﬁi_ﬂ (2.6)
w N w n
where
¥ = el .7
Let
P=pe'. (2.8)

Substituting these values in equations (2.2) and (2.3), we get

igp W ap k o __ ptk o
- —_— =t — — - —[E 2.9
@ 0ds an @ 0J5 [@ve] @ as [E°] 29)
iocp oY ap kK d __ pt+k @ ’
- —_ = —— = — — - —E 2.10
@ dn as @ ds [@ve] @ an [E°] ( )
ipjov,= —2kv,+kE*y + yEX(@v,). (2.11)

From equations (2.9) and (2.10), by eliminating pressure term, we get
[(u+Kk)E*— ipaE* ¢ — kE*(@v,) =0 (2.12)

where E? is the Stokes stream function operator.
Equation (2.11) can also be written in the form

Rk +ipjo)avy, = YE*(@v,) + kE* . (2.13)

From equations (2.12) and (2.13), by eliminating the function v, we can obtain the following
differential equation for the stream function ¢

[y(u + K)E®— [kQQu + k) +ipa(y+ju +JK)E* +ipa(2k +ipjo)E*]y=0. (2.14)
The function v, is expressible in terms of ¢ in the form
kQRk +ipjo)wvy) =[y(u + k)E* + (k* — ipay)E*] 4. (2.15)
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The equation (2.14) can also be written in the form

EE? - a?)(E*— BY) ¢ =0 (2.16)
where o2, B2 are the such that
+k)+i i+
I kQu + k) +ipo(y+ju+jk) 217)
y(p + k)

2.2 iPo(k+ipjo)

PETS (2.18)

The problem thus reduces to the determination of the two scalar functions ¢(r,0) and v 4(r,0)
which are governed by the equations (2.15) and (2.16) subject to the following conditions:

(1) Far away from the oscillating body there is practically no flow and the functions ¢, v,
tend to zero.

(2) At the boundary of the oscillating body we have the hyperstick or superadherence
condition and the velocity of a fluid element on the body equals that of the oscillating
body, while the microrotation of the fluid element is zero.

Using equation (2.6), the equations of motion can be written as

v =ipaVX|:i¢%¢]. (2.19)

We shall integrate the above equation over the domain D bounded by B, and a large concentric
sphere B, of radius R. We convert the volume integrals to surface integrals using the Gauss
divergence theorem and we retain only the z-component of the vector equation:

ffiz-ﬂ-nd5+f Iiz-ﬂ-nd5+ipaj fiz-nx[id,i]ds
B| Bz BI i
+ fj [ l//] _
ipo iynX|i,— |dS=0 (2.20)
B, w

where i, is the unit vector along z-axis and n is the local outward normal to the domain D. The
first integral of equation (2.20) is simply force exerted by the body on the fluid, — F. The second
integral of equation (2.20) can be evaluated individually as below.

Following Happel and Brenner [5], the second integral can be put in the form:

d
inz-ﬂ-nds=n'(2u—k) f@T(Ezw) ds
n
ko [, 9 1 4 0 1 . _ oy
+T w-;W[FEzw]ds_ﬂkfw3W[Ev¢] dS—l‘lTpO’J‘w—a—;l— ds. (221)

The solution of equation (2.16), subject to q, [ - 0 as r — « in terms of spherical harmonics is

y=yl+ g7+ Y3 (2.22)

with
Uy =2 A" 9,(0) (223)
¥7 = > B,RP(r)9,() (2.24)
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¢? =Y C.RP(r,(¢) (2.25)
where
1 d \»-11
Rf,l)(r) = rn( - - ) eer (226)
r dr r
1 d \»-1t1
R®(r) = r"( - — ) —e P (2.27)
r dr r

If there are no sources, then A, is zero. R{"(r) and R{?(r) are exponentially small at large 7, and
hence we neglect them in equation (2.22) if r is large enough. Then equation (2.21) reduces to:

, . _ oy’
ffz,;l'l-ndS= - tﬂpajw 5 ds. (2.28)
r
Using the property of %,():
f ' 9,(0)dL =28, + (238, (229)
-1

where §,,, is Kronecker delta, the above equation can be written as

2
jfiz.l'l.nds =3 TipoTA, (2.30)

which is independent of R. The third integral in equation (2.20) using the condition q— Ugi,e'”’
takes the value ipgUV, where V is the volume of the body. The fourth integral in equation
(2.20) is evaluated using the procedure that is similar to that just outlined for the second
integral, and its value is determined to be (4/3)wipo A,. A, depends on ipo and the geometry
of the body and that term seems to have no simple interpretation. Using equations
(2.22)(2.25), we may express A, in the form

3
A,=2lim r_‘f . (2.31)
rox @
Substituting the above results in equation (2.20), we obtain the force on the body as
r3
F=ipoUV +4mipo lim —5-. (2.32)
w

r—x

This is analogous to the result of Lawrence and Weinbaum [3].

2.1 Special cases

2.1.1 Sphere
The stream function in the case of a sphere oscillating rectilinearly in an incompressible
micropolar fluid is [6]

1 1 B, 1] .
g= {C1<— + a1>e_""+C2<— + ﬁ,)e_ﬁ’+ B B }e"”sinzo (2.33)
r r pa r

and using equation (2.32), the drag experienced by the sphere is

, 3B
(4/3)1ra2<tpa'aU - az‘ ) (2.34)

which is the same as in Ref. [6].
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2.1.2 Prolate spheroid
The stream function in the case of a prolate spheroid oscillating rectilinearly in an
incompressible micropolar fluid is [7]

y=cV (s’ 1)1 -7 > [A.QP )PV + B,R (iac,s)S\ )i acyt)
n=1
+ C,RE)(i Bes)ST (i Bent))] (2.35)
and using equation (2.32), the drag experienced by the prolate spheroid is
@13)iposyV sy — 1[(112)Uc + Q{V(s,)A] (2.36)

which is the same as in Ref. [7].

2.1.3 Oblate spheroid
The stream function in the case of an oblate spheroid oscillating rectilinearly in an
incompressible micropolar fluid is [7]

g=cV(r+ 1)1 - ) ¥ [A,Q(7)P () + B,RG)(acit)S)acy)
n=1
+ C,R{(Bc,it)S(Be,t)] (2.37)
and using equation (2.32), the drag experienced by the oblate spheroid is
@3)iporaVri+ 1[(112)Uc + Q{V(iT,)A] (2.38)

which is same as in Ref. [7].

2.1.4 Elliptic cylinder
The stream function in the case of an elliptic cylinder oscillating rectilinearly in an
incompressible micropolar fluid [8]

(a) Parallel to major axis is

y= > [Ce™*+ > D,F,(a)+ > E,G,.(a)lsinnp (2.39)

n=1 m=1 m=1

and using equation (2.32), the drag is

impocL?*[Uc sinha, cosha, + Ci] (2.40)
which is the same as in Ref. [8].
(b) Parallel to minor axis is

x

y= X [Cle™""+ 3 DLF.(a)+ 3 E,G,,(a)]sinng (2.41)

n=1 m=1 m=1

and using the formula (2.32), the drag is
impacL*[Uc sinha, cosha, + C}] (2.42)

which is the same as in Ref. [8].

1JES 35:10/11-D
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3. THE RECTILINEAR OSCILLATIONS OF AN APPROXIMATE SPHERE IN AN
INCOMPRESSIBLE MICROPOLAR FLUID

In this section we study the oscillatory flow of an incompressible micropolar fluid arising from
the rectilinear oscillations of an approximate sphere along its axis of symmetry #=0. We find
the drag on the approximate sphere making use of the formula developed in Section 2.

3.1 Statement of the problem

Let (7, 6, ¢) denote a spherical polar coordinate system with (e, e,e;) as the corresponding
unit base vectors and &, =1, h,=r and h;=r sin @ as the scale factors.

Consider an approximate sphere in an infinite expanse of an incompressible micropolar fluid
oscillating rectilinearly along its axis of symmetry and with the speed of oscillation Ue™’. We
assume that the oscillation amplitude U is small and omit the second-order terms in the
equations of motion. Ignoring the body force and body couple, the basic equations of the flow
can be written in the form

divq =0 (3.1)
oq
v Vp — kcurly — (u + k)curl curlq 3.2)
0
pj a—‘; = 2kv + k curlg — y curl curl v + (@ + B + y) grad (divw). (3.3)

Since the flow generated by the oscillation is axially symmetric all the flow field functions are
independent of the coordinate variable ¢. We may choose the velocity and microrotation of the
flow in the form

q =[u(r.0)e, +v(r,8)es]e'" (3.4)

and

v =[C(r,0)e,)e™". (3.5)
We introduce the Stokes stream function ¢(r, 8) by means of the equations

-1 9 1 d
rsinf 080 rsiné dr

and write the pressure in the form

p(r,8) = P(r,0)e'". (3.7)

As seen in Section 2, the problem reduces to the determination of the two scalar functions
Y(r, ) and C(r, 6) which are governed by equations (2.16) and (2.15) subject to the following
boundary conditions:

u=Ucosf,v=~Usin@andC=0 (3.8)

on the boundary.
Equivalently, these can be written in the form

W, =Ur?sin’6, y,= — Ur’sin@cos#and C =0 (3.9)
on the boundary.
3.2 Solution of the problem
From equation (2.16), we can obtain the solution ¢ by superposing the solutions of
E*y=0 (3.10)
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7

Parameter K

p!
Fig. 1. Parameter K vs pl for different values of al (pt=0.4, pj=0.6, € =0.0).
(E*-a®)y=0 (3.11)
(E*-B2)y=0 (3.12)

in the fOI’In (//= lﬂ] + l//2+ (//3.
Following the technique of separation of variables, it can be seen that the solutions of
equations (3.10)-(3.12) are, respectively,

=3 [Ar"+B,r " [Ar9,(8) + ByH,({)] (3.13)
Y= > VrHC,K,-1n(ar) + DI, _1n(an)][C38.() + DLH ()] (3.14)
3= 3 VHEK,-1n(Br) + F.l,_1n(BNIE (L) + FrH (0] (3.15)

Parameter K’

Fig. 2. Parameter K’ vs pl for different values of al (pt=0.4, pj=0.6, € =0.0).
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[13]
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Fig. 3. Parameter K vs p/ for different values of a/ (pt=0.4, pj=0.6, € =0.05).

where ¢ =cosf, 4,({) and H,({) are Gagenbauer functions of the first and second kinds and
K,_1p(ar), 1, s(ar) are modified Bessel functions of the third and fourth kinds. Using the

regularity conditions at infinity, we obtain

= [Bz”_1 + Cz\/;Kyz(ar) + Es/z\/;Ks/z(Br)] F2({)
+ i [Bnr_"-'—l + Cn\/;Kn— 1/2((17') + En\/;Kn— 1/2(B7)] 19rr( {)

n=3

1
rsin 8

C:

(C:VrALK (ar) + Ez\[”A;aKs/z(ﬁ’)} 9,(8)

+ i [CLALNV K, _ 1 p(ar) + E,AsN 1K, 1n(Br)) 9.(0)]

n=3

Parameter K

Fig. 4. Parameter K' vs p/ for different values of al (pt=0.4, pj=0.6, € =0.05).

(3.16)

(3.17)
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Fig. 5. Parameter K vs p! for different values of al (pt=0.4, pj=0.6, €=0.1).

where

+k)a®—i +k)BZ—i
A:=(M ): tpw;A;=(# )i ipw (3.18)

Let us introduce the following nondimensionalization scheme before proceeding to the

implementation of the boundary conditions to determine the arbitrary constants in the
expressions of ¢ and C:

¢ =Ud*y;B,=Ua"*'B,;C,=Ua*C,,E,=Ua*?E,;C=UlaC. (3.19)

Introducing these in equations (3.16) and (3.17) and then dropping the tildes, the expressions
for ¢ and C in nondimensional form, respectively, become

Y =[Br~ '+ Cz\/;Kyz(a ar)+ E3/2\/;K3/2(aﬂr)] 3,({)

= > B~ "+ C,VIK, - plaar) + E,NTK, 1n(aBr)]9,(¢) (3.20)
n=3
-10
15t al«1.5
4
B
[4)
8
&
_25 L L 1 a
1 15 2 2.5 3
pl

Fig. 6. Parameter K’ vs pl for different values of al (pt=0.4, pj=0.6, €=0.1).
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0

Parameter K

al=4.0

-15 : ' ‘
1 15 2 25 3

pl

Fig. 7. Parameter K vs pl for different values of al (pt=0.4, pj=0.6, €=0.2).

1
C = " 0 [(sz;A ;azK:;/z(a ar) + Ez\/;A;azK:;/z(aﬁr)}’l?z( {)
rsin

+ S C,AN 1a*K,, _1p(aar) + E, A3V ra®K,,_ ,x(a Br)} 9.(0)].

3.3 Determination of arbitrary constants

(3.21)

We first propose to develop the solutions corresponding to the boundary r=a[1+ 8,,8,.()]
and assume that the coefficient 8,, is sufficiently small, so that squares and higher powers of 8,,

may be neglected, and we replace (r/a)* by 1+kB,,8,,({) where k is positive or negative.
If the oscillating body were the sphere r=a, the expression for ¢ is given by [6]

¥ =[Byr~ '+ C,VrKsp(ear) + Ez\/;stz(ﬂa’)] %,({)
only.

(3.22)

Comparing equation (3.20) with the above expression, the terms involving B,, C,, E, for n>2
in equation (3.20) are the extra terms here which are not present in  for the sphere. The body
in the present problem is an approximate sphere and the motion is expected not to be far

Parameter K

1.5 2 2.5 3

pl
Fig. 8. Parameter K’ vs pl for different values of al (pr=0.4, pj=0.6, € =0.2).
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4

35

al=1.5

25 ¢

K
2
K\

Parameter K

151

1 1.5 2 2.5 3
pl
Fig. 9. Parameter K vs pl for different values of al (pt=0.8, pj=0.6, € =0.05).

different from that which occurs when the body is a sphere. All the coefficients B,, C,, E, for
n>2 will be of the order B,,. Therefore in these terms involving B,, C,, E, we disregard the
departure from a spherical form and set r=1 (r is nondimensional) while implementing the
boundary conditions.

The condition equation (3.9) implies that

— [B2+ CoKsplaa) + E;K3p(aB) + 1]Pi(&) + [By = 2] B 3,({)Pi({)
+ 2 [B,+C,K,_1n(aa)+ E,K,_1p(aB)]P,-({)=0 (3.23)
[ - B.— Cy{Ksp(aa) + aaK y(aa)) — ExfKsp(aB) +aBKip(aB)) +2]9:(4)
+[2B, + CoKsp(aa) + EKip(aB) + 2] B m({) 92 4)
+ 21 = n)B, - C(n - YK, _ip(aa) +aakK,_s(aa)l - Ef(n — 1)K, 1(aB)
taBK,_(aB)]9.({) =0 (3.24)
and
{CALK p(aa) + E;ApKsp(aB)) 52(8) — {CoALKsp(aa) + ErAgKn(a B)) BB m({) 92(8)
+ 2 [C.ALK, - in(aa) + EnA;Kn— 12(aB)]9.({)=0. (3.25)

Parameter K’

10 : : l
1 15 2 25 3

pl
Fig. 10. Parameter K’ vs pl for different values of al (pt=0.8, pj=0.6, € =0.05).
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4

T

3.5

Parameter K

pl
Fig. 11. Parameter K vs pl for different values of al (pt=0.8, pj=0.8, € =0.03).

Equating leading coefficients to zero in equations (3.23)-(3.25), we obtain

Bz + C2K3/2(a a) + E2K3/2((1B) + 1 = 0 (3.26)
- By — Gy[Kip(ae) + aakK,y(aa)] — Ey[Kip(aa) +aBKy (aB)] +2=0 (3.27)
CAK;p(aa) + E2A2K3,2(aﬂ) =0 (3.28)

and these give the expressions

B, =[ALK3x(aa){aBK,p(aB) — 3K x(aB))

+ ApK;(aB)3Ksp(aa) — aakK,y(aa)))/D(a,B) (3.29)
C,=3K;5,(aB)As/D(a,B) (3.30)
and
E,= - 3K;p(aa)A,/D(a,B) (331
where
D(a,B)=aaApK y(aa)Ks,(aB) — aBALK, (aB)Kip(aa). (3.32)
-6

Parameter K’

-1

1 1.5 2 25 3
pt
Fig. 12. Parameter K’ vs pl for different values of al (pt=0.8, pj=0.8, € =0.05).
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Using these values B,, C, and E, in equations (3.23)—(3.25), we obtain
Z[‘Bn +C,K,_i(aa) + E,K, _1,aB)P,-1({) = €.8,,3.({IP:({) (3.33)
2[(1 —n)B,— C,{(n — DK, _p(aa) +aak, _sp(aa)}
— E,{(n = DK, _1n(aB) +aBK,_3(a BN 3,({) = €28,9,({) (L) (3.34)
2 [C,ALK, _1plaa)+ E,ABK, - 12(aB)]9,({)=0 (3.35)
where
€= [3A;K3,(aB)Ksp(a) — aakK p(aa))
- 3A.K;p(aa){Ksn(aB) — Kix(aB))/D(a, B) (3.36)
€,=[9Ksp(aa)K (aB) AL — Ap))/D(a,B). (3.37)

To obtain the remaining arbitrary constants in equations (3.33)—(3.35), we use the identities (see
Ref. [5], p- 142)

= (m—-2)(m-3) m(m — 1)
(D)9 = 55 oy In A D ¥ e )
_ (m+1)(m+2)
2(2m _ 1)(2m _ 3) 0n1+2( {) (338)
and
8,.(O)P(0) = (m — 2) P + P
m ;) 1({)_' 2(2m — 1)(2m _ 3) n1—3(£) (2m + 1)(2m - 3) m—l({)
3 (m+1)
(2m _ 1)(2m + 1) Pm-#—l({) (339)
then we get
B,=C,=E,=0ifn#m-2mm+2 (3.40)
and when n=m — 2, m, m+2, we have the following system
B,+C,K, 1p(aa) + EK,_.(aB)= € 8,4, (3.41)

(1 —n)B,— C,(n — DK, _1p(aa) +aak, s,(aa))
- En{(n - l)Kn—IIZ(aﬁ) + aﬂKn—B/Z(aB)} = e‘Zﬁmbn (342)

C.AK, plaa)+ EnA:iKn— n(@B)=0 (3.43)
where
b = = (m — 2)(m — 3) _ m(m — 1) b= (m+1(m+2)
" a2m-1)@m—=3)" " @m+1)2m-3)" """ 22m - 1)(2m - 3)’
Aqp-2= (m — 2) = ! s 2 = (m+1) (3.44)

220m - Dm-3) """ @m+D@Em -3) Cm—-D@em+1)

The expressions for B,, C, and E, for n=m —2, m, m+2 are given by

Bn = [anel{aaA*BKn— IIZ(aB)Kn—B/Z(aa) - aﬂA;Kn— 1/2(aa)Kn—3/2(aB)
+(n — 1)AZK, _p(aa)K, _1p(aB) — (n — VALK, - 1p(aa)K,_x(aB)}
+ bnEZ{“‘E - A;]Kn— I/Z(aa)Kn— I/Z(aﬁ)]/D(a’ﬁ) (345)
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C,=—{(n—Dea,+ ezb,,]A;;K,,_,,z(aB)/D(a,ﬁ) (3.46)
and
E,={(n— 1)ea,+ &b, ALK, n(aa)D(a,pB). (3.47)

Thus the stream function ¢ is determined completely. In case the equation of approximate
sphere is r=a[1+28,,9,,({)], we employ the same technique as above and determine the
corresponding arbitrary constants in the expansion for .

3.4 Determination of drag

The drag experienced by the body is given by

D=ipoUV +4mipw lim —;
rx SIN°H

(3.48)

where V is the volume of the body. In the present case, using the above formula the drag is seen
to be

D =4maipw(l + Bo)3 + 4mipw[B, + (1/5)B1 B, + (2/35)B; Bs] ™" (3.49)

where

’

= SR — . pm _
m-2= 8y -2, Bm—-2’ Bm - amBnn m+2 am+ZBm+2' (350)

It is interesting to note that though the boundary surface is r=a[l + 2,’,‘,=ZB,,,19,,,({ )], the
coefficients B8, and B, only contribute to the drag. This implies that the drag on the approximate
sphere is relatively insensitive to the details of the surface geometry. This is in tune with the
observations made in Refs [9, 10].

If B,=B,=¢, then the drag is

D = (4w/3)ipw[(1+3B,) + (1 + (3/5)B} + (6/35)B; )e]ze™". (3.51)
The nondimensional drag on the body can be expressed as
(1+3By) +(1+(3/5)B; +(6/35)B;)e=— K — iK’. (3.52)

The drag parameters K and K’ are numerically evaluated for various values of al=(u + k)/k, €,
pt=pol(u+k), pl=kQu + k)[y(p + k)] and pj=j(u +k)/y and their variation is presented in
the graphs of Figs 1-12.

Figures 1 and 2 pertain to the case of a perfect sphere (e=0). Figures 3-12 concern an
approximate sphere (e >0). As the deformation parameter € increases, both K and K’ decrease
algebraically. Furthermore, with an increase in pl, a decrease in K and increase in K’ is noticed.
Keeping al, pj and € fixed, and increasing the frequency parameter pt, an increase in both K and
K' is observed for the selected range of parameter values.

3.5 Special cases

3.5.1 Sphere
If B,,=0 for m =2, we obtain the case of the sphere. In this case the drag simplifies to

D =[(4maipw)/3 + 27ipwB,]e™" (3.53)

which is same as the drag on the sphere as obtained by Lakshmana Rao and Bhujanga Rao

[6].
3.5.2 Oblate spheroid
Consider the oblate spheroid given by

x2+y2 22
2 + 2 2
a a‘(l —e)

=1 (3.54)
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whose equatorial radius is “a” in which € is so small that € and higher powers may be
neglected. Following Happel and Brenner [5] its polar equation can be put in the form
r=c[1+2e%,({)] where c=a(l —¢€) (see Ref. [5], p. 144). This is similar to r=c[1+ 8,9,({)]
where a=c and B,=2e.

Using equations (3.20) and (3.21), the expressions for #(r, §) and C (r, ) can be determined.
Utilizing equation (3.48), the drag is seen to be

D = (4maipw/3)[(1 + 3B,) + (4 — 6B, + (6/5)BY )e]. (3.55)

It is to be noted that the evaluation of the drag on an oblate spheroid is based on the neglect of
€’ and higher terms, while the drag formula obtained by Lakshmana Rao and Iyengar [7] is
based on exact analysis. However, the numerical determination of the drag in Ref. [7] is through
the solution of a truncated system of simultaneous equations, the details of which can be found
in Ref. [7].
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