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This paper presents a new method for power system state forecasting using ar-
ti�cial neural networks (ANN). The state forecasting problem has been solved
in two steps: the �ltering step and the forecasting step in an open loop con�g-
uration. Because under normal operating conditions the power system behaves
in a quasi-static manner, a simpli�ed model of the dynamic behavior of the
power system states is considered. Two diŒerent ANN models have been used
for these two steps of power system state forecasting problem. For the �ltering
step, a functional link network (FLN), and for the forecasting step, a time de-
lay neural network (TDNN) have been used to simulate the dynamic behavior
of the power system states. The proposed method has been tested on two IEEE
test systems, and a practical Indian system and results have been compared
with an extended Kalman �lter (EKF) based technique [Leite da Silva et al.,
1983].

1 Introduction

Electrical power systems are complex dynamic systems in which system characteris-
tics �uctuate with various loads and generation schedules. Over time, the operating
point (state vector) of a power system changes. Real-time monitoring of an electric
power system is performed at energy control centers in order to ensure its secure op-
eration. The monitoring function involves estimation of the state vector of the power
system. The state vector, which consists of voltage magnitudes and phase angles at
all the nodes, varies with time, owing to the dynamic nature of the system loads.
Therefore it is necessary to establish a dynamic model for the time behavior of the
power system states, whereas the dynamic modeling and detailed representations
of power plants are outside the scope of the state forecasting problem [Rousseaux
et al., 1990].

The power system state forecasting problem consists of prediction of the state
vector based on their past estimations, followed by a �ltering process performed
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when a new set of measurements is available. It is extremely useful for security
assessment of electric power system, as it gives the system operator a longer decision
time.

In the literature the dynamic behavior of the power system states (x ) has been
modeled in three diŒerent ways [Rousseaux et al., 1990; Rousseaux et al., 1988]. The
�rst model directly uses the dynamic modeling of the conventional state variables. In
the second model the dynamic modeling is based on the load prediction. The third
model uses hierarchical state estimation to overcome the dimensionality problem.

[Debs and Larsen, 1970] considered an oversimpli�ed dynamic linear model of
system state (x )

x (k + 1) = x (k ) + w(k ), (1)

where the system evolution is taken into account via the system noise vector w(k ).
[Nishiya et al., 1976] introduced a trend component c(k ) to estimate the state

x (k + 1) = x (k ) + c(k ) + w(k ), (2)

where c(k ) = (x̂ (k=k ) x̂ (k 1=k 1)),

x̂ (k=k ) = estimated value of states at time step k .

[Leite da Silva et al., 1983] arrived at a more appealing dynamic modeling

x (k + 1) = F (k )x (k ) + e(k ) + w(k ), (3)

where e(k ) = control vector,

F (k ) = diagonal Jacobian matrix of state transition function with respect to x .

[Mallieu et al., 1986] solved prediction step on the basis of nodal power injec-
tions rather than the conventional state variables (x ) consisting of bus voltages. The
state forecasting problem has been solved using two steps, viz., state forecasting
and state �ltering. In the �rst step, the forecasted state vector and its covariance
matrix were evaluated using linear exponential smoothing principle. Once a new set
of measurements is available, in the second step the state vector is �ltered based
on a weighted least squares method, where the squared residues of the predicted
state vector and the measurement vector are weighted by their covariance matrices.
To overcome dimensionality problems, hierarchical dynamic state estimators were
proposed [Bahgat et al., 1989]. It uses the decomposition of the overall system into
small subsystems, which are easier to handle.

Neural network models are providing new approaches to problem solving [Mori
et al., 1992; Vankayala et al., 1993]. Arti�cial neural networks can achieve high
computational speed by employing a massive number of simple processing elements
arranged in parallel with a high degree of connectivity between the elements. The
dynamic behavior of neural networks exhibits stable states that act as a basin of
attraction toward which neighboring states develop in time. In practice, most of
the real-world problems of power system are time varying in nature. Hence, static
neural nets cannot be used, and dynamic neural networks should be used for such
time varying systems.

An attempt has been made in this paper to apply a dynamic neural network
model to solve the state forecasting problem probably for the �rst time. A TDNN
based on back propagation algorithm (BPA) has been used for the state forecasting
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step, and an FLN has been used for the state �ltering step. The ANN-based state
forecasting problem has been tested on IEEE 14-bus, IEEE 57-bus, and a practical
19-bus Indian system, and results have been compared with those obtained from
an EKF-based model [Leite da Silva et al., 1983].

2 State Forecasting in Electric Power System

A power system is considered to be in quasi-static state, and its state estimation is
carried out at present at time intervals of few minutes (time samples). At each time
sample (k ), the state x (k ) is estimated from measurements z(k ) using the dynamic
behavior of power systems states (x ).

The measurements used for real-time monitoring basically consists of real and
reactive power bus injections, line �ows, and bus voltage magnitudes. The measure-
ments are related to the state vector by the nonlinear equation:

z(k ) = h(x (k)) + v(k ) (4)

where

z(k ) = m -dimensional measurement vector,
h( · ) = m-dimensional nonlinear vector function relating z to x ,
v(k ) = m-dimensional measurement error vector.

The power system state dynamic model is of the following general form:

x (k + 1) = f (x (k ), w(k ), k ), (5)

where

x = n-dimensional state vector,
f = n-dimensional nonlinear state transition function,
w(k ) = system noise vector.

Most of the algorithms of dynamic state estimation are based on EKF [Rous-
seaux et al., 1990], which provides a linear minimum variance estimate of the state
vector (x ). Some of the features of the EKF method are as follows:

(i) The EKF consists of alternate sequences of prediction and �ltering steps.
(ii) The �ltering step uses the measurement model equation (4), which natu-

rally involves the conventional state vector (x ).
(iii) The prediction step uses the system state dynamic model equation (5).

The EKF method given in [Leite da Silva et al., 1983] uses system state dynamic
model

x (k + 1) = F (k )x (k ) + G (k ) + w(k ), (6)

where F (k) = nonzero diagonal matrix with dimension (n ´ n)

G (k ) = nonzero vector with dimension (n ´ 1) .

The parameters F (k) and G (k ) are de�ned according to Holt’s 2-parameter linear
exponential smoothing method of forecasting. The following models have been used
for state forecasting and state �ltering steps [Leite da Silva et al., 1983].
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State Forecasting Step

If x (k ) and S (k ) are estimates for the state vector and its covariance matrix, respec-
tively, at time k , be performing the conditional expectation operator on equation
(6), the forecasted state vector x̃ (k + 1) with its covariance matrix M (k + 1) are
given by

x̃ (k + 1) = f (k )x̂ (k ) + G (k ), (7)

M (k + 1) = F (k) S (k )F T (k) + Q (k ), (8)

where Q (k ) = covariance matrix of w(k ) and x̂ (k ) in the predicted value of states
for interval k .

State Filtering Step

When a new set of measurements z(k + 1) is available, the predicted state vector
x̃ (k + 1) can be �ltered and a new estimate x̂ (k + 1) is then obtained, together with
its error covariance S (k + 1). This considers the following objective function for the
�ltering process at time (k + 1):

J (x ) = [z h(x )]T R
1[z h(x )] + [x x̃ ]T M

1[x x̃ ]. (9)

To simplify the notation, the time index (k + 1) has been omitted from all variables
in equation (9). The approximated �ltering state vector can be written as follows:

x̂ (k + 1) = x̃ (k + 1) + K (k + 1)v(k + 1), (10)

where

v(k + 1) = z(k + 1) h(x (k + 1)) = innovation vector,

K (k + 1) = [H T R
1
H + M

1]H T R
1 = gain matrix.

3 Proposed ANN-Based State Forecasting

To capture the dynamics of the power system states, a nonlinear temporal dynamic
model of ANN is required for the state forecasting. Memory structures are an im-
portant component of dynamic neural networks. In fact, a dynamic neural network
can be thought of as a static model network extended with a short-term memory.
There are two ways of incorporating time information into ANNs [Kung, 1993]. The
�rst technique is to use a spatial representation of time, such as TDNNs. In these
ANNs, time information is represented spatially across the network input, and the
ANNs compute a static mapping from the input to output. In the second technique,
time is represented implicitly by using a recurrent ANN architecture, that is, the
eŒect of temporal evolution are captured in the state of the network. In this paper,
TDNN has been used for the forecasting step.

[Vinod Kumar et al., 1996] developed four diŒerent ANN models based on mul-
tilayer perceptron, FLN, counterpropagation network (CPN), and Hop�eld network
to solve the static state estimation problem. Out of these four models, FLN was
found to be most suitable for static state estimation. Moreover, it was established
that the FLN model has superior inherent �ltering capability for bad data in the
measurement set, compared with other neural network models. Also, the FLN-based
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Figure 1. Time-delay neural network.

static state estimator provides system states in one forward pass and does not in-
volve any iterative process. Hence, the FLN has been used in the present work for
the state �ltering step. The TDNN and FLN neural network models are brie�y
described below.

3.1 Time-Delay Neural Network

The most common feed forward networks are static, having no internal time delays
and responding to a particular input by immediately generating a speci�c output.
Static networks can respond to temporal patterns if the network inputs are de-
layed samples of the input signals, i.e., time is treated as another dimension in the
problem. An architecture like this is often referred to as a TDNN. These networks,
trained with standard back propagation algorithm, have been used as adaptive �l-
ters for noise reduction and echo canceling and for chaotic time series prediction
[Hush and Horne, 1993].

The TDNN consists of an input layer with delay units, one hidden layer (neu-
rons with sigmoidal activation function), and an output layer (neurons with sum-
mation function). The TDNN is nonrecurrent and copes with time alignment by
explicitly delaying the signal waveform by a �xed time span. In this, the basic units
are modi�ed by introducing delays, as shown in Figure 1. The inputs to such a
unit are multiplied by several weights, one for each delay and one for the undelayed
input. For example, if a TDNN consists of 2 delays (D = 2) and 16 inputs (I = 16),
48 weights will be needed to compute the weighted sum of the 16 inputs, with each
input now measured at three diŒerent points in time. In this way, a TDNN unit
has the ability to relate and compare current input to the past history of events.
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Figure 2. Functional link network.

TDNN is capable of modeling systems where the output has a �nite temporal
dependence on the input, that is

x (k + 1) = F [x (k ), x (k 1), . . .x (k n)], (11)

where F ( · ) is the nonlinear function.
Back propagation algorithm has been used as the learning procedure [Rumel-

hart et al., 1987], which works well for classi�cation, prediction, function estimation,
and time series tasks [Hammerstrom, 1993].

3.2 Functional Link Network

In FLN, [Yoh-Han, 1989], the input patterns are enhanced by means of functional
transformations before feeding to the input layer of the actual network. An enhanced
input/ output pair is learnt with a �at net, that is, a net with no hidden layer.
Problems that might be di� cult in the original pattern space generally become quite
straightforward in the enhanced representation space. There is mathematical basis,
as well as pragmatic evidence, that supervised learning can be achieved exceedingly
well with a �at net and delta rule if the enhancements are done correctly. The �at
architecture of the FLN exhibits highly desirable learning capabilities and, in some
applications, drastically reduces the convergence time. The bene�t of the FLN, when
applied to mathematical modeling, is the increased accuracy of mapping through the
expansion of the basic set. The functional link network is illustrated schematically
in Figure 2.

There are two models of the FLN: a tensor (or outer product) model and the
functional expansion model. In this paper, supervised tensor model of FLN has
been used. In the tensor model, each component of the input pattern multiplies
the entire input pattern vector. The functional link in this case generates an entire
vector from each of the individual components using transformation, such as

{x i} Þ {x i , x ix j } Þ {x i , x ix j , x ix j x k } Þ . . . . (12)
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Figure 3. ANN-based state forecasting model.

The idea of FLN is very close to that of series expansion. In the present work, only
second-order models have been used. Because functional link networks do not have
a hidden layer, simple delta rule [Rumelhart et al., 1987] has been used for training.

4 Development of ANN-Based State Forecasting Model

The state forecasting and �ltering steps have been attempted by using FLN and
TDNN, respectively. Past history of state variables up to time (k ) has been used
to forecast the states at time (k + 1).

The inputs to the FLN are real-time measurements consisting of real and reac-
tive power bus injections and line �ows, whereas the desired outputs are the state
variables. The output of the FLN computed for time (k ) has been used as the input
to the TDNN, which forecasts the system states for time (k + 1). A block diagram
for the ANN-based state forecasting model is shown in Figure 3, and a general state
forecasting model in an open loop con�guration is shown in Figure 4.

The time evolution of the operating states of a power system is basically de-
termined by the continuous variation of the system loads. In daily operation, the
loads vary according to cyclic patterns superimposed by small, random �uctuation.
Training patterns for the state forecasting were generated for a base case using a
load �ow program considering an assumed linear variation of loads.

5 Simulation Results

The training and testing of ANNs have been carried out on DEC Alpha Workstation
and HP9000 computer for IEEE 14-bus, IEEE 57-bus, and a 19-bus practical Indian
system. The 19-bus Indian system represents a 400-kV network of Uttar Pradesh
State Electricity Board (UPSEB), presently being monitored through telemetry
link.

The load curve at each bus is composed of a linear trend plus a random �uc-
tuation (jitter). The linear trend for the load curve is adopted to take into account
the previous history of the state vector. Even though loads at each bus is varied
randomly, training of the neural networks can be done similar to the proposed one.

Figure 4. State forecasting model in an open loop con�guration.



660 D. M. Vinod Kumar and S. C. Srivastava

Table 1
Comparison of accuracy of state forecasting models

Maximum Maximum
absolute error in absolute error in

voltage magnitude phase angle
(p.u.) (rad.)

Test system ANN model EKF model ANN model EKF model

IEEE 14-bus system 0.0015 0.0067 0.0026 0.0570
IEEE 57-bus system 0.0032 0.0365 0.0043 0.0729
19-bus practical system 0.0029 0.0992 0.0058 0.1185

Table 2
Comparison of CPU time (in seconds)

Model IEEE 14-bus system IEEE 57-bus system Practical 19-bus system

ANN 0.04860 0.17844 0.07153
EKF 3.00000 120.51000 6.40000

Training patterns were generated for base case using a load �ow program by vary-
ing the loads at each bus linearly, covering the whole range of operating conditions
from 20% to 120% of the base case load curve for the IEEE 14-bus and IEEE
57-bus systems, whereas for the 19-bus practical Indian system, loading conditions
were varied linearly from 20% to 110% of the base case. Beyond 110% loading, the
load �ow did not converge for the practical 19-bus Indian system. The jitter was
represented by a normal distribution random number with zero mean and standard
deviation as 3% of the actual physical value of the measurements.

The two ANN models, viz., FLN and TDNN were trained separately for the
training patterns generated from the load �ow. For training the FLN, 1000 patterns
were generated by varying the loads at each bus covering the whole operating range
of the base case load curve, out of which 800 patterns were used for training and
200 patterns were used for testing.

The inputs to the FLN for IEEE 14-bus, IEEE 57-bus, and 19-bus Indian
system were 68, 274, and 88, respectively. These measurements consist of real and
reactive power line �ows and bus injections. The FLN-based �lter had voltage
magnitude and phase angle at all the buses as outputs. Hence, output nodes of
the FLN for the IEEE 14-bus, IEEE 57-bus, and 19-bus Indian system were 28,
114, and 38, respectively. The learning rate (´) and momentum (®) for the three
systems were taken as 0.8 and 0.3 for the �rst 100 iterations, and 0.65 and 0.35
in subsequent iterations. The change in (´) and (®) values after 100 iterations
helped in accelerating the convergence. After training, the FLN-based �lter was
tested for the novel input patterns corresponding to diŒerent loading conditions. It
was established in [Vinod Kumar et al., 1996] that the FLN can solve static state
estimation with less than 1% error.



Power System State Forecasting Using Arti�cial Neural Networks 661

Table 3
EKF results for IEEE 14-bus system

Voltage Phase Voltage Phase Voltage Phase
magnitude angle magnitude angle magnitude angle

Bus (true (true (EKF (EKF (absolute (absolute
No. value) value) results) results) error) error)

1 1.0600 0.0000 1.0665 0.0000 0.0065 0.0000
2 1.0450 0.0870 1.0504 0.1056 0.0054 0.0186
3 1.0100 0.2223 1.0161 0.2708 0.0061 0.0485
4 1.0155 0.1795 1.0104 0.2156 0.0051 0.0361
5 1.0183 0.1529 1.0127 0.1834 0.0056 0.0305
6 1.0700 0.2482 1.0765 0.2998 0.0065 0.0516
7 1.0605 0.2328 1.0588 0.2796 0.0017 0.0468
8 1.0900 0.2328 1.0967 0.2796 0.0067 0.0468
9 1.0550 0.2604 1.0504 0.3127 0.0046 0.0523

10 1.0502 0.2632 1.0462 0.3163 0.0042 0.0531
11 1.0565 0.2580 1.0569 0.3107 0.0004 0.0527
12 1.0551 0.2631 1.0581 0.3176 0.0030 0.0545
13 1.0502 0.2644 1.0516 0.3189 0.0014 0.0545
14 1.0349 0.2796 1.0292 0.3366 0.0057 0.0570

Table 4
ANN-based state forecasting for IEEE 14-bus system

Voltage Phase Voltage Phase Voltage Phase
magnitude angle magnitude angle magnitude angle

Bus (true (true (ANN (ANN (absolute (absolute
No. value) value) results) results) error) error)

1 1.0600 0.0000 1.0603 0.0000 0.0003 0.0000
2 1.0450 0.0870 1.0455 0.0882 0.0005 0.0012
3 1.0100 0.2223 1.0115 0.2229 0.0015 0.0006
4 1.0155 0.1795 1.0158 0.1815 0.0003 0.0020
5 1.0183 0.1529 1.0195 0.1555 0.0012 0.0026
6 1.0700 0.2482 1.0711 0.2491 0.0011 0.0009
7 1.0605 0.2328 1.0607 0.2332 0.0002 0.0004
8 1.0900 0.2328 1.0910 0.2336 0.0010 0.0008
9 1.0550 0.2604 1.0551 0.2618 0.0001 0.0014

10 1.0502 0.2632 1.0512 0.2639 0.0010 0.0007
11 1.0565 0.2580 1.0570 0.2596 0.0005 0.0016
12 1.0551 0.2631 1.0558 0.2652 0.0007 0.0021
13 1.0502 0.2644 1.0513 0.2654 0.0011 0.0010
14 1.0349 0.2796 1.0353 0.2817 0.0004 0.0021
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Table 5
EKF results for IEEE 19-bus practical system

Voltage Phase Voltage Phase Voltage Phase
magnitude angle magnitude angle magnitude angle

Bus (true (true (EKF (EKF (absolute (absolute
No. value) value) results) results) error) error)

1 1.0300 0.0000 1.0363 0.0000 0.0063 0.0000
2 1.0300 0.0162 1.0363 0.0145 0.0063 0.0017
3 1.0300 0.0166 1.0363 0.0146 0.0063 0.0020
4 1.0300 0.0252 1.0363 0.0247 0.0063 0.0005
5 1.0274 0.0732 1.0217 0.0821 0.0057 0.0089
6 1.0245 0.0913 1.0159 0.1012 0.0086 0.0099
7 1.0266 0.0855 1.0217 0.0959 0.0049 0.0104
8 1.0260 0.0759 1.0194 0.0848 0.0066 0.0089
9 1.0030 0.2320 0.9734 0.2595 0.0296 0.0275

10 1.0086 0.2819 0.9717 0.3171 0.0369 0.0352
11 1.0172 0.3887 0.9624 0.4435 0.0548 0.0548
12 1.0510 0.6260 0.9550 0.7407 0.0960 0.1147
13 1.0652 0.6401 0.9660 0.7586 0.0992 0.1185
14 1.0548 0.6231 0.9574 0.7368 0.0974 0.1137
15 1.0270 0.3726 0.9743 0.4242 0.0527 0.0516
16 1.0275 0.3674 0.9756 0.4180 0.0519 0.0506
17 1.0617 0.5448 0.9867 0.6341 0.0750 0.0893
18 1.0647 0.5301 0.9882 0.6154 0.0765 0.0853
19 1.0564 0.6110 0.9592 0.7208 0.0972 0.1098

For training and testing the TDNN, 200 patterns were generated. Out of these,
160 patterns were used to train the neural network, and the remaining 40 patterns
were used to test the accuracy and robustness of the ANN. The inputs to the
TDNN for the IEEE 14-bus, IEEE 57-bus, and 19-bus Indian systems were twice the
number of buses (voltage magnitude and phase angle at each bus) in the respective
power systems. Therefore, the input nodes to the multilayer perceptron for IEEE
14-bus, IEEE 57-bus, and 19-bus Indian systems were 28, 114, and 38, respectively.
The sliding window consisted of three time delay units for each input. The outputs
of the TDNN were the predicted values of the state variables. Hence, the output
nodes were the same in number as the input nodes. The number of hidden nodes
for the IEEE 14-bus, IEEE 57-bus, and 19-bus practical Indian systems were 50,
135, and 60, respectively, which was decided based on hit and trial. The learning
rate (´) of 0.002 and momentum (®) of 0.1 were taken for all three systems. For
training, a convergence criterion of 0.001 p.u. and maximum number of iterations
of 15,000 were used for all the three systems.

The state forecasting problem was also solved using EKF [Leite da Silva et al.,
1983] for all three systems. The results of the ANN-based state forecasting and EKF
model were compared with those obtained from the load �ow for the known load
patterns and maximum absolute error in voltage magnitude (p.u.) and phase angle
(radians), and are presented in Table 1. The CPU time required for �nding the
state forecasting solution using the proposed ANN-based and EKF model are given
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Table 6
ANN-based state forecasting results for 19-bus practical system

Voltage Phase Voltage Phase Voltage Phase
magnitude angle magnitude angle magnitude angle

Bus (true (true (ANN (ANN (absolute (absolute
No. value) value) results) results) error) error)

1 1.0300 0.0000 1.0304 0.0000 0.0004 0.0000
2 1.0300 0.0162 1.0308 0.0168 0.0008 0.0006
3 1.0300 0.0166 1.0306 0.0165 0.0006 0.0001
4 1.0300 0.0252 1.0310 0.0291 0.0010 0.0039
5 1.0274 0.0732 1.0282 0.0790 0.0008 0.0058
6 1.0245 0.0913 1.0261 0.0952 0.0016 0.0039
7 1.0266 0.0855 1.0295 0.0897 0.0029 0.0042
8 1.0260 0.0759 1.0285 0.0784 0.0025 0.0025
9 1.0030 0.2320 1.0048 0.2364 0.0018 0.0044

10 1.0086 0.2819 1.0097 0.2848 0.0011 0.0029
11 1.0172 0.3887 1.0188 0.3922 0.0016 0.0035
12 1.0510 0.6260 1.0535 0.6292 0.0025 0.0032
13 1.0652 0.6401 1.0671 0.6444 0.0019 0.0043
14 1.0548 0.6231 1.0564 0.6269 0.0016 0.0038
15 1.0270 0.3726 1.0292 0.3751 0.0022 0.0025
16 1.0275 0.3674 1.0286 0.3684 0.0011 0.0010
17 1.0617 0.5448 1.0627 0.5467 0.0010 0.0019
18 1.0647 0.5301 1.0664 0.5348 0.0017 0.0047
19 1.0564 0.6110 1.0581 0.6142 0.0017 0.0032

in Table 2. It is seen from Tables 1 and 2 that the ANN-based model has provided
state forecasting results with much less error, compared with EKF model, and its
takes approximately 0.20 seconds CPU time for all three systems, compared with
much larger time required by the EKF method. The state forecasting results for the
IEEE 14-bus system and for the 19-bus practical system using the EKF method
and using the proposed ANN model are given in Tables 3 and 4 and Tables 5 and
6, respectively.

6 Conclusions

This paper has presented a new model of state forecasting based on ANNs. The
FLN model was used for the �ltering step, and the TDNN model was used for the
forecasting step. The results presented for the three systems reveal that

(i) The ANN-based state forecasting model predicts the system states more
accurately, compared with the EKF model. The maximum absolute error
in voltage magnitude with the ANN model was about 0.33% for 57-bus
system, whereas with the EKF model it went up to 9.5% for the 19-bus
system. The maximum absolute error in phase angle with the ANN model
was 0.0058 radians, whereas with the EKF model it was 0.1185 radians for
the 19-bus system.
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(ii) The CPU time for solving the state forecasting problem based on EKF
model increases as the number of buses in the system increases, whereas
with the ANN model, CPU time required is less than 0.20 seconds for all
the three systems, which is much less compared with the EKF model.

Results could not be tested on the real-time system data, however, as these are
not available for the practical system considered. It is envisaged that the proposed
model of ANNs for the state forecasting will also work eŒectively with the real-time
data.
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