. JOURNAL OF
A SYSTEMS
ﬂb‘v ARCHITECTURE

ELSEVIER

Journal of Systems Architecture 45 (1998) 1-13

A new study for fault-tolerant real-time dynamic scheduling
algorithms !

G. Manimaran 2, C. Siva Ram Murthy *
Department of Computer Science and Engineering, Indian Institute of Technology, Madras 600 036, India
Received 8 April 1996; received in revised form 7 February 1997; accepted 25 July 1997

Abstract

Many time-critical applications require predictable performance. Tasks corresponding to these applications have
deadlines to be met despite the presence of faults. Failures can happen either due to processor faults or due to task errors.
To tolerate both processor and task failures, the copies of every task have to be mutually excluded in space and also in
time in the schedule. We assume that each task has two versions, namely, primary copy and backup copy. We believe that
the position of the backup copy in the task queue with respect to the position of the primary copy (distance) is a crucial
parameter which affects the performance of any fault-tolerant dynamic scheduling algorithm. To study the effect of dis-
tance parameter, we make fault-tolerant extensions to the well-known myopic scheduling algorithm [Ramamritham et al.
IEEE Trans. Parallel Distr. sys. 1 (2) (1990) 184] which is a dynamic scheduling algorithm capable of handling resource
constraints among tasks. We have conducted an extensive simulation to study the effect of distance parameter on the
schedulability of the fault-tolerant myopic scheduling algorithm. © 1998 Elsevier Science B.V. All rights reserved.
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cause of their capability for high performance
and reliability [1]. The problem of multiprocessor
scheduling [2-6] is to determine when and where

1. Introduction

Multiprocessors have emerged as a powerful

computing means for real-time applications such
as avionic control and nuclear piant control, be-
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a given task executes. This can be done either stat-
ically or dynamically. In static algorithms, the as-
signment of tasks to processors and the time at
which the tasks start execution are determined a
priori. Static algorithms are often used to schedule
periodic tasks with hard deadlines. The main
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advantage is that, if a solution is found, then one
can be sure that all deadlines will be guaranteed.
However, this approach is not applicable to aper-
iodic tasks whose arrival times and deadlines are
not known a priori. Scheduling such tasks in a
multiprocessor real-time system requires dynamic
scheduling algorithms. In dynamic scheduling,
when new tasks arrive, the scheduler dynamically
determines the feasibility of scheduling these new
tasks without jeopardizing the guarantees that
have been provided for the previously scheduled
tasks. Thus for predictable executions, schedul-
ability analysis must be done before a task’s execu-
tion is begun. A feasible schedule is generated if
the timing, precedence, and resource constraints
of all the tasks can be satisfied, i.e., if the schedul-
ability analysis is successful. Tasks are dispatched
according to this feasible schedule.

The general problem of optimal fault-tolerant
scheduling of tasks in a multiprocessor system 1is
NP-complete [13,15]. In a real-time multiprocessor
system, fault-tolerance can be provided by schedul-
ing multiple copies of tasks on different processors.
Primarylbackup (PB) and triple modular redun-
dancy (TMR) are two basic approaches that allow
multiple copies of a task to be scheduled on differ-
ent processors. In the PB approach, if incorrect re-
sults are generated from the primary task, the
backup task is activated. In the TMR approach,
multiple copies are executed concurrently and their
results are compared. In [8], a PB scheme has been
proposed for preemptively scheduling periodic
tasks in a uniprocessor system. In [9], another PB
based algorithm for scheduling periodic tasks in a
multiprocessor system has been proposed. In this
strategy, a backup schedule is created for each set
of tasks in the primary schedule. The tasks are then
rotated such that primary and backup schedules
are on different processors and do not overlap.

The PB strategy with backup overloading and
backup deallocation has been proposed recently
{10,11] for fault-tolerant dynamic scheduling of

tasks in real-time multiprocessor systems. This
scheme [10,11] allocates more than a single backup
In a time interval (where time interval of a task is
the interval between scheduled start time and
scheduled end time of the task) and deallocates
the resources unused by the backup copies in case
of fault-free operation. This work [10,11] does not
address the effect of relative positions of primary
and backup copies in the task queue which is a cru-
cial parameter that affects the schedulability of any
dynamic scheduling algorithm. It does not also ad-
dress resource constraints among tasks which is a
practical requirement in any complex real-time sys-
tem. The objective of our work is twofold: (i) to
make fault-tolerant extensions to the well-known
myopic scheduling algorithm [3], and (ii) to study
the impact of distance parameter on schedulabili-
ty of the fault-tolerant myopic scheduling algo-
rithm.

The rest of the paper is structured as follows:
System model and definitions are given in Sec-
tion 2. Section 3 discusses the myopic scheduling
algorithm and our proposed fault-tolerant exten-
sions to it. Our simulation study is presented in
Section 4. Finally, some concluding remarks are
made in Section 5.

2. System model

In this section, we present the task model and
the scheduler model used in this work, followed
by some definitions.

2.1. Task model

1. Tasks are aperiodic, i.e., the task arrivals are
not known a priori. Every task 7; has the attri-
butes: arrival time (a;), ready time (r;), worst
case computation time (c;), and deadline (d;).

2. The deadline d; of every task T; satisfies:
di = i+ 2c;.
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3. Resource constraints: A task might need some
resources such as data structures, variables,
and communication buffers for its execution.
Every task can have two types of accesses to
a resource: (a) exclusive access, in which case,
no other task can use the resource with it or
(b) shared access, in which case, it can share
the resource with another task (the other task
also should be willing to share the resource).
We say that a resource conflict exists between
two tasks T; and 7; if one of these tasks can-
not share the resources it requires, with the
other.

4. Each task 7; has two versions, namely, primary
copy and backup copy. The worst case compu-
tation time of the primary copy may be greater
than that of the backup copy.

5. Tasks are non-preemptable. At any instant, at
most one task can be executed on a given pro-
Cessor.

6. All the processors are identical and are prone
to failures.

7. Every task can encounter at most one failure ei-
ther due to processor fault or task error, i.e., if
the primary copy fails, the backup copy always
completes successfully.

8. There exists a fault-detection mechanism that
detects processor faults and task errors.

2.2. Scheduler model

Dynamic scheduling algorithms can be either
distributed or centralized. In a distributed dynamic
scheduling scheme, tasks arrive independently at
each processor. When a task arrives at a processor,
the local scheduler at the processor determines
whether or not it can satisfy the constraints of
the incoming task. The task is accepted if they
can be satisfied, otherwise the local scheduler tries
to find another processor which can accept the
task. In a centralized scheme, all the tasks arrive
at a central processor called the scheduler, from

where they are distributed to other processors in
the system for execution. In this paper, we will as-
sume a centralized scheduling scheme. The com-
munication between the scheduler and the
processors is through dispatch queues. Each pro-
cessor has its own dispatch queue. This organiza-
tion, shown in Fig.1, ensures that the processors
will always find some tasks in the dispatch queues
when they finish the execution of their current
tasks. The scheduler will be running in parallel
with the processors, scheduling the newly arriving
tasks, and periodically updating the dispatch
queues. The scheduler has to ensure that the dis-
patch queues are always filled to their minimum
capacity (if there are tasks left with it) for this par-
allel operation. This minimum capacity depends
on the average time required by the scheduler to
reschedule its tasks upon the arrival of a new task
[12}.

Task deletion takes place when extra tasks are
initially scheduled to account for fault tolerance,
i.e., when the primary copy of the task completes
execution successfully. When no faults occur, there
is no necessity for these temporally redundant
tasks to be executed and hence they can be deleted.
Also, the actual time taken by a task during execu-
tion can be smaller than its worst case computa-
tion time. Hence, a lot of resources remain
unused if we dispatch the tasks strictly based on
their starting times of the feasible schedule. Each
processor invokes the resource reclaiming algo-
rithm [12] at the completion of its currently execut-
ing task, to utilize the resources left unused by a
task when it executes less than its worst case com-
putation time, or when a task is deleted from the
current schedule. The scheduler is informed about
the time reclaimed by the reclaiming algorithm so
that it can schedule the new tasks correctly and ef-
fectively. A protocol for achieving this is suggested
in [12].

Resource reclaiming in multiprocessor systems
with independent tasks is straightforward. The
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Fig. 1. Parallel execution of scheduler and processors.

resource reclaiming in such systems is work-con-
serving which means that the reclaiming never
leaves a processor idle if there is a dispatchable
task and the resource reclaiming in such systems
is an integral part of the scheduler. But resource
reclaiming on multiprocessor systems with re-
source constraints is more complicated. This is
due to the potential parallelism provided by a
multiprocessor, and potential resource conflicts
among tasks. When early completion of tasks or
deletion of tasks takes place in a non-preemptive
multiprocessor schedule with resource constraints,
run-time anomalies [16] may occur. These anom-
alies may cause some of the already guaranteed
tasks to miss their deadlines. In particular, one
cannot simply use a work-conserving scheme, like
the one used in [10], without verifying that the
task deadlines will not be missed. This justifies
the need for separating the resource reclaiming
from the scheduling algorithm and the same is
adopted in our task model.

2.3. Terminology

Definition 1. The scheduler fixes a feasible schedule
S taking into account the resource constraints and
fault-tolerant requirements of all the tasks. The
feasible schedule uses the worst case computation
time of a task for scheduling it and ensures that
the deadlines of primary and backup copies of all
the tasks in § are met. A partial schedule is one
which does not contain all the tasks.

Definition 2. A partial schedule is said to be strong-
ly feasible if all the schedules obtained extending
the current schedule by any one of the remaining
tasks are also feasible [3].

Definition 3. Proc(T}) is the processor to which task
T; is scheduled. The processor to which task 7
should not get scheduled is denoted as exclude
proc(T;). The time at which processor P; is avail-
able for executing a new task is denoted as avail

time(j).
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Definition 4. Start time(T;) is the scheduled start
time of task 7; which satisfies r; < starttime(T})
< d; — ¢;. Finish time(T}) is the scheduled finish
time of task 7; which satisfies 7 +¢;
< finishtime(T;) < d;.

Definition 5. The primary (Pr;) and backup (Bk;)
copies of task 7; are said to be mutually exclusive
in time, denoted as time exclusion(T;), if
starttime(Bk,) = finishtime(Pr;).

Definition 6. The primary (Pr;) and backup (Bk;)
copies of task T; are said to be mutually exclusive
in space, denoted as space exclusion(T;), if
proc(Pr;) # proc(Bk;).

Definition 7. Distance between the primary and
backup copies of a task 7, denoted as distance
(Pr;, Bk;), denotes the relative difference between
their positions in the task queue. The distance pa-
rameter can have value between 1 and n, where #n is
the number of tasks.

Definition 8. EAT; (EATY) is the earliest time when
resource R; becomes available for shared (exclu-
sive) usage [3].

Definition 9. Let P be the set of processors and Q
be the set of resources requested by task 7;. Earli-
est start time of a task T;, denoted as EST(T;), is
the earliest time when its execution can be started.
EST(T;) = MAX(r;, MIN cp(availtime(}}),
MAX,co(EAT})), where u =s for shared mode
and u = e for exclusive mode.

3. The Fault-tolerant scheduling algorithm

In this section, for the sake of completeness, we
first present the myopic scheduling algorithm {3]
and then the proposed fault-tolerant extensions
to it.

3.1. The myopic algorithm

The myopic algorithm is a heuristic search algo-
rithm that works as follows.

1. Tasks (in the task queue) are ordered in non-
decreasing order of deadline.

2. The algorithm starts with an empty partial
schedule.

3. Determines whether the current schedule is
strongly feasible (strong feasibility is deter-
mined with respect to the first K (we call this,
Jfeasibility check window) tasks in the task
queue).

4. If found to be feasible:

(a) the heuristic function (H) is computed
for the first K tasks;

(b) the task with the best (smallest) H value
is chosen to extend the schedule.

5. Else:

(a) it backtracks to the previous search
level;

(b) it extends the schedule with the task
having the next best H value.

6. The algorithm repeats steps 3—5 until a termi-
nation condition is met.

The termination conditions are either (a) a
complete feasible schedule has been found, or (b)
the maximum number of backtracks or H function
evaluations has been reached, or (c) no more back-
tracking is possible. The authors of [3] have shown
that the integrated heuristic function d; + EST(T})
which captures the deadline and resource con-
straints of task T; performs better than simple heu-
ristics such as earliest deadline first and minimum
processing first.

3.2. Fault-tolerant extensions

To tolerate processor and task failures, the cop-
ies of every task needs to be mutually excluded in
space and also in time. Since in our model, every
task, T;, has two copies, we place both of them in
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the task queue with relative difference of dis-
tance(Pr;, Bk;) in their positions. The primary copy
of any task always precedes its backup copy in the
task queue. The distance is an input parameter and
in our study we assume that

VT, distance(Pr;, Bk;)

distance for the first

(n—(n mod distance)) tasks,
n mod distance for the last
(n mod distance) tasks,

where #n is the number of tasks.

The distance(Pr;, Bk;) may change for some
tasks due to backtracks during the process of
scheduler building a feasible schedule. The follow-
ing is an example task queue with » =35 and
distance = 3 assuming that the deadlines of tasks
T, T, ..., Ts are in the increasing order.

[Pr; [ Pry [Pr; [ Bk, [ Bk [ Bky [ Pry [ Pry [ Bk, [ Bks |

The skeleton of our fault-tolerant myopic algo-
rithm is the same as the myopic algorithm. In the
fault-tolerant myopic algorithm, we convert the
time exclusion into precedence constraints and
the space exclusion into non-access to the corre-
sponding processor. The modifications are given
below.

1. Establish precedence relation between primary
and backup copies of every task 7; such that
Pr; precedes Bk;. This is done when the backup
tasks are inserted into the task queue.

2. When a task copy is considered for feasibility
checking:

If it is a backup copy (Bk;) and its primary (i.e.,

Pr,) has not been scheduled, then

e assume feasibility of Bk; is success, i.e., no

need to check for feasibility since its primary
(Pr;) is known to ensure feasibility.

3. When a task copy is considered for H function

evaluation:

If it is a backup copy (Bk;) and its predecessor
(1.e., Pr;) has not been scheduled, then
e EST(Bk;) = oc.
4. When a task copy is considered for extending
the schedule:
If it is a primary copy (Pr;), then
o Set ready time(Bk;) = finish time(Pr;). This is
to achieve time exclusion(T;).
o Set exclude proc(Bk;) = proc(Pr;). This is to
achieve space exclusion(T;).
5. When backtracking takes place, we do not ex-
tend the schedule from the previous level with
a task having the second best H value, instead
we perform a feasibility check for one more
task (other K-1 tasks are known to ensure fea-
sibility) and consider its H value also for find-
ing the best H value, i.e., we always consider
tasks of the entire feasibility check window.

4. Simulation studies

To study the effect of distance parameter on the
schedulability of the fault-tolerant myopic algo-
rithm, we have conducted extensive simulation
studies. The parameters used in the simulation
studies are given in Fig. 2. During the parallel op-
eration of the scheduler and processor, the sched-
uler has a set of tasks to schedule. In our study,
we do not concentrate on the functions of the pro-
cessor. As mentioned in Section 2.2, any real-time
dynamic scheduling approach has scheduling with
associated resource reclaiming. Our simulation
studies are carried out in two ways: (i) considering
scheduling alone and (1) considering scheduling
with associated resource reclaiming.

4.1. Studies related to scheduling
In this section, we present the studies which are

related to the fault-tolerant scheduling algorithm
alone without considering the resource reclaiming.
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ILparamel.er explanation

MIN_C mimimum computation time of tasks, taken as 8.

MAX_C maximum computation time of tasks, taken as 16.

R laxity parameter denotes the tightness of the deadline, varies
from 0.3 to 0.7.

UseP probability that a task uses a resource, varies from 0.1 to 0.6.

ShareP probability that a task uses a resource in shared mode, taken as 0.4.

K size of feasibility check window, taken as {3,6.9,12.15,18}.

distance relative difference in positions of primary and backup copies
in the task queue, taken as {6,12,18,24}.

num_btrk | number of backtracks permitted in the search.

num_proc | number of processors considered for simulation.

num_res number of resource types considered for simulation.

Fig. 2. Simulation parameters.

The task set for scheduling is generated in the fol-

lowing way.

1. A task set of only primary copies are generated
till schedule length, which 1s an input parame-
ter, with no idle time in the processors, as de-
scribed in [3]. The computation times of
primary copies are chosen randomly between
MIN_C and MAX _C.

2. The deadline of a task T; (primary copy) is ran-
domly chosen in the range 7 +2¢; and
(1 + R) x SC, where SC is the shortest comple-
tion time of the task set generated in the pre-
vious step.

3. The backup copies are assumed to have the
same attributes of the primary copies including
the resource requirements.

The performance metric is the schedulability of
task sets, called success ratio, which is defined as
the ratio of the number of task sets found feasible
by the fault-tolerant myopic algorithm to the num-
ber of task sets considered for scheduling.

Each point in the performance curves
(Figs. 3-6) is the average of five simulation runs,
each with 100 task sets. Each task set contains ap-
proximately 100 primary copies by fixing the
schedule length to 200 during the task set genera-
tion. In our study, the mutual exclusion of time
and space is applicable only to the processors,
but not to the resources. In each of Figs. 3-6,
the first plot is for four processors with three re-
sources and the second plot is for six processors
with four resources. In all cases, the number of in-
stances of every resource is taken as two. For Figs.
4 and 5, the cost of scheduling algorithm is fixed
by fixing the number of backtracks.

In all the plots, the success ratio increases with
increasing values of distance initially, and then
starts decreasing at higher values of distance. The
peaks are at different distance values for different
number of processors. This behaviour depends
on the value of K and the reason for this is as
follows.
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Fig. 3. (a) Effect of feasibility window with four processors; (b) Effect of feasibility window with six processors.

1. When distance is low, the positions of
backup copies in the task queue is close to their
respective primary copies and hence the possibil-
ity of scheduling these backup copies may get
postponed (we call this, backup postponement)
due to time and space exclusions. This makes
more and more unscheduled backup copies get-
ting accumulated. When this number exceeds
K, the scheduler is forced to choose the best task
(say T,) among these backup copies, which
results in creation of a hole (i.e., unusable time
interval for scheduling) in the schedule since
EST(T;) is greater than the availtime of idle
processors. This hole creation can be avoided
by moving the feasibility window till a primary
task falls into it. However, we do not consider
this approach since it increases the scheduling
cost.

2. When distance is high, the position of the
backup copies in the task queue is far apart from
their respective primary copies, i.e., tasks (backup
copies) having lower deadlines may be placed after
some tasks (primary copies) having higher dead-
lines. This may lead to backtracks when the feasi-
bility check window reaches these backup copies
(we call this, forced backtrack).

4.1.1. Effect of size of the feasibility check window

Fig. 3 shows the effect of varying feasibility
check window (K') on success ratio when distance
is equal to 6, 12, 18, and 24. Note that for larger
values of K, the number of H function evaluations
in a feasibility window is also larger, which gives
rise to increase in scheduling cost, i.e., fixing the
number of backtracks does not fix the scheduling
cost for different values of X.
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Fig. 4. (a) Effect of task laxity with four processors; (b) Effect of task laxity with six processors.

The success ratio increases with increasing K
values for some time (growing phase) and then
starts decreasing for higher values of K (shrinking
phase). The shrinking phase starts at lower X val-
ues for lower values of distance, and at higher K
values for higher values of distance. The trend is
the same in both the plots (more clear in Fig.
3(a)). For example in Fig. 3a, 3, 6, and 12 are
the values of K at which the shrinking phase starts
when distance is equal to 6, 12, and 18, respec-
tively. The reason for this is that the backup post-
ponement is very high at the beginning of the
growing phase, decreases along with it and reaches
the lowest value at the end of it (equivalently, be-
ginning of the shrinking phase), and the number of
forced backtracks is very low at the beginning of
the shrinking phase and increases along with it.
This reveals three facts: (a) increased value of K

does not necessarily increase the success ratio, (b)
the optimal X for each distance 1s different, and
(c) the global optimal distance is different for dif-
ferent numbers of processors. The right combina-
tion of K and distance offers the best success ratio.

4.1.2. Effect of laxity parameter

The effect on success ratio for various distance
values by the laxity parameter (R) is shown in
Fig. 4. For this, UseP, K, and num_btrk have been
fixed at 0.5, 6, and 50, respectively. For lower
values of laxity parameter (R), the impact on suc-
cess ratio by distance is less significant compared
with the one at higher values of R. This is due to
the fact that for lower values of R, the deadline is
very tight and hence there is less flexibility in mak-
ing a feasible schedule (i.e., the number of feasible
schedules is less). This reason is applicable for all
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Fig. 5. (a) Effect of resource usage with four processor; (b) Effect of resource usage with six processors.

the distance values, but for higher R, the impact of
the distance parameter is very effective since there is
more flexibility in obtaining a feasible schedule.

4.1.3 Effect of resource constraints

Fig. 5 shows the effect on success ratio by the
resource usage probability (UseP) for various val-
ues of distance. For all values of UseP, the trend
of the success ratio remains the same (when UseP
increases, success ratio decreases linearly) for all
values of distance. This is because of resources
not being considered for space and time exclu-
sions. If UseP is fixed and ShareP is varied, one
can expect a reverse of the above trend (when
ShareP increases, success ratio increases linearly).
If the resources are also considered for space and
time exclusions, the trends might be different for
different distance values.

4.1.4. Effect of number of backtracks

The effect of number of backtracks (num_btrk)
on success ratio for varying distance has been plot-
ted in Fig. 6 by fixing UseP, K, and R at 0.5, 6, and
0.6, respectively. The impact of num_btrk on
success ratio for all values of distance is less signi-
ficant compared to other parameters such as K, R,
and UseP. This clearly shows that minor incre-
ments in number of backtracks without other inter-
ventions does not really improve the schedulability.

4.2. Studies related to scheduling and resource
reclaiming

In this section, we present our simulation results
considering scheduling with associated resource
reclaiming. In this study, there is no concept of
task set, instead, tasks arrive and get scheduled
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Fig. 6. (a) Effect of backtracks with four processor; (b) Effect of backtracks with six processors.

dynamically. Therefore, the metric is the guarantee
ratio which is defined as the number of tasks whose
deadlines are met by a scheduling algorithm to the
number of tasks that have arrived in the system.
We have used the Restriction Vector (RV)
based algorithm [14] for resource reclaiming. Each
task 7; has an associated m-component vector,
RV[1..m], called Restriction Vector, where m is
the number of processors. RV,[j] for a task 7; con-
tains the Jlast task in the set of tasks which have
been scheduled on processor P; to finish before
task 7; begins and have resource constraints with
T;. For computing RV of a task 7;, the scheduler
has to check at most & tasks in each of the other
processors’ dispatch queues. If 7; does not have
any resource conflict with all the & tasks of a dis-
patch queue, the kth task becomes the restriction.
The RV algorithm [14] says: start executing a task

only if all the rasks in its restriction vector have fin-
ished their execution.

The parameter, in this study, fault — p, refers to
the probability that a primary task fails the accep-
tance test and the parameter aw — ratio refers to
the ratio of actual computation time to worst case
computation time of a task. The inter-arrival time
of tasks is exponentially distributed with mean
1/(Ax m)x (MIN_C + MAX_C)/2. The simula-
tion results (Figs. 7 and 8) show the similar trend
as observed when considering only the scheduling
without resource reclaiming.

5. Conclusions

In this paper, we have brought out a new
parameter called distance which affects the
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Fig. 7. Fault-tolerant myopic with varying distance.

schedulability of the fault-tolerant dynamic sched-
uling algorithms. To investigate its importance, we
have proposed extensions to the well-known myo-
pic scheduling algorithm and studied, through sim-
ulation, the impact of it on the schedulability of
fault-tolerant myopic algorithm. We have evaluat-
ed our fault-tolerant scheduling algorithm consid-
ering (i) scheduling alone and (ii) scheduling and
resource reclaiming. From our studies, the follow-
ing inferences are made.

e For different number of processors the optimal
distance parameter is different. From our simu-
lation study, for four and six processors, the
distance parameter 12 and 18, respectively, offer
better success ratio than the other values of dis-
tance in most of the cases.

¢ Increasing the size of the feasibility check win-
dow (K) does not necessarily increase the suc-

Guarantee ratio

num—proc=4 A=08 R=10

K =8 oaw-ratio=0.2

95 r r r ‘
distance=1 -—
‘ distance=12 -~
9+ " 1
85} . ]

70 1 4 I .

0 0.2 0.4 0.6 08 1
Primary fault probability

Fig. 8. Effect of primary fault probability.

cess ratio. The right combination of X and
distance decides the effectiveness of the schedul-
ing algorithm.

For lower values of laxity parameter (R), the
impact on success ratio by distance is less signi-
ficant compared to at higher values of R.

For all values of resource usage probability, the
effect on success ratio by various values of dis-
tance offer similar trend. This is because of
non-consideration of resources for space and
time exclusions.

The impact of number of backtracks is less sig-
nificant compared to the other parameters such
as K, R, and UseP for many values of distance.
In general, the effectiveness of fault-tolerant
scheduling algorithms is heavily influenced by
the choice of distance parameter along with
other parameters.
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