
ELSEVIER Journal of Systems Architecture 45 (1998) 1-13 

JOURNAL OF 
SYSTEMS 
ARCHITECTURE 

A new study for fault-tolerant real-time dynamic scheduling 
algorithms 1 

G. Manimaran 2, C. Siva Ram Murthy * 

Department of Computer Science and Engineering, Indian Institute of Technology, Madras 600 036, India 

Received 8 April 1996; received in revised form 7 February 1997; accepted 25 July 1997 

Abstract 

Many time-critical applications require predictable performance. Tasks corresponding to these applications have 
deadlines to be met despite the presence of faults. Failures can happen either due to processor faults or due to task errors. 
To tolerate both processor and task failures, the copies of every task have to be mutually excluded in space and also in 
time in the schedule. We assume that each task has two versions, namely, primary copy and backup copy. We believe that 
the position of the backup copy in the task queue with respect to the position of  the primary copy (distance) is a crucial 
parameter which affects the performance of any fault-tolerant dynamic scheduling algorithm. To study the effect of dis- 
tance parameter, we make fault-tolerant extensions to the well-known myopic scheduling algorithm [Ramamritham et al. 
IEEE Trans. Parallel Distr. sys. 1 (2) (1990) 184] which is a dynamic scheduling algorithm capable of handling resource 
constraints among tasks. We have conducted an extensive simulation to study the effect of distance parameter on the 
schedulability of the fault-tolerant myopic scheduling algorithm. © 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Multiprocessors  have emerged as a powerful  
comput ing  means for  real-time applications such 
as avionic control  and nuclear plant  control ,  be- 
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cause o f  their capabil i ty for high per formance  
and reliability [1]. The problem o f  mult iprocessor  
scheduling [2-6] is to determine when and where 
a given task executes. This can be done  either stat- 
ically o r  dynamically.  In static algori thms,  the as- 
signment o f  tasks to processors and the time at 
which the tasks start  execution are determined a 
priori. Static algori thms are often used to schedule 
periodic tasks with hard  deadlines, The main  
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advantage is that, if a solution is found, then one 
can be sure that all deadlines will be guaranteed. 
However, this approach is not applicable to aper- 
iodic tasks whose arrival times and deadlines are 
not known a priori. Scheduling such tasks in a 
multiprocessor real-time system requires dynamic 
scheduling algorithms. In dynamic scheduling, 
when new tasks arrive, the scheduler dynamically 
determines the feasibility of scheduling these new 
tasks without jeopardizing the guarantees that 
have been provided for the previously scheduled 
tasks. Thus for predictable executions, schedul- 
ability analysis must be done before a task's execu- 
tion is begun. A feasible schedule is generated if 
the timing, precedence, and resource constraints 
of all the tasks can be satisfied, i.e., if the schedul- 
ability analysis is successful. Tasks are dispatched 
according to this feasible schedule. 

The general problem of optimal fault-tolerant 
scheduling of tasks in a multiprocessor system is 
NP-complete [13,15]. In a real-time multiprocessor 
system, fault-tolerance can be provided by schedul- 
ing multiple copies of tasks on different processors. 
Primary~backup (PB) and triple modular redun- 
dancy (TMR) are two basic approaches that allow 
multiple copies of a task to be scheduled on differ- 
ent processors. In the PB approach, if incorrect re- 
sults are generated from the primary task, the 
backup task is activated. In the TMR approach, 
multiple copies are executed concurrently and their 
results are compared. In [8], a PB scheme has been 
proposed for preemptively scheduling periodic 
tasks in a uniprocessor system. In [9], another PB 
based algorithm for scheduling periodic tasks in a 
multiprocessor system has been proposed. In this 
strategy, a backup schedule is created for each set 
of tasks in the primary schedule. The tasks are then 
rotated such that primary and backup schedules 
are on different processors and do not overlap. 

The PB strategy with backup overloading and 
backup deallocation has been proposed recently 
[10,11] for fault-tolerant dynamic scheduling of 

tasks in real-time multiprocessor systems. This 
scheme [10,11] allocates more than a single backup 
in a time interval (where time interval of a task is 
the interval between scheduled start time and 
scheduled end time of the task) and deallocates 
the resources unused by the backup copies in case 
of fault-free operation. This work [10,11] does not 
address the effect of relative positions of primary 
and backup copies in the task queue which is a cru- 
cial parameter that affects the schedulability of any 
dynamic scheduling algorithm. It does not also ad- 
dress resource constraints among tasks which is a 
practical requirement in any complex real-time sys- 
tem. The objective of our work is twofold: (i) to 
make fault-tolerant extensions to the well-known 
myopic scheduling algorithm [3], and (ii) to study 
the impact of distance parameter on schedulabili- 
ty of the fault-tolerant myopic scheduling algo- 
rithm. 

The rest of the paper is structured as follows: 
System model and definitions are given in Sec- 
tion 2. Section 3 discusses the myopic scheduling 
algorithm and our proposed fault-tolerant exten- 
sions to it. Our simulation study is presented in 
Section 4. Finally, some concluding remarks are 
made in Section 5. 

2. System model 

In this section, we present the task model and 
the scheduler model used in this work, followed 
by some definitions. 

2.1. Task model 

1. Tasks are aperiodic, i.e., the task arrivals are 
not known a priori. Every task T~ has the attri- 
butes: arrival time (ai), ready time (r/), worst 
case computation time (ci), and deadline (~.). 

2. The deadline di of every task T, satisfies: 
~ >~ ri + 2ci. 
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3. Resource constraints: A task might need some 
resources such as data structures, variables, 
and communicat ion buffers for its execution. 
Every task can have two types of  accesses to 
a resource: (a) exclusive access, in which case, 
no other task can use the resource with it or 
(b) shared access, in which case, it can share 
the resource with another task (the other task 
also should be willing to share the resource). 
We say that a resource conflict exists between 
two tasks Ti and Tj if one of these tasks can- 
not share the resources it requires, with the 
other. 

4. Each task T~ has two versions, namely, primary 
copy and backup copy. The worst case compu- 
tation time of  the pr imary copy may be greater 
than that of  the backup copy. 

5. Tasks are non-preemptable.  At any instant, at 
most  one task can be executed on a given pro- 
cessor. 

6. All the processors are identical and are prone 
to failures. 

7. Every task can encounter at most one failure ei- 
ther due to processor fault or task error, i.e., if 
the pr imary copy fails, the backup copy always 
completes successfully. 

8. There exists a fault-detection mechanism that 
detects processor faults and task errors. 

2.2. Scheduler model 

Dynamic scheduling algorithms can be either 
distributed or centralized. In a distributed dynamic 
scheduling scheme, tasks arrive independently at 
each processor. When a task arrives at a processor, 
the local scheduler at the processor determines 
whether or not it can satisfy the constraints of  
the incoming task. The task is accepted if they 
can be satisfied, otherwise the local scheduler tries 
to find another  processor which can accept the 
task. In a centralized scheme, all the tasks arrive 
at a central processor called the scheduler, from 

where they are distributed to other processors in 
the system for execution. In this paper, we will as- 
sume a centralized scheduling scheme. The com- 
munication between the scheduler and the 
processors is through dispatch queues. Each pro- 
cessor has its own dispatch queue. This organiza- 
tion, shown in Fig.l ,  ensures that the processors 
will always find some tasks in the dispatch queues 
when they finish the execution of their current 
tasks. The scheduler will be running in parallel 
with the processors, scheduling the newly arriving 
tasks, and periodically updating the dispatch 
queues. The scheduler has to ensure that the dis- 
patch queues are always filled to their minimum 
capacity (if there are tasks left with it) for this par- 
allel operation. This minimum capacity depends 
on the average time required by the scheduler to 
reschedule its tasks upon the arrival of  a new task 
[12]. 

Task deletion takes place when extra tasks are 
initially scheduled to account for fault tolerance, 
i.e., when the primary copy of  the task completes 
execution successfully. When no faults occur, there 
is no necessity for these temporally redundant 
tasks to be executed and hence they can be deleted. 
Also, the actual time taken by a task during execu- 
tion can be smaller than its worst case computa-  
tion time. Hence, a lot of  resources remain 
unused if we dispatch the tasks strictly based on 
their starting times of the feasible schedule. Each 
processor invokes the resource reclaiming algo- 
rithm [12] at the completion of  its currently execut- 
ing task, to utilize the resources left unused by a 
task when it executes less than its worst case com- 
putation time, or when a task is deleted from the 
current schedule. The scheduler is informed about  
the time reclaimed by the reclaiming algorithm so 
that it can schedule the new tasks correctly and ef- 
fectively. A protocol  for achieving this is suggested 
in [12]. 

Resource reclaiming in multiprocessor systems 
with independent tasks is straightforward. The 
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Fig. 1. Parallel execution of scheduler and processors. 

resource reclaiming in such systems is work-con- 
serving which means that the reclaiming never 
leaves a processor idle if there is a dispatchable 
task and the resource reclaiming in such systems 
is an integral part of  the scheduler. But resource 
reclaiming on multiprocessor systems with re- 
source constraints is more complicated. This is 
due to the potential parallelism provided by a 
multiprocessor, and potential resource conflicts 
among tasks. When early completion of tasks or 
deletion of tasks takes place in a non-preemptive 
multiprocessor schedule with resource constraints, 
run-time anomalies [16] may occur. These anom- 
alies may cause some of  the already guaranteed 
tasks to miss their deadlines. In particular, one 
cannot simply use a work-conserving scheme, like 
the one used in [10], without verifying that the 
task deadlines will not be missed. This justifies 
the need for separating the resource reclaiming 
from the scheduling algorithm and the same is 
adopted in our task model. 

2.3. Terminology 

Definition 1. The scheduler fixes a feasible schedule 
S taking into account the resource constraints and 
fault-tolerant requirements of  all the tasks. The 
feasible schedule uses the worst case computation 
time of  a task for scheduling it and ensures that 
the deadlines of  primary and backup copies of  all 
the tasks in S are met. A partial schedule is one 
which does not contain all the tasks. 

Definition 2. A partial schedule is said to be strong- 
ly feasible if all the schedules obtained extending 
the current schedule by any one of the remaining 
tasks are also feasible [3]. 

Definition 3. Proc(T~) is the processor to which task 
T~ is scheduled. The processor to which task T~ 
should not get scheduled is denoted as exclude 
proc(T~). The time at which processor Pj is avail- 
able for executing a new task is denoted as avail 
time(j). 
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Definition 4. Start time(T~) is the scheduled start 
time of  task T,. which satisfies r~ <~ starttime(T,) 
<<. d , -  cg. Finish time(T,.) is the scheduled finish 
time of  task T, which satisfies r~+ci  
<~ finishtime( Ti) <~ di. 

Definition 5. The primary (Pri) and backup (Bkg) 
copies of task T, are said to be mutually exclusive 
in time, denoted as time exclusion(T,), if 
starttime(Bki) >~ finishtime(Pri). 

Definition 6. The primary (Pri) and backup (Bki) 
copies of  task T~ are said to be mutually exclusive 
in space, denoted as space exclusion(T~), if 
proc(Pri) ¢ proc(Bki). 

Definition 7. Distance between the primary and 
backup copies of a task T,, denoted as distance 
(Pri, Bki), denotes the relative difference between 
their positions in the task queue. The distance pa- 
rameter can have value between 1 and n, where n is 
the number of tasks. 

Definition 8. EAT~ (EATS) is the earliest time when 
resource Rk becomes available for shared (exclu- 
sive) usage [3]. 

Definition 9. Let P be the set of processors and Q 
be the set of  resources requested by task T~. Earli- 
est start time of  a task T/, denoted as EST(T,), is 
the earliest time when its execution can be started. 
EST(Ti) = MAX(r/, MINj~p(availtime(j)), 
MAXkcQ(EAT~')), where u = s for shared mode 
and u = e for exclusive mode. 

3.1. The myopic algorithm 

The myopic algorithm is a heuristic search algo- 
rithm that works as follows. 
1. Tasks (in the task queue) are ordered in non- 

decreasing order of deadline. 
2. The algorithm starts with an empty partial 

schedule. 
3. Determines whether the current schedule is 

strongly feasible (strong feasibility is deter- 
mined with respect to the first K (we call this, 
feasibility check window) tasks in the task 
queue). 

4. If found to be feasible: 
(a) the heuristic function (H) is computed 

for the first K tasks; 
(b) the task with the best (smallest) H value 

is chosen to extend the schedule. 
Else: 

(a) 

(b) 

. 
it backtracks to the previous search 
level; 
it extends the schedule with the task 
having the next best H value. 

6. The algorithm repeats steps 3-5 until a termi- 
nation condition is met. 
The termination conditions are either (a) a 

complete feasible schedule has been found, or (b) 
the maximum number of backtracks or H function 
evaluations has been reached, or (c) no more back- 
tracking is possible. The authors of  [3] have shown 
that the integrated heuristic function di + EST(T,.) 
which captures the deadline and resource con- 
straints of task T, performs better than simple heu- 
ristics such as earliest deadline first and minimum 
processing first. 

3. The Fault-tolerant scheduling algorithm 3.2. Fault-tolerant extensions 

In this section, for the sake of completeness, we 
first present the myopic scheduling algorithm [3] 
and then the proposed fault-tolerant extensions 
to it. 

To tolerate processor and task failures, the cop- 
ies of every task needs to be mutually excluded in 
space and also in time. Since in our model, every 
task, T,, has two copies, we place both of them in 
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the task queue with relative difference of  dis- 
tance(Pr,, Bkg) in their positions. The primary copy 
of  any task always precedes its backup copy in the 
task queue. The distance is an input parameter and 
in our study we assume that 

for the first 

( n -  (n mod distance)) tasks, 
for the last 

(n rood distance) tasks, 

VTi, distance(Pri, Bki) 

= I distance 

I n mod distance 

where n is the number of  tasks. 
The distance(Pri, BE) may change for some 

tasks due to backtracks during the process of 
scheduler building a feasible schedule. The follow- 
ing is an example task queue with n = 5 and 
distance = 3 assuming that the deadlines of  tasks 
TI, T2,..., T5 are in the increasing order. 

[Prl [Pr2 [Pr3 [ Bkl [ Bk2 I Bk.3 ]Pr4 [Pr5 I Bk4 [ Bk.5 I 

The skeleton of  our fault-tolerant myopic algo- 
rithm is the same as the myopic algorithm. In the 
fault-tolerant myopic algorithm, we convert the 
time exclusion into precedence constraints and 
the space exclusion into non-access to the corre- 
sponding processor. The modifications are given 
below. 
1. Establish precedence relation between primary 

and backup copies of  every task I},. such that 
Pri precedes Bk/. This is done when the backup 
tasks are inserted into the task queue. 

2. When a task copy is considered for feasibility 
checking: 
If  it is a backup copy (Bki) and its primary (i.e., 
Pri) has not been scheduled, then 
• assume feasibility of  Bk~ is success, i.e., no 

need to check for feasibility since its primary 
(Pri) is known to ensure feasibility. 

3. When a task copy is considered for H function 
evaluation: 

If  it is a backup copy (Bki) and its predecessor 
(i.e., Pri) has not been scheduled, then 
• EST(Bki) = c~. 

4. When a task copy is considered for extending 
the schedule: 
If it is a primary copy (Pri), then 
• Set ready time(Bki) =finish time(Pri). This is 

to achieve time exclusion(Ti). 
• Set exclude proc(Bki) = proc(Pri). This is to 

achieve space exclusion( Ti ). 
5. When backtracking takes place, we do not ex- 

tend the schedule from the previous level with 
a task having the second best H value, instead 
we perform a feasibility check for one more 
task (other K-1 tasks are known to ensure fea- 
sibility) and consider its H value also for find- 
ing the best H value, i.e., we always consider 
tasks of  the entire feasibility check window. 

4. Simulation studies 

To study the effect of  distance parameter on the 
schedulability of the fault-tolerant myopic algo- 
rithm, we have conducted extensive simulation 
studies. The parameters used in the simulation 
studies are given in Fig. 2. During the parallel op- 
eration of  the scheduler and processor, the sched- 
uler has a set of  tasks to schedule. In our study, 
we do not concentrate on the functions of  the pro- 
cessor. As mentioned in Section 2.2, any real-time 
dynamic scheduling approach has scheduling with 
associated resource reclaiming. Our simulation 
studies are carried out in two ways: (i) considering 
scheduling alone and (ii) considering scheduling 
with associated resource reclaiming. 

4.1. Studies related to scheduling 

In this section, we present the studies which are 
related to the fault-tolerant scheduling algorithm 
alone without considering the resource reclaiming. 
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parameter explanation 

MIN_C 

MAX_C 

R 

UseP 

ShareP 

K 

distance 

num_btrk 

num_proc 

num_res 

minimum computation time of tasks, taken as 8. 

maximum computation time of tasks, taken as 16. 

laxity parameter denotes the tightness of the deadline, varies 

from 0.3 to 0.7. 

probability that a task uses a resource, varies from 0.1 to 0.6. 

probability that a task uses a resource in shared mode, taken as 0.4. 

size of feasibility check window, taken as {3,6,9,12.15,18}. 

relative difference in positions of primary and backup copies 

in the task queue, taken as {6,12,18,24}. 

number of backtracks permitted in the search. 

number of processors considered for simulation. 

number of resource types considered for simulation. 

Fig. 2. Simulation parameters. 

The task set for scheduling is generated in the fol- 
lowing way. 
1. A task set of  only pr imary copies are generated 

till schedule length, which is an input parame- 
ter, with no idle time in the processors, as de- 
scribed in [3].  The computat ion times of 
pr imary copies are chosen randomly between 
MIN_C and MAX_C. 

2. The deadline of  a task T/(primary copy) is ran- 
domly chosen in the range ri+2ci  and 
(1 + R) x SC, where SC is the shortest comple- 
tion time of the task set generated in the pre- 
vious step. 

3. The backup copies are assumed to have the 
same attributes of  the pr imary copies including 
the resource requirements. 
The performance metric is the schedulability of  

task sets, called success ratio, which is defined as 
the ratio of  the number  of  task sets found feasible 
by the fault-tolerant myopic algorithm to the num- 
ber of  task sets considered for scheduling. 

Each point in the performance curves 
(Figs. 3-6) is the average of  five simulation runs, 
each with 100 task sets. Each task set contains ap- 
proximately 100 pr imary copies by fixing the 
schedule length to 200 during the task set genera- 
tion. In our study, the mutual  exclusion of  time 
and space is applicable only to the processors, 
but not to the resources. In each of  Figs. 3-6, 
the first plot is for four processors with three re- 
sources and the second plot is for six processors 
with four resources. In all cases, the number  of  in- 
stances of  every resource is taken as two. For  Figs. 
4 and 5, the cost of  scheduling algorithm is fixed 
by fixing the number of  backtracks. 

In all the plots, the success ratio increases with 
increasing values of  distance initially, and then 
starts decreasing at higher values of  distance. The 
peaks are at different distance values for different 
number of  processors. This behaviour depends 
on the value of  K and the reason for this is as 
follows. 
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Fig. 3. (a) Effect of feasibility window with four processors; (b) Effect of feasibility window with six processors. 

1. When distance is low, the positions of  
backup copies in the task queue is close to their 
respective primary copies and hence the possibil- 
ity of  scheduling these backup copies may get 
postponed (we call this, backup postponement) 
due to time and space exclusions. This makes 
more and more unscheduled backup copies get- 
ting accumulated. When this number exceeds 
K, the scheduler is forced to choose the best task 
(say Tb) among these backup copies, which 
results in creation of  a hole (i.e., unusable time 
interval for scheduling) in the schedule since 
EST(Tb) is greater than the availtime of  idle 
processors. This hole creation can be avoided 
by moving the feasibility window till a primary 
task falls into it. However, we do not consider 
this approach since it increases the scheduling 
cost. 

2. When distance is high, the position of  the 
backup copies in the task queue is far apart from 
their respective primary copies, i.e., tasks (backup 
copies) having lower deadlines may be placed after 
some tasks (primary copies) having higher dead- 
lines. This may lead to backtracks when the feasi- 
bility check window reaches these backup copies 
(we call this, forced backtrack). 

4.1.1. Effect of size of the feasibility check window 
Fig. 3 shows the effect of  varying feasibility 

check window (K) on success ratio when distance 
is equal to 6, 12, 18, and 24. Note that for larger 
values of  K, the number of  H function evaluations 
in a feasibility window is also larger, which gives 
rise to increase in scheduling cost, i.e., fixing the 
number of  backtracks does not fix the scheduling 
cost for different values of K. 
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Fig. 4. (a) Effect of task laxity with four processors; (b) Effect of task laxity with six processors. 

0.8 

The success ratio increases with increasing K 
values for some time (growing phase) and then 
starts decreasing for higher values of  K (shrinking 
phase). The shrinking phase starts at lower K val- 
ues for lower values of  distance, and at higher K 
values for higher values of  distance. The trend is 
the same in both the plots (more clear in Fig. 
3(a)). For example in Fig. 3a, 3, 6, and 12 are 
the values of  K at which the shrinking phase starts 
when distance is equal to 6, 12, and 18, respec- 
tively. The reason for this is that the backup post- 
ponement  is very high at the beginning of  the 
growing phase, decreases along with it and reaches 
the lowest value at the end of  it (equivalently, be- 
ginning of  the shrinking phase), and the number  of  
forced backtracks is very low at the beginning of  
the shrinking phase and increases along with it. 
This reveals three facts: (a) increased value of K 

does not necessarily increase the success ratio, (b) 
the optimal K for each distance is different, and 
(c) the global optimal distance is different for dif- 
ferent numbers of  processors. The right combina- 
tion of K and distance offers the best success ratio. 

4.1.2. Effect of  laxity parameter 
The effect on success ratio for various distance 

values by the laxity parameter  (R) is shown in 
Fig. 4. For  this, UseP, K, and num_btrk have been 
fixed at 0.5, 6, and 50, respectively. For  lower 
values of  laxity parameter  (R), the impact  on suc- 
cess ratio by distance is less significant compared 
with the one at higher values of  R. This is due to 
the fact that for lower values of  R, the deadline is 
very tight and hence there is less flexibility in mak-  
ing a feasible schedule (i.e., the number  of  feasible 
schedules is less). This reason is applicable for all 
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the distance values, but for higher R, the impact of  
the distance parameter is very effective since there is 
more flexibility in obtaining a feasible schedule. 

4.1.3 Effect of  resource constraints 
Fig. 5 shows the effect on success ratio by the 

resource usage probability (UseP) for various val- 
ues of  distance. For  all values of UseP, the trend 
of the success ratio remains the same (when UseP 
increases, success ratio decreases linearly) for all 
values of distance. This is because of resources 
not being considered for space and time exclu- 
sions. If  UseP is fixed and ShareP is varied, one 
can expect a reverse of the above trend (when 
ShareP increases, success ratio increases linearly). 
If the resources are also considered for space and 
time exclusions, the trends might be different for 
different distance values. 

4.1.4. Effect o f  number o f  backtracks 
The effect of  number of  backtracks (num_btrk) 

on success ratio for varying distance has been plot- 
ted in Fig. 6 by fixing UseP, K, and R at 0.5, 6, and 
0.6, respectively. The impact of  num_btrk on 
success ratio for all values of  distance is less signi- 
ficant compared to other parameters such as K, R, 
and UseP. This clearly shows that minor incre- 
ments in number of  backtracks without other inter- 
ventions does not really improve the schedulability. 

4.2. Studies related to scheduling and resource 
reclaiming 

In this section, we present our simulation results 
considering scheduling with associated resource 
reclaiming. In this study, there is no concept of  
task set, instead, tasks arrive and get scheduled 
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Fig. 6. (a) Effect of backtracks with four processor; (b) Effect of backtracks with six processors. 

dynamically. Therefore, the metric is the guarantee 
ratio which is defined as the number of  tasks whose 
deadlines are met by a scheduling algorithm to the 
number of  tasks that have arrived in the system. 

We have used the Restriction Vector (RV) 
based algorithm [14] for resource reclaiming. Each 
task T, has an associated m-component vector, 
RV,.[1..m], called Restriction Vector, where m is 
the number of processors. RVi[j] for a task T, con- 
tains the last task in the set of  tasks which have 
been scheduled on processor P/ to finish before 
task T~ begins and have resource constraints with 
T~. For computing RV of a task T~, the scheduler 
has to check at most k tasks in each of  the other 
processors' dispatch queues. If  T,. does not have 
any resource conflict with all the k tasks of a dis- 
patch queue, the kth task becomes the restriction. 
The RV algorithm [14] says: start  executing a task  

only i f  all the tasks in its restriction vector have.fin- 
ished their execution. 

The parameter, in this study, f a u l t  - p, refers to 
the probability that a primary task fails the accep- 
tance test and the parameter a w -  ratio refers to 
the ratio of  actual computation time to worst case 
computation time of a task. The inter-arrival time 
of  tasks is exponentially distributed with mean 
1/()~ x m)× (MIN_C + MAX_C)/2. The simula- 
tion results (Figs. 7 and 8) show the similar trend 
as observed when considering only the scheduling 
without resource reclaiming. 

5.  C o n c l u s i o n s  

In this paper, we have brought out a new 
parameter called distance which affects the 
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schedulability of the fault-tolerant dynamic sched- 
uling algorithms. To investigate its importance, we 
have proposed extensions to the well-known myo- 
pic scheduling algorithm and studied, through sim- 
ulation, the impact of it on the schedulability of 
fault-tolerant myopic algorithm. We have evaluat- 
ed our fault-tolerant scheduling algorithm consid- 
ering (i) scheduling alone and (ii) scheduling and 
resource reclaiming. From our studies, the follow- 
ing inferences are made. 
• For different number of processors the optimal 

distance parameter is different. From our simu- 
lation study, for four and six processors, the 
distance parameter 1 2 and 1 8, respectively, offer 
better success ratio than the other values of dis- 
tance in most of the cases. 

• Increasing the size of the feasibility check win- 
dow (K) does not necessarily increase the suc- 

cess ratio. The right combination of K and 
distance decides the effectiveness of the schedul- 
ing algorithm. 

• For lower values of laxity parameter (R), the 
impact on success ratio by distance is less signi- 
ficant compared to at higher values of R. 

• For all values of resource usage probability, the 
effect on success ratio by various values of dis- 
tance offer similar trend. This is because of 
non-consideration of resources for space and 
time exclusions. 

• The impact of number of backtracks is less sig- 
nificant compared to the other parameters such 
as K, R, and UseP for many values of distance. 

• In general, the effectiveness of fault-tolerant 
scheduling algorithms is heavily influenced by 
the choice of distance parameter along with 
other parameters. 
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