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Fig. I .  Definitions of lens and impulse. 
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Fig. 2. Vignetting in the coherent processor. 

Consider the special  case  when the  input function is band-limited or if a 
band-limiting filter is  placed  in the  Fourier-transform plane.  Then the im- 
pulse  response  is  shown to be input-position  invariant for  a  limited  range of 
input  positions In particular, assume that a filter is used to force the  Fourier 
transform to be zero for spatial frequencies IWI 2 B. Then for  certain  values 
of x& the  position of the  input impulse, the effective  width of the collimated 
beam is limited by this Fourier-plane filter and hence  does not  change with 
x* From geometric arguments similar to  those used above,  it can be shown 
that  the impulse  response is input-position  invariant if 

X < - - B .  
A 

O - 2  

This illustrates an interesting  tradeoff. As the  bandwidth B approaches 
zero, the impulse  response  becomes input-position  invariant over the 
maximum  usable input range, IxI<A/2 Conversely, as the  bandwidth 
approaches its maximum, B+A/2, the impulse  response  becomes input- 
position sensitive  everywhere on the  input plane, and is given by (4). 

In conclusion,  the effects  of  vignetting  by finite lens apertures on one- 
dimensional optical  Fourier processors  were  considered. It was shown  that 
for  the general coherent  optical processor, the usual convolution integral 
(2) cannot be applied because the impulse  response is input-position 
sensitive.  If an input-position  invariant impulse  response is desired,  then 
the  bandwidth of the  Fourier-transform  plane must be limited. In that 
case, there is a  tradeoff between input size and bandwidth. It was also 
shown  that  those  parts  of  the  input which  extend  beyond the size of the 
lens apertures  make no contribution  to  the  output. 
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Transient Response Evaluation from the 
State Transition Matrix 

Abstract-A novel method for OMPining the transient  response of a linear 
time-invariant  system is presented. The main  advantages of this method are 
that it eliminates the evaluation of the eigenvalues and also involves a minimal 
number of numerical  steps. 'Ibe method is illustrated by a  specific  example. 

INTRODUC~ION 
For a  linear  time-invariant  system  described by the vector  matrix 

equation 

X = A X  + u(t) ,  (1) 

the  solution  can be  written as 

X ( t )  is the n-vector {x, ( t ) ,   x2(t ) ,  . . . x&)} specifying  the  state of the 
system, A is the  constant coefficient  matrix, and u(t) is the  input vector. 

In the  above  equation e"', which  is a function of time, is the state  transi- 
tion  matrix. This matrix  completely  establishes the  state of a  system  in the 
time domain  and for  a  system  with no external  input, 

XU) = eA'X(0). (3) 

The  state  transition matrix 6' can be expanded as an infinite  series in 
terms of powers of t  and  that of matrix A as follows: 

For a  chosen  interval of time T, which need not be very  small, the series 
of equations (4) can be approximated by the first few terms  retaining any 
desired  accuracy. If is the matrix thus evaluated, the response  vector 
X ( k T )  for k =  1,2 ,3 , .  . . is  given as 

X ( k T )  = Y T X ( 0 )  (5) 

for  a  force-free  system. 
This was the  method  adopted by Liou,' and possesses distinct ad- 

vantages  over the analytical methods for the  actual evaluation of the 
transient response.  While the d a c u l t  step of the calculation of eigenvalues 
of the matrix A requiring the  roots of an nth-order  polynomial is eliminated 
in  Liou's  method, the requirement of convergence at e"' in (4) requires 
that for an interval T, a  large number of terms are to be used unless T is 
chosen  sufficiently  small. In the example  given by Liou, 10 terms in the 
summation  are required,  necessitating the evaluation of matrices A, A', 
A3,  . . . , A''. The method  becomes a step-by-step procedure requiring the 
knowledge of the vector X(= 7') to obtain X(nT)  from the  equation 

- 
x(nT) = eATX(n - 1 T). (6 )  

The method  described  below is a  modification of Liou's procedure 
making use  of the Cayley-Hamilton theorem which states  that every  matrix 
satisfies its own characteristic  equation.  The  entire  procedure is  illustrated 
in  a  series of steps as follows. 

Step  I ;  For a  given square matrix A of an  nth-order system, compute 

S t e p  2: Set up  the  characteristic  equation 
A2 A3 . . .  A"-' , , ,  . 

(-1)"lA -HI  = 1" + p l l " - '  + ...  + p a  = 0 (7) 

where pl ,  p 2 , .  . . , pn can be computed by the expansion of the determi- 
nant. 

S t e p  3: Every square matrix  satisfies its own  characteristic equation. 
Hence. 
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A" = - p l A n - '  - p 2 A " - 2  - . . . - p n l .  (8) 

Successive  multiplication of (8) by A gives  rise to  the following equa- 
tions expressing A"+4 in terms of A, A2, . . . , A"-'. 

A"+4 = z0,1 + r l g  + z2qA2 + ' .  . + z ~ - ~ & ' - '  q = 0, 1,2, .  . . . (9) 

where aoo= - p n ,  z l 0 =  - P . - ~ ,  . . . , a l - l ,o=  -pl ,  and lop, alqr ' . . , an- 
are  obtained from  the  recurrence  relationships  explained in Table I. 

S t e p  4: For a given  choice of T, PT can be written as 

T2  T3 T" 
2!  3! n !  

P T = I + T A + - A A t + - A 3 + . . . + - A A " + . . .  

TR+ 1 

+- 
( n  + l)! [ a o l l + a l l A + a , l A 2 + ~ ~ ~ + a , - l , l A " - ' ] + ~ ~ ~  (10) 

(n + l)! 1 
+A[,+ fl al lT"+'  

n !  (n + l)! 
+-+ . . .  + . . .  1 

From the  already computed matrices A', . . . , A"-' and the z's from 
Step 3, @'is quite  easily  calculated to any  desired  accuracy  without actual 
series summation of powers of A higher than (n - 1). 

S t e p  5 :  Assuming P T = M ( T )  as evaluated in Step 4, compute M 2 ,  
M 3 ,  . . . , M"-'  and evaluate the characteristic equation of M ,  

by expansion of the  determinant. 
S t e p  6 :  

X(kT) = ML(T)X(O). (12) 

The matrices M ,  M2, . . . , M"-' have  already  been computed  and M' for 
k 2 n can be obtained as follows. From (1 I), 

and 

forp=O, 1,2,3~~~wherefioo=-m,,~lo=-m,~l~~~~n-l,o=-ml. 

with a changed to fi, q changed to p,  and A changed to M .  
Table I also  outlines  the  scheme  for computation of Bo, jlp. . . B.- l .p ,  

S t e p  7: For k > n  X(ICT)=M"+~X(O) where p=k-n>O. Therefore 

X ( k T )  = {BoJ  + BlpM + PzpM2 + . .  . + 8.-1.,Mn-')X(O) 

= /So,X(O) + fil,X(T) + 82pX(2T) + ' '. + 8.- ,,B(n - 1 TI. 
__ (15) 

Equation (15) expresses the vector xlr  X*, . . . , x, at any  instance __ of time 
r=kT as a linear combination of n-vectors X(O), X ( T ) .  . . X ( n -  1 T )  
at t = 0, T, . . , n - 1 T, respectively. 

It should be emphasized that  to  compute  the vector X(t) at any instant, 
it is not necessary to compute its values  at all instants up to t but  only to 
find the coefficients Bop ,  bl,, . . . of (15) explained  in  Step 6. Thus, the 
method  is  not a step-by-step computation for  the  vector X ( t )  but  only for 
the coefficients Bo,, pip, etc. The example  given  below  illustrates the  pro- 
cedure. 

- 

EXAMPLE 1 
The system  considered  is a third-order system  described by 8= AX 

where 

X(O+) = [-i:;L. 
and 

1 
A =  

-0.75 -2.75 -3 

This is the same  example  considered by Liou. 

S t e p  1 : 

0 

Step  2 :  The  characteristic  equation of A is 

2' + 3i2 + 2.752 + 0.75 = 0. 

S t e p  3: 

A2 = -0.751 - 2.75A - 3A2 
A4 = 2.251 + 7.5A + 6.25A2 
A5 = 4.68751 - 14.93754 + 11.25A2. 

S t e p 4 :  For T=0.1 

M = PT = 0.9998839961 + 0.099571714 + 0.00452513A2 

0.999884  0.0995717  0.00452513 
0.987441  0.0859963 . 

-0.239884  0.729451 1 
S t e p  5 :  

I 0.999138  0.196795  0.016388 
M 2  = -0.012291  0.954072  0.147631 . 

-0.1123515  -0.4182765  0.561178 1 
The  characteristic  equation of M is obtained by direct  expansion of 
IM-AIl as 

A3 - 2.71677512 + 2.4582392 - 0.7408182 = 0. 

S t e p  6: The coefficients are calculated as shown  in the scheme of Table I 
for n=3 with the  starting values  Bo0=O.7408182, jl0= -2.458239, 

S t e p  7: The values of xl(t) computed  at intervals of 0.1 are given  in 
Table I1 and  compared with the exact  solution and  also  the solution ob- 
tained by Liou. 

p20=2.716775. 

CONCLUSIONS 
A simple and  straightforward method is developed for  obtaining  the 
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TABLE I1 

r=nT d n T )  Results  from 
Exact solution Liou's  method 

0.0 

0.2 
0. I 

0.4 
0.3 

0.5 
0.6 
0.7 

0.9 
0.8 

1 .o 

2.00000 
1.76781 
1.56774 
1.39515 
1.24603 
1.11700 

0.907977 
1.00514 

0.823377 

0.684908 
0.749536 

2.00000  2.00000 
1.76781 1.7678 1 
1.56774  1.56775 
1.39515  1.39515 
1.24604 
1.11700 

1.24601 

1.00515  1.00515 
1.11701 

0.823379 
0.907979  1.907982 

0.823383 
0.749538  0.749542 
0.684912  0.684914 

The  method avoids the necessity  of calculating the eigenvalues of the sys- 
tem requiring the roots of a  polynomial  and ultimately reduces to simple 
steps of multiplication  and  addition which can be done even on a desk 
calculator.  The  method consists of accurate  evaluationpf  the  state  transi- 
tion matrix e"* for  a  chosen time interval T and  makes use of certain 
recurrence relationships which  hold for  the exponential matrix.  The 
method is quite  accurate  and  the  number of multiplications and  additions 
per step is small compared  to  other  methods. 
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Observation of tbe Current and Voltage 
Waveforms  of the Si IMPATT Diode 

Abstract-Current d voltage wavefoms of tbe Si M A T T  diode 
were observed directly by meam of tbe oscilhting circnit oping microstrip 
liue.'Zberesalghdiutethrttheeoeventiondsmd-s@dtheorycnnaotbe 
a p p l i e d t o t b e o ~ d t y p e o f ~ ~ ~ o s c i l L t i o e s t n r t s a t t b e ~  
v ~ j p p t p b o v e t h e ~ d o ~ v d t r g e o Z t b e d i o d e ; t h e a r b e g n i t h ~  
buildup, the bhs vobge is bwered owhg to the ant& effect, to reach a 
steady value coddembly below the breakh voltage. Luge mplitnde 
~ t i o n o f l d g h ~ i s e x p e c t e d o v e r a w i d e f ~ r m g e .  

The  circuit configuration and  measurement  apparatus used to observe 
the  current waveform are  shown  in Fig. 1. This system is essentially the 
same  as  that used in  a previous report  to observe the  current  and voltage 
waveforms of the  Gunndiode.  The voltage waveform  is  picked up  through 
a differential probe with capacitive coupling, and fed to  a  sampling scope, 
whose recorder output is integrated by a Miller integrator  and  plotted  on  an 
X-Y recorder.  The  characteristic of this detecting circuit was  checked by 
verifying that  the voltage pulse with fast rise time (0.25 ns) applied to the 
circuit was exactly reproduced on the X-Y recorder. 

Typical voltage and  current waveforms observed are  shown in Fig. 2. 
The essential feature of this type of oscillation is its involvement with 
numerous higher harmonic  components.  The voltage applied to the diode 
is  lower than  the  breakdown voltage on the average, and exceeds  it  dnly 
instantaneously in each cycle. As seen in the figure, the  dc  current level  is 
approximately zero. From these facts, it  can be expected that this type of 
oscillation is highly  efficient. 

As shown  in  the  current  waveforms in Fig. 3, shortening  the cavity 
length leads to  an increase in  the oscillation frequency, and  amplitude re- 
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Fig. 1. Circuit wn6guration and  measurement apparatus.  
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Fig. 2. Voltage and current waveforms Breakdown voltage at 1 3 0  V. Horizontal: 1 nsidiv. 
Upper trace: voltage waveform.  Lower trace: current  waveform. 

Fig 3. Current  waveforms with changes in cavity length. (a) 6 c l l ~  (b) 8 cm. (c) 12 c m  
(d) 16 cm. (e) 20 can. Vertical: 5A/div. Horizontal: 0.5 nsidiv. Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL. Downloaded on October 25,2024 at 09:15:42 UTC from IEEE Xplore.  Restrictions apply. 


