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Fig. 2. Vignetting in the coherent processor.

Consider the special case when the input function is band-limited or if a
band-limiting filter is placed in the Fourier-transform plane. Then the im-
pulse response is shown to be input-position invariant for a limited range of
input positions. In particular, assume that a filter is used to force the Fourier
transform to be zero for spatial frequencies |w|> B. Then for certain values
of x,, the position of the input impulse, the effective width of the collimated
beam is limited by this Fourier-plane filter and hence does not change with
xo. From geometric arguments similar to those used above, it can be shown
that the impulse response is input-position invariant if

<A B
Xg & — — D.
°=2

This illustrates an interesting tradeoff. As the bandwidth B approaches
zero, the impulse response becomes input-position invariant over the
maximum usable input range, |x|<A/2 Conversely, as the bandwidth
approaches its maximum, B—A4/2, the impulse response becomes input-
position sensitive everywhere on the input plane, and is given by (4).

In conclusion, the effects of vignetting by finite lens apertures on one-
dimensional optical Fourier processors were considered. It was shown that
for the general coherent optical processor, the usual convolution integral
(2) cannot be applied because the impulse response is input-position
sensitive. If an input-position invariant impulse response is desired, then
the bandwidth of the Fourier-transform plane must be limited. In that
case, there is a tradeoff between input size and bandwidth. It was also
shown that those parts of the input which extend beyond the size of the
lens apertures make no contribution to the output.
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Transient Response Evaluation from the
State Transition Matrix

Abstract— A novel method for obtaining the transient response of a linear
time-invariant system is presented. The main advantages of this method are
that it eliminates the evaluation of the eigenvalues and also involves a minimal
number of numerical steps. The method is illustrated by a specific example.

INTRODUCTION

For a linear time-invariant system described by the vector matrix
equation

X = AX + u(t), (1)
the solution can be written as

L3

X(t) = e*TXo(0) + f 40 V) dr. @

0

X(t) is the n-vector {x,(t), x,(t), - - - x,{(t)} specifying the state of the
system, A is the constant coefficient matrix, and u(t) is the input vector.

In the above equation e, which is a function of time, is the state transi-
tion matrix. This matrix completely establishes the state of a system in the
time domain and for a system with no external input,

X(1) = e*X(0). 3)

The state transition matrix e*' can be expanded as an infinite series in
terms of powers of ¢ and that of matrix A4 as follows:

ett=3y —1—' A" 4
n=0 n!

For a chosen interval of time T, which need not be very small, the series
of equations (4) can be approximated by the first few terms retaining any
desired accuracy. If 47 is the matrix thus evaluated, the response vector
X(kT)for k=1,2,3,---is given as

X(kT) = 47 X(0) 5

for a force-free system.

This was the method adopted by Liou,! and possesses distinct ad-
vantages over the analytical methods for the actual evaluation of the
transient response. While the difficult step of the calculation of eigenvalues
of the matrix A requiring the roots of an nth-order polynomial is eliminated
in Liou’s method, the requirement of convergence at e*' in (4) requires
that for an interval T, a large number of terms are to be used unless T is
chosen sufficiently small. In the example given by Liou, 10 terms in the
summation are required, necessitating the evaluation of matrices 4, 42,
A?, - -+, A'° The method becomes a step-by-step procedure requiring the
knowledge of the vector X(n—1 T) to obtain X(nT) from the equation

X(nT) = ATX(n — 1L T). (6)

The method described below is a modification of Liou’s procedure
making use of the Cayley-Hamilton theorem which states that every matrix
satisfies its own characteristic equation. The entire procedure is illustrated
in a series of steps as follows.

Step 1: For a given square matrix 4 of an nth-order system, compute
AL A% A

Step 2: Set up the characteristic equation

(~A— A=A +pa" '+ +p,=0 7

where pl, p2,- -, pn can be computed by the expansion of the determi-
nant.

Step 3: Every square matrix satisfies its own characteristic equation.
Hence,
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A= —p A — p AT — - =l (8)

Successive multiplication of (8) by A gives rise to the following equa-
tions expressing A"* % in terms of 4, 4%,---, 4" L,

AT =g+ A+ 2 A+ F o A g=0,12,-. (9

Where 2o = —pPp. %10=—Pa-1, """ Hn=1,0= —P1, AN Agg, L1, " " Ay g
are obtained from the recurrence relationships explained in Table 1.
Step 4: For a given choice of T, e*T can be written as

T? T? T
T=1+TA+ A2+ —A+ "+ =4+ -
2! 3! n!
TZ Tn—l
=I+TA+——+ " +——A"1+ -
21 (n - 1)!

i 2 -1
+ ;7[1001 + 2y0Ad + 2047 + 1t 4 2y oA™ Y]

Tn+1
4+
(n+ 1)!

a0 T" 2o, T :|
=1+ + + -
[ n! n+ 1)!
™ Tn+l
+A[T+1L+a” +...]+...

n! n+ 1!

Tn—l a. Tn
=1 "= 1.0 R R
[(n T T A T ]

(oo + oy A+ oy A2+ -+ A ]+

From the already computed matrices 42, -, A" ! and the «’s from
Step 3, e*7 is quite easily calculated to any desired accuracy without actual
series summation of powers of A higher than (n—1).

Step 5: Assuming e“7=M(T) as evaluated in Step 4, compute M2,

M3, .-, M" ! and evaluate the characteristic equation of M,
(~IPM—-Adl=+md '+ +m_, =0, (11)
by expansion of the determinant.
Step 6:
X(kT) = MHT)X(0). (12)

The matrices M, M2, -+ -, M"~! have already been computed and M* for
k>n can be obtained as follows. From (11),

M=—mM™'—mM 2 —ml (13)
and

MM = Bol + B ,M 4 -+ By M (19)
for p=0, 1,2, 3--- where Boo=—m,, B1o=—May " Buc1.0=—M;.

Table I also outlines the scheme for computation of B, B15 " * Ba 1.5
with « changed to §, g changed to p, and 4 changed to M.
Step 7: For k>n X(kT)=M""?X(0) where p=k —n=>0. Therefore

X(kT) = {Bop + B1,M + BopM> + -+ + By ,M"™ 1} X(0)
N ()]
= o, X(0) + B, X(T) + B2, XC@T) + -+ + B, X(n — 1T},

Equation (15) expresses the vector x;, X5, * -, X, at any instance of time
t=kT as a linear combination of n-vectors X(0), X(T)--- X(n-1T)
att=0,T, - -,n—1T, respectively.

It should be emphasized that to compute the vector X(¢) at any instant,
it is not necessary to compute its values at all instants up to ¢ but only to
find the coefficients B,,, B,,. - - of (15) explained in Step 6. Thus, the
method is not a step-by-step computation for the vector X(z) but only for
the coefficients B, B, etc. The example given below illustrates the pro-
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TABLE 1

2og = —Pa%o -1

X1 =Fo,q-1 " Pu-1%1,4-1

Brq =21 g~1t —Pu-2%2,4-1
Ay 14 =Fpu2,4-1 " P1%n—1,4-1

EXAMPLE 1

The system considered is a third-order system described by X =AX
where

2
X" = [-25
375
and
0 1 0
A= 0 0 11
-075 275 -3

This is the same example considered by Liou.

Stepl:
0 0 1
A2 =1{-075 =275 -3
+225 +75 +6.25

Step 2: The characteristic equation of 4 is
A+ 342 4275 + 075 =0.
Step 3:

A% = =075 — 2754 — 342
A* = 2251 + 7.54 + 6.254>
A® = 468751 — 14.93754 + 11.2542

Step 4: For T=0.1

M = T = 0.999883996] + 0.099571714 + 0.0045251342

[ 0.999884 0.0995717 0.00452513
= 1-0.00339385 0.987441 0.0859963
L—0.0644972 —0.239884 0.729451
Step 5:
( 0.999138 0.196795 0.016388
M? = [-0.012291 0.954072 0.147631 |-
|—0.1123515  —0.4182765 0.561178

The characteristic equation of M is obtained by direct expansion of
IM—il| as

A3 — 27167754 + 2.4582394 — 0.7408182 = 0.

Step 6. The coefficients are calculated as shown in the scheme of Table I
for n=3 with the starting values f,,=0.7408182, B,,= —2.458239,
20=2.716775.
Step 7: The values of x,(t) computed at intervals of 0.1 are given in
Table II and compared with the exact solution and also the solution ob-
tained by Liou.

CONCLUSIONS
A simple and straightforward method is developed for obtaining the
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TABLE II
. Results from
t=nT x(nT) Exact solution Liou’s method
0.0 2.00000 2.00000 2.00000
0.1 1.76781 1.76781 1.76781
0.2 1.56774 1.56774 1.56775
0.3 1.39515 1.39515 1.39515
0.4 1.24603 1.24604 1.24604
0.5 1.11700 1.11700 1.11701
0.6 1.00514 1.00515 1.00515
0.7 0.907977 0.907979 1.907982
0.8 0.823377 0.823379 0.823383
0.9 0.749536 0.749538 0.749542
1.0 0.684908 0.684912 0.684914

The method avoids the necessity of calculating the eigenvalues of the sys-
tem requiring the roots of a polynomial and ultimately reduces to simple
steps of multiplication and addition which can be done even on a desk
calculator. The method consists of accurate evaluation of the state transi-
tion matrix eAT for a chosen time interval T and makes use of certain
recurrence relationships which hold for the exponential matrix. The
method is quite accurate and the number of multiplications and additions
per step is small compared to other methods.
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Observation of the Current and Voltage
Waveforms of the Si IMPATT Diode

Abstract—Current and voltage waveforms of the Si IMPATT diode
were observed directly by means of the oscillating circuit using microstrip
line. The results indicate that the conventional small-signal theory cannot be
applied to the observed type of oscillation. The oscillation starts at the bias
voltage just above the breakdown voltage of the diode; then along with its
buildup, the bias voltage is lowered owing to the auto-bias effect, to reach a
steady value considerably below the breakdown voltage. Large amplitude
oscillation of high efficiency is expected over a wide frequency range.

The circuit configuration and measurement apparatus used to observe
the current waveform are shown in Fig. 1. This system is essentially the
same as that used in a previous report to observe the current and voltage
waveforms of the Gunndiode.! The voltage waveform is picked up through
a differential probe with capacitive coupling, and fed to a sampling scope,
whose recorder output is integrated by a Miller integrator and plotted onan
X-Y recorder. The characteristic of this detecting circuit was checked by
verifying that the voltage pulse with fast rise time (0.25 ns) applied to the
circuit was exactly reproduced on the X-Y recorder.

Typical voltage and current waveforms observed are shown in Fig. 2.
The essential feature of this type of oscillation is its involvement with
numerous higher harmonic components. The voltage applied to the diode
is lower than the breakdown voltage on the average, and exceeds it only
instantaneously in each cycle. As seen in the figure, the dc current level is
approximately zero. From these facts, it can be expected that this type of
oscillation is highly efficient.

As shown in the current waveforms in Fig. 3, shortening the cavity
length leads to an increase in the oscillation frequency, and amplitude re-

Manuscript received Nobember 25, 1968.
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Fig. 1. Circuit configuration and measurement apparatus.
1. Diode 5. Ground plane 9. Al foil
2. Auribbon 6. Au lead 10. Polyethylene
3. Probe 7. Strip conductor 11. Coaxial cable
4. Resistor 8. Teflon
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Fig. 2. Voltage and current waveforms. Breakdown voltage at 130 V. Horizontal: 1 ns/div.
Upper trace: voltage waveform. Lower trace: current waveform.
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