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Abstract-An important question which has to be answered in eval-
uting the suitability of a microcomputer for a control application is
the time it would take to execute the specified control algorithm. In
this paper, we present a method of obtaining closed-form formulas to
estimate this time. These formulas are applicable to control algo-
rithms in which arithmetic operations and matrix manipulations dom-
inate. The method does not require writing detailed programs for
implementing the control algorithm. Using this method, the execution
times of a variety of control algorithms on a range of 16-bit mini- and
recently announced microcomputers are calculated. The formulas
have been verified independently by an Rnalysis program, which com-
putes the execution time bounds of control algorithms coded in Pascal
when they are run on a specified micro- or minicomputer.
Key Words and Phrases-Microcomputer evaluation, formulas for

calculating execution time bounds, and process control algorithms.

I. INTRODUCTION

THE OBJECTIVE of this paper is to present a method of
computing the execution time bounds of control algorithms

on microcomputers. As real-time systems are characterized by-
strict timing constraints, it is useful to obtain this time bound
to enable a designer to choose an appropriate microcomputer
for a given application. It would be desirable to obtain this
time bound without writing the control program and executing
it.

In the literature [7], [11], methodologies of evaluating
microprocessors based on their arithmetic speeds, word length,
and other hardware characteristics have been discussed. Farrar
and Eidens [8] have developed and evaluated analytical proce-
dures for establishing microprocessor accuracy, computational
capability, and memory requirements for implementing linear
quadratic Gaussian Control logic on Intel 8080 and LSI 11/2.
To the best of our knowledge, no analytic method of evalu-
ating the execution time bound for a class of control algorithms
on a set of micro- and minicomputers has been reported. As
our aim is to obtain execution time bounds of control algo-
rithms for a class of microcomputers, we have assumed that
the algorithms would be coded in a higher level language and
translated. Specifically, we have assumed that the control algo-
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rithms would be coded in Pascal, translated to the P-code of
the hypothetical stack machine by the P-compiler [2], [10],
and that the P-code would then be translated to the machine
language of an individual microcomputer. Keeping a library
of machine language codes corresponding to each P-code in-
struction for a variety of microcomputers would facilitate
software development for such a group of microcomputers
[9].

In Section II, formulas for computing execution time bounds
are derived for several control algorithms such as PID-controller
algorithms, Kalman algorithms, Dahlin algorithms, Dead-beat
algorithms, and finite time settling controller algorithms [13].
All these formulas are given in terms of execution times of
arithmetic operations, data movements, and procedure linking
for a specified microcomputer. The formulas are derived by in-
spection of the controller algorithms and without writing pro-
grams for implementing these algorithms.

In Section III, a closed-form formula for estimating the exe-
cution time bound for an on-line identification algorithm has
been derived. This formula gives the execution time as a func-
tion of arithmetic speed, variable update time, time required
for subscript manipulation, and overhead to set up and exe-
cute program loops in a specified mini- or microcomputer. In
this case, also, no actual program for the application is written.

In Section IV, we briefly discuss another method of com-
puting the execution time bound based on writing Pascal appli-
cation programs. It is seen that the analytical method derived
in this paper gives time bounds which are very close to that
given by this method. In the last section, we conclude that for
a large class of control algorithms reliable estimates of execu-
tion time bounds may be obtained analytically.

II. CONTROL ALGORITHMS AND DIGITAL
FILTERS

This class of problems does not involve iterations or tran-
scendental functions. For this class of applications, the num-
ber of additions, multiplications, and the variables to be up-
dated determine the execution time bound. The number of
multiplications, additions, and updates can be arrived at from
the control algorithms, when it is given as a ratio of two poly-
nomials in z. This is explained with respect to the following
example. A typical control algorithm [14] is given by

M(z) 1-0.2238z-1
D Ez5= -

''E(z) 0.6,535-0.5308z- 1 0.1227z-2
(1)
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This control algorithm in the time domain is given below:

mn = (en- 0.2238 en_ 1 + 0.5308 mn 1

+ 0.1227 mn -2)/0.6535

= 0.153 (en -0.2238 en-1 + 0.5308 mn-

+ 0.1227mn-2) (2)

controller output at the nth in-
stant,
controller output at the (n- I)th
instant,
controller output at the (n - 2)th
instant,

TABLE I
DIGITAL CONTROL ALGORITHMS AND THEIR PARAMETERS

Algorithm Atddi aions Updkt Reference

Kalman I order with
lag + deadtiaes 3 4 5 (5]
Kalman II order with
lag + deadtimes 4 5 6 (6]
Dahlin I order with
lag + deadtimes 5 6 6 (5]
Dahlin II order with
lag + deadtimes 5 6 6 (5]
Dahlin I order with
ringing eiimination 3 4 4 [14]
Deadbeat I order 4 5 5 [14]
Deadbeat II order 6 7 8 [143
PID controller position
fowm 4 3 3 (14]
POD controller velocity
form 2 3 3 [14]
FTSC with FTSO 10 11 9 E1]
Notch filter 12 9 11 (3]
Butter-worth LPF 8 9 9 [3]
Optimal sanpled-data
control system 12 14 2 [4]

enerror at the nth instant,

en error at the (n 1)th instant,
en _ l, mn-2 , Mn-1 m
and mn to be updated.

From (2), we can see by inspection that the number of var-

iables to be updated is 4, the number of multiplications is 4,
and the number of additions/subtractions is 3.

For example, for Dahlin's second-order algorithms [5], the
controller output mn at the nth samphing instant is given by

mn =ale -1-a2e2 + a3en_ -a4mni -a5mn_2

+ a6mn- 3 + a7mn- 4- (3)

This equation involves 6 addition/subtractions, 7 multiplica-
tions, and 8 variables to be updated. The 8 variables to be up-

dated are m,, mn_l, mn-2, Mnf3, mn-4, en-1 en-2,
and en-3. As another example, consider the equations of the
notch filter given by Cadzow [3]. They are

y1(k)= U(k)+bIU(k- 1)+ U(k-2)-aly1(k- 1)

- a2Y2 (k-2) (4)

Y2(k)=yI(k) + bly1(k-I) +y1(k-2)

-a3y2(k- l)-a4y2(k-2) (5)

y3(k)=y2(k)+b1Y2(k)+y2(k-2)-a5y3(k-1)

-a6y3(k-2). (6)

The above equations involve 12 addition/subtractions and 9
multiplications. The variables to be updated are 11. They are

U(k - 1), U(k - 2), yl(k), yl(k - 1), yl(k - 2), y2(k),
y2 (k ), y2 (k - 2),y3(k), y3(k - 1), and y3(k - 2). Table I
gives a number of algorithms and the number of additions/sub-
tractions, multiplications, and updates for each of the applica-
tions, along with the references.

As was pointed out in the introduction, we make the as-

sumption that the algorithms would be coded in Pascal and

TABLE II
EXECUTION TIMES OF SOME P-CODE INSTRUCTIONS ON A SET

OF 16-BIT COMPUTERS

P-Cod* Execution time in microseconds
Operation nstru - --

tisns TDC316 LSI-Il PDP 11/40 T19900. Z800O 8086

Addition ADITO 5.2 7.7 3.4 10.9 5.7 6.6

Mtultiplication LDCI 5.2 6.6 3.3 16.9 3.0 2.8
LDOI 6.6 9.4 3.9 15.4 3.5 5.4
MPI 22.6 74.8 14.3 99.2 21.5 34.2

T2 34.4 90.8 21.5 131.5 28.0 42.4
Update LDOI 6.6 9.4 3.9 15.3 3.5 5.4

SROI 6.6 8.8 4.0 12.6 4.0 5.6

13 13.2 18.2 7.9 27.9 7.5 11.0

Procedure ENT 6.2 8.4 3.3 12.0 2.5 1.2
Call RET 17.4 27.3 9.4 29.6 6.2 9.8

I 4 23.6 35.7 12.7 41.6 8.7 11.0

translated into the P-code of the hypothetical stack machine
[10]. The P-code is then translated into machine codes of in-
dividual microprocessors. In the Appendix, we give a list of P-
code instructions pertinent to this paper.

In order to carry out a multiplication, the P-code instruc-
tions LDCI, LDOI, and MPI are required. Addition is carried out
by the instruction ADI. To update a variable value in memory,
the P-instructions LDOI and SROI are needed. The execution
time of each P-code instruction for a specified microprocessor
is obtained by expanding the P-code instruction to a set of ma-
chine instructions needed for that processor. The P-code in-
structions' execution times for a variety of 16-bit microproc-
essors are given in [12]. Table II gives the execution times for
addition, multiplication, update, and procedure call. Using
these times, the following formula for the execution time
bound for simple control algorithms given in Table I may be
written as

Execution Time Bound = nT, + mT2 + kT3 + T4 (7)

where n is the number of additions, m is the number of multi-
plications, k is the number of updates, T1 is the addition time,
T2 the multiplication time, T3 update time, and T4 is the
time to call the control procedure.

where

Mn-2
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Using (7), Table I, and Table II, the execution times of all
the control algorithms in Table I for all the processors listed
in Table II may be obtained. By inspection of Table II, it may
be seen (based on the published data on Z8000) that Z8000
would perform almost as well as PDP 11/40, a 16-bit minicom-
puter.

III. ON-LINE IDENTIFICATION ALGORITHM

Sinha et al. [13] gave two methods for on-line identifica-
tion. These are the recursive least-squares method and the
boot-strap method. As the recurrence relations for the two al-
gorithms have the same structure, we discuss below the recur-
rence formula for the least-squares method. We obtain a
closed-form formula for the execution time based on an analy-
sis of this algorithm.

The recurrence formulas are given by

Pk~ak+ I1tYk+2 -,k+ (8)d
tk+l1 k + I+ T k+ (8)

and

Pkgk+1[Pkak+ 1 ]
1 +ak+l Pkak+I

where 4k and ak 1l are column vectors with n components,
n is the order of the system, and Pk is a n X n matrix. From
the above two recurrence relations, we see that Pkak+l oc-
curs in both the expressions, so that it can be evaluated and
stored in a column vector. The complexity of computation of
Pkak+l may be determined by inspecting the nature of the
algorithm which would compute it. The algorithm would be of
the type

for i: = 1 to n do

forj: = ton do

b[i]:= b[i] + P[i, j] * a}];

For the above algorithm, we conclude that we would perform
n2 additions, n2 multiplications, n2 calculations of double
subscripts of P(i, j), n2 single subscript computations of aj and
n single subscript computations of bi, n updates of bi, and the
overheads of nested for loops. Thus, the number of operations
may be estimated as

n2p+n2 a+ n2 ds+(n2+n)ss+nu±fn (10)

where p stands for multiplication, a for addition, ds for double
subscript computation, ss for single subscript computation, u
for updates, and fn for a nested for loop overhead.

Next, we determine the number of operations necessary to
compute (1 + Ik+ 1 TPkak+l) This expression occurs in
both (8) and (9), but we will compute it only once. Further,
Pkqk+1 calculated already will be available as a column vec-
tor and would not be recomputed. Thus, ak+1 Tpkak+
would be computed with a for loop:

fori:-= ton doB: =B+b[i] *a[i];

From this, we can estimate the number of operations as

np + na + 2nss + u + f (11)

where f is the overhead for a single for loop.
Having already found and stored Pk2k+ 1 and (1 +

,gk+ITPkak), jk+1 iS computed by computing ak+lT k
first which would involve n multiplications, n additions, 2n
subscript computations, and one for loop overhead. Next, we
subtract ak+ ITk from Yk+2 and divide by the denomina-
tor and store the result in a variable C. Lastly, we multiply the
(already stored) values of Pkgk+ 1 by the value obtained in
the previous step, and add this vector to Oz- This would be
done by the loop

for i: = to n do new[i]: = i1 + b[i] *C;

in which the number of operations performed is n multiplica-
tions, n additions, 3n subscript computations, n updates, and
one for loop. Adding all the operations in each of the steps we
get for computing jk+ 1 the number of operations as

2np + 2na ± s +s + Snss + nu +2/f (12)

where s is the subtraction and d is the division operation.
Having already stored Pkgk+ 1 and the denominator of

(9), the number of additional operations in computing Pk+ 1
in (9) is given by

2n2p+ n2s+ d+ 2n%2s + 2n2ds + n2u +fn.

Adding expression (10), ( 1), (12), and (13), we obtain

(3n2 + 3n)p + (n2 + 3n)a+ (n2 + l)s + 2d + 3n2ds

+ (3n2 + 8n)ss+(n2 + 2n+ l)u +3f+ 2fn.

(13)

(14)

The next step is to find the execution time estimates for each
of the operations p, a, s, d, ds, ss, u,f, and fn. The times for
floating point arithmetic operations and subscript computa-
tions are directly obtained from the characteristics of a speci-
fied microprocessor. These are listed in Table III.

The times for the for loop and nested for loop overheads
are obtained below.

The time for the operation of for loop is given by the for-
mula

f=A +Bn (15)

where A and B are constants depending upon the processor,
and n is the number of iterations of the for loop. The constant
A is a fixed overhead incurred in initiating a for loop and B is
the overhead incurred in each iteration. Similarly, the time for
executing nested for loops is given by

fn = A + (A + B)n +Bmn (16)

where m is the number of iterations of the outer for loop and
n that of the inner for loop.
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TABLE III
EXECUTION TIMES FOR FLOATING POINT ARITHMETIC,

SUBSCRIPT EVALUATION, AND LOOP OVERHEADS

Pro essor MULT ADD SUB DIV DS IS UPDATE A 8

TIC-316 1330.7 591.0 835.4 2158.3 110.4 68.2 20.8 39.2 94.0

.LSI-11 2650.7 1419.4 2009.4'_ 4037.7 244.5 140.3 28.0 54.6 137.2

LSI-I.l 79.1 47.0 47.3 155.9 244.5 140.3 28.0 54.6 137.2

PSP-11/40 31.4 21.22 21.2 49.2 67.7 41.6 12.4 23.8 56.7

TI900 1707.6 1645.0 2345.0 6348.1 212.4 135.5 37.3 87.2 187.5

Z8" 376.1 232.0 353.6 420.0 93.0 53.2 10.5 25.5 62.5

8086 654.4 534.0 731.0 980.0 112.0 63.8 12.2 22.4 61.1

+LSI-11 with floating point option

All tim.es are in microseconds.

A for loop is implemented using the P-code instructions
LDCI, STRI, LDCI, and STRI before the initiation of the loop,
and the instructions LODI, LODI, LEQI, and FJP at the begin-
ning of each iteration of the loop and instructions LODI, INC,
STRI, and UJP at the end of the loop body in each iteration.
(The meaning of these P-code mnemonics is given in the Ap-
pendix.) Thus, the values ofA and B of (15) are obtained as

A = 2T (LDCI) + 2T (STRI) (17)

where T(LDCI) is the time to execute the instruction LDCI and
T(STRI) that to execute the instruction STRI. Similarly, we
obtain for B

V. CONCLUSIONS
A class of controller algorithms and digital filters have the

same structure and do not involve iterative calculations or
transcendental functions. In these cases, we can fmd the num-
ber of arithmetic operations and the number of variables to be
updated by inspection of the controller expression. Thus, it is
possible to obtain a simple formula to estimate the execution
times of these algorithms on a set of mini- and microcom-
puters.

In the case of the recursive least-square type identification
algorithm, execution time formulas are obtained keeping in
view the way these algorithms would be programmed in a
higher level language. These algorithms involve recurrence re-
lations, and thus would be programmed using for and nested
for loops. Use of such loops contributes significantly to execu-
tion time. In this case, also, detailed programs for the algo-
rithms need not be written to estimate execution time bounds.
The methodology of this paper is applicable for control algo-
rithms in which arithmetic operations and matrix manipula-
tions dominate.

APPENDIX
SOME SELECTED P-CODE INSTRUCTIONS

mnemonic

ADI

B = 3T (LODI) + T (LEQI) + T (FJP) ADR

CSP

+ T(NC) + T(STRI) + T(UJP). (18) DEC
DVI

The times for A and B for various processors is given in Table DVR

III. These values are also used in computing the execution time ENT

for fn of ( 16). EQU

FJP

IV. VERIFICATION OF RESULTS GEQ
GRT

Another method of computing the execution time bound INC
of control algorithms would be to write the Pascal application IND

program corresponding to the algorithms and estimate the exe- IXA
cution time from this. As our aim is to obtain the time bounds LAD
for a variety of processors, the time computation should be LCA
obtained without actually executing the program. A metho- LDA
dology to do this is suggested in [12]. The method suggested LDCI
is to add features to the Pascal P-compiler, which would give, LDOI
along with the P-code, a linear list with embedded words of LEQI
the Pascal program. This list is designed to enable computation LES
of the execution time bound. This list, along with the loop LODI

parameters of the Pascal program and P-code instruction exe- MOV

cution times on a specified microprocessor, is used by an anal- MPI
ysis program to compute the execution time bound. This anal- MPR
ysis program was inplemented on the DEC 1090 system and RET
is reported in [12]. This analysis program was run after coding SBI
in Pascal all the control algorithms examined in this paper. The SBR
deviation between the execution time as given by the closed- SROI
form formulas of this paper and that obtained from the analysis STOI
program was less than 5 percent. STP

description

Integer addition.
Real addition.
Call standard procedure.
Call user procedure.
Decrement address.
Integer division.
Real division.
Enter block.
Compare on equal.
False jump.
Greater or equal.
Greater than.
Increment address.
Indexed fetch.
Computer indexed address.
Load base-level address.
Load address of constant.
Load address.
Load constant (integer).
Load contents of base-level address (integer).
Less than or equal (integer).
Less than.
Load contents of address (integer).
Move.
Integer multiplication.
Real multiplication.
Return from block.
Integer subtraction.
Real subtraction.
Store (integer).
Store at base-level address.
Stop.
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STRI
UJP

XJP

Store at address (integer).
Unconditional jump.
Indexed jump.
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