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Abstract—An important question which has to be answered in eval-
uting the suitability of a microcomputer for a control application is
the time it would take to execute the specified control algorithm. In
this paper, we present a method of obtaining closed-form formulas to
estimate this time. These formulas are applicable to control algo-
rithms in which arithmetic operations and matrix manipulations dom-
inate. The method does not require writing detailed programs for
implementing the control algorithm. Using this method, the execution
times of a variety of control algorithms on a range of 16-bit mini- and
recently announced microcomputers are calculated. The formulas
have been verified independently by an analysis program, which com-
putes the execution time bounds of control algorithms coded in Pascal
when they are run on a specified micro- or minicomputer.
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I. INTRODUCTION

THE OBJECTIVE of this paper is to present a method of

computing the execution time bounds of control algorithms
on microcomputers. As real-time systems are characterized by
strict timing constraints, it is useful to obtain this time bound
to enable a designer to choose an appropriate microcomputer
for a given application. It would be desirable to obtain this
time bound without writing the control program and executing
it.

In the literature [7], [11], methodologies of evaluating
microprocessors based on their arithmetic speeds, word length,
and other hardware characteristics have been discussed. Farrar
and Fidens [8] have developed and evaluated analytical proce-
dures for establishing microprocessor accuracy, computational
capability, and memory requirements for implementing linear
quadratic Gaussian Control logic on Intel 8080 and LSI 11/2.
To the best of our knowledge, no analytic method of evalu-
ating the execution time bound for a class of control algorithms
on a set of micro- and minicomputers has been reported. As
our aim is to obtain execution time bounds of control algo-
rithms for a class of microcomputers, we have assumed that
the algorithms would be coded in a higher level language and
translated. Specifically, we have assumed that the control algo-
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rithms would be coded in Pascal, translated to the P-code of
the hypothetical stack machine by the P-compiler [2], [10],
and that the P-code would then be translated to the machine
language of an individual microcomputer. Keeping a library
of machine language codes corresponding to each P-code in-
struction for a variety of microcomputers would facilitate
software development for such a group of microcomputers
[9].

In Section II, formulas for computing execution time bounds
are derived for several control algorithms such as PID-controller
algorithms, Kalman algorithms, Dahlin algorithms, Dead-beat
algorithms, and finite time settling controller algorithms [13].
All these formulas are given in terms of execution times of
arithmetic operations, data movements, and procedure linking
for a specified microcomputer. The formulas are derived by in-
spection of the controller algorithms and without writing pro-
grams for implementing these algorithms.

In Section III, a closed-form formula for estimating the exe-
cution time bound for an on-line identification algorithm has
been derived. This formula gives the execution time as a func-
tion of arithmetic speed, variable update time, time required
for subscript manipulation, and overhead to set up and exe-
cute program loops in a specified mini- or microcomputer. In
this case, also, no actual program for the application is written.

In Section IV, we briefly discuss another method of com-
puting the execution time bound based on writing Pascal appli-
cation programs. It is seen that the analytical method derived
in this paper gives time bounds which are very close to that
given by this method. In the last section, we conclude that for
a large class of control algorithms reliable estimates of execu-
tion time bounds may be obtained analytically.

II. CONTROL ALGORITHMS AND DIGITAL
FILTERS

This class of problems does not involve iterations or tran-
scendental functions. For this class of applications, the num-
ber of additions, multiplications, and the variables to be up-
dated determine the execution time bound. The number of
multiplications, additions, and updates can be arrived at from
the control algorithms, when it is given as a ratio of two poly-
nomials in z. This is explained with respect to the following
example. A typical control algorithm [14] is given by

M(2) 1—0.2238z71
" E(z) 0.6535—0.5308z! —0.1227z72

D(z) 1
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This control algorithm in the time domain is given below:

m, = (e, —0.2238¢,_; + 0.5308m,,_,
+0.1227m,,_,)/0.6535
=0.153(e,, —0.2238¢,_, + 0.5308m,,_,

+0.1227m,,_,) )
where

my, controller output at the nth in-
stant,

My_1 controller output at the (n—1)th
instant,

My _2 controller output at the (n —2)th
instant,

e, error at the nth instant,

en_1 error at the (n — 1)th instant,

€n—1,Mp_2,My—1>

and m,, to be updated.

From (2), we can see by inspection that the number of var-
iables to be updated is 4, the number of multiplications is 4,
and the number of additions/subtractions is 3.

For example, for Dahlin’s second-order algorithms [5], the
controller output m,, at the nth sampling instant is given by

My =ai1€,_1 28, 3 ‘aze, 3—asm,_, —asm,_,

+tagm,_3+a;my,_4.

3

This equation involves 6 addition/subtractions, 7 multiplica-
tions, and 8 variables to be updated. The 8 variables to be up-
dated are m,, m,_1, My_2, My_3, My_4, €4_1, €n_2,
and e, _3. As another example, consider the equations of the
notch filter given by Cadzow [3] . They are

y1(®k) = Uk) + by Utk — 1) + Uk — 2) —ayy (k— 1)

—ayy,(k - 2)
Y2()=y1(K) + by (k— 1) +y(k—2)

4

—azyy(k— 1) —agy,(k—2) (%)
y3(k)=y2(k) + b1y2(k) + yo(k —2) —asys(k — 1)
—agys3(k—2). (6)

The above equations involve 12 addition/subtractions and 9
multiplications. The variables to be updated are 11. They are
Uk — 1), Uk — 2), y1(k), y1(k — 1), y1(k — 2), y2(k),
Y2k — 1), y3(k — 2), y3(k), y3(k — 1), and y3(k — 2). Table I
gives a number of algorithms and the number of additions/sub-
tractions, multiplications, and updates for each of the applica-
tions, along with the references.

As was pointed out in the introduction, we make the as-
sumption that the algorithms would be coded in Pascal and
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TABLEI
DIGITAL CONTROL ALGORITHMS AND THEIR PARAMETERS
Addi- Multipli-
Algorithm tions cations Upd;tu Reference
n =

Kalman I order with

lag + deadtimes 3 4 5 {2]
Kalman II order with

lag + deadtimes 4 s 6 (6]
Dahlin I order with

lag + deadtimes 5 6 6 sl
Dahlin II order with

lag + deadtimes 5 6 6 [s)
Dahlin I order with

ringing elimination 3 4 4 [14]
Deadbeat I order 4 5 S [14]
Deadbeat II order 6 7 8 (14]
PID controller position

form 4 3 3 [14]
PID controller velocity

form 2 3 3 {14]
FTSC with FTSO 10 11 9 23]
Notch filter 12 9 1 3l
Butter-worth LPF 8 9 9 3]
Optimal sampled-data

control system 12 14 2 [a)

EXECUTION TIMES OF SOME P-CODE INSTRUCTIONS ON A SET
OF 16-BIT COMPUTERS

y
P-Code Execution time in microseconds
Operation Instruc~

tions |TDC316 LSI-II PDP 11/40 TIS900, 23000 _ 8086
Addi tion ADI T, 5.2 7.7 3.4 1.9 5.7 6.6
Multiplication | LDCI 5.2 6.6 3.3 16.9 3.0 2.8
o1 6.6 9.4 3.9 15.4 3 5.4
MPI 22.6 74.8 14.3 99.2 21.8 34.2
T, 34.4 9.8 21.5 1315 28,0  42.4
Update Loox 6.6 9.4 3.9 1.3 3.5 5.4
SROI 6.6 8.8 4.0 12.6 4.0 5.6
T, 13.2 18.2 7.9 27.9 7.5 11.0
Procedure ENT 6.2 8.4 3.3 12.0 2.5 1.2
Call RET 7.4 27.3 9.4 29.6 6.2 9.8
T, 23.6 38.7 12.7 41.6 8.7 11.0

translated into the P-code of the hypothetical stack machine
[10]. The P-code is then translated into machine codes of in-
dividual microprocessors. In the Appendix, we give a list of P-
code instructions pertinent to this paper.

In order to carry out a multiplication, the P-code instruc-
tions LDCI, LDOI, and MPI are required. Addition is carried out
by the instruction Ap1. To update a variable value in memory,
the P-instructions LDoI and srol are needed. The execution
time of each P-code instruction for a specified microprocessor
is obtained by expanding the P-code instruction to a set of ma-
chine instructions needed for that processor. The P-code in-
structions’ execution times for a variety of 16-bit microproc-
essors are given in [12]. Table II gives the execution times for
addition, multiplication, update, and procedure call. Using
these times, the following formula for the execution time
bound for simple control algorithms given in Table I may be
written as

Execution Time Bound = nTy + mT, + kT3 + T4 @)
where » is the number of additions, m is the number of multi-
plications, & is the number of updates, 7'y is the addition time,
T, the multiplication time, T'3 update time, and T4 is the
time to call the control procedure.
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Using (7), Table I, and Table II, the execution times of all
the control algorithms in Table I for all the processors listed
in Table II may be obtained. By inspection of Table II, it may
be seen (based on the published data on Z8000) that Z8000
would perform almost as well as PDP 11/40, a 16-bit minicom-
puter.

II1. ON-LINE IDENTIFICATION ALGORITHM

Sinha et al. [13] gave two methods for on-line identifica-
tion. These are the recursive least-squares method and the
boot-strap method. As the recurrence relations for the two al-
gorithms have the same structure, we discuss below the recur-
rence formula for the least-squares method. We obtain a
closed-form formula for the execution time based on an analy-
sis of this algorithm.

The recurrence formulas are given by

Pigies1[Virs — @1 9k

= + (8)
Prr1 = 1+ a1 T Pre
and
Pigicer[Praxs1]”
Poyy =Py % @i+ 1 [ Prr+1 ©)

T
1+ gks1 Prgr+n

where ¢, and gy 4+; are column vectors with # components,
n is the order of the system, and P is a n X n matrix. From
the above two recurrence relations, we see that Prgp,q oc-
curs in both the expressions, so that it can be evaluated and
stored in a column vector. The complexity of computation of
P a1 may be determined by inspecting the nature of the
algorithm which would compute it. The algorithm would be of
the type

fori:=1tondo
forj:=1tondo
b[i]: = b[i] + P[i.]] *aljl;

For the above algorithm, we conclude that we would perform
n? additions, n? multiplications, n? calculations of double
subscripts of P(i, /), n* single subscript computations of ¢; and
n single subscript computations of b;, n updates of b;, and the
overheads of nested for loops. Thus, the number of operations
may be estimated as

n’p+n?a+n®ds+@m®+n)ss+nu+fn (10)
where p stands for multiplication, a for addition, ds for double
subscript computation, ss for single subscript computation, u
for updates, and f# for a nested for loop overhead.

Next, we determine the number of operations necessary to
compute (1 + @41 Praxs+1). This expression occurs in
both (8) and (9), but we will compute it only once. Further,
Pray +1 calculated already will be available as a column vec-
tor and would not be recomputed. Thus, gp.;”? Prdi+1
would be computed with a for loop:

@Li:=1@n@B:=B+bfi] * g[i];
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From this, we can estimate the number of operations as

np+na+2nss+utf (1)
where f'is the overhead for a single for loop.

Having already found and stored Prgz4; and (1 +
%ic+17Pigr), $r+1 is computed by computing gx ;7 gk
first which would involve n multiplications, » additions, 2n
subscript computations, and one for loop overhead. Next, we
subtract gk+1T¢k from yy., and divide by the denomina-
tor and store the result in a variable C. Lastly, we multiply the
(already stored) values of Pragj4; by the value obtained in
the previous step, and add this vector to ¢,. This would be
done by the loop -

for i: = 10 7 o $pewlil: = 9[1] +b[i] * C;

in which the number of operations performed is » multiplica-
tions, n additions, 3n subscript computations, n updates, and
one for loop. Adding all the operations in each of the steps we
get for computing ¢+, the number of operations as
2np + 2na+s+d+Snss+mnut2f (12)
where s is the subtraction and d is the division operation.
Having already stored P.g;4; and the denominator of

(9), the number of additional operations in computing Py,
in (9) is given by

22 p+ n*s+d+ 2n*ss + 2nPds + nPu + fn. (13)
Adding expression (10), (11), (12), and (13), we obtain
(3n? +3n)p + (n* + 3n)a+ (n® + s+ 2d + 3n*ds
+ (3n% + 8n)ss + (n® + 2n+ Du + 31+ 2fn. (14)

The next step is to find the execution time estimates for each
of the operations p, g, s, d, ds, ss, 4, f, and fn. The times for
floating point arithmetic operations and suT)script computa-
tions are directly obtained from the characteristics of a speci-
fied microprocessor. These are listed in Table III.

The times for the for loop and nested for loop overheads
are obtained below. T

The time for the operation of for loop is given by the for-
mula

f=A+Bn 1s)
where 4 and B are constants depending upon the processor,
and # is the number of iterations of the for loop. The constant
A is a fixed overhead incurred in initiating a for loop and B is
the overhead incurred in each iteration. Similarly, the time for
executing nested for loops is given by

m=A+ A+ By+Bmn (16)
where m is the number of iterations of the outer for loop and
n that of the inner for loop.
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TABLE 1II
EXECUTION TIMES FOR FLOATING POINT ARITHMETIC,
SUBSCRIPT EVALUATION, AND LOOP OVERHEADS

Processor MULT ADD 3U8 DIV bs Ss UPDATE A B
TLC-316 1330.7 591.0 835.4 2158.3 110.4 68,2 20.8 39.2  94.0
LSI-11 2650.7 1419.4 2009.4. 4037.7 244.5 140.3 28.0 54.6 137.2
Lsi-11* 79.1 47.0 47.3 155.9 244.5 140.3 28.0 54.6 137.2
PUP-11/40 31.4 21.22 21.2 49.2 67.7 41.6 12.4 23.8 56.7
TI9300 1707.6 1645.0 2345.0 6348.1 212.4 135.5 37.3 87.2 187.5
8000 376.1 232.0 353.6 420.0 93.0 53.2 10.5 25.5  62.5
8086 654.4 534.0 731.0 980.0 112.0 63.8 12,2 22.4  61.8

+LSI-11 with floating point option

All times are in microseconds.

A for loop is implemented using the P-code instructions
LDCI, STRI, LDCI, and STRI before the initiation of the loop,
and the instructions LODI, LODI, LEQI, and FJP at the begin-
ning of each iteration of the loop and instructions LobI, INC,
STRI, and UJP at the end of the loop body in each iteration.
(The meaning of these P-code mnemonics is given in the Ap-
pendix.) Thus, the values of A and B of (15) are obtained as

A =2T (Lpci) + 2T (STRI) a7

where T(LDcI) is the time to execute the instruction LDcI and
T(sTR1) that to execute the instruction sTRI. Similarly, we
obtain for B

B =3T (Lop1) + T (LEQI) + T (FIP)

+ T (mne) + T (str1) + T (uip). (18)
The times for 4 and B for various processors is given in Table

II1. These values are also used in computing the execution time
for fn of (16).

IV. VERIFICATION OF RESULTS

Another method of computing the execution time bound
of control algorithms would be to write the Pascal application
program corresponding to the algorithms and estimate the exe-
cution time from this. As our aim is to obtain the time bounds
for a variety of processors, the time computation should be
obtained without actually executing the program. A metho-
dology to do this is suggested in [12]. The method suggested
is to add features to the Pascal P-compiler, which would give,
along with the P-code, a linear list with embedded words of
the Pascal program. This list is designed to enable computation
of the execution time bound. This list, along with the loop
parameters of the Pascal program and P-code instruction exe-
cution times on a specified microprocessor, is used by an anal-
ysis program to compute the execution time bound. This anal-
ysis program was implemented on the DEC 1090 system and
is reported in [12]. This analysis program was run after coding
in Pascal all the control algorithms examined in this paper. The
deviation between the execution time as given by the closed-
form formulas of this paper and that obtained from the analysis
program was less than 5 percent.

V. CONCLUSIONS

A class of controller algorithms and digital filters have the
same structure and do not involve iterative calculations or

- transcendental functions. In these cases, we can find the num-

ber of arithmetic operations and the number of variables to be
updated by inspection of the controller expression. Thus, it is
possible to obtain a simple formula to estimate the execution
times of these algorithms on a set of mini- and microcom-
puters.

In the case of the recursive least-square type identification
algorithm, execution time formulas are obtained keeping in
view the way these algorithms would be programmed in a
higher level language. These algorithms involve recurrence re-
lations, and thus would be programmed using for and nested
for loops. Use of such loops contributes significantly to execu-
tion time. In this case, also, detailed programs for the algo-
rithms need not be written to estimate execution time bounds.
The methodology of this paper is applicable for control algo-
rithms in which arithmetic operations and matrix manipula-
tions dominate.

APPENDIX
SOME SELECTED P-CODE INSTRUCTIONS
mnemonic description
ADI Integer addition.
ADR Real addition.
CSP Call standard procedure.
CUP Call user procedure.
DEC Decrement address.
DVI Integer division.
DVR Real division.
ENT Enter block.
EQU Compare on equal.
FJP False jump. ]
GEQ Greater or equal.
GRT Greater than.
INC Increment address.
IND Indexed fetch.
IXA Computer indexed address.
LAD Load base-level address.
LCA Load address of constant.
LDA Load address.
LDCI Load constant (integer).
LDOI Load contents of base-level address (integer).
LEQI Less than or equal (integer).
LES Less than.
LODI Load contents of address (integer).
MOV Move.
MPI Integer multiplication,
MPR Real multiplication.
RET Return from block.
SBI Integer subtraction.
SBR Real subtraction.
SROI Store (integer).
STOIL Store at base-level address.
STP Stop.
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STRI Store at address (integer).

uJP Unconditional jump.

XJP Indexed jump.
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