

## Contributed papers

# Analysis of protective film formed on surface of mild steel immersed in Chloride – HEDP-molybdate – $Zn^{2+}$ environment

*S. Rajendran  
B. V. Apparao and  
N. Palaniswamy*

### The authors

**S. Rajendran** is Professor of Chemistry, Department of Chemistry, GTN, Arts College (Autonomous), Dindigul, India.

**B.V. Apparao** is with the Regional Engineering College, Warangal, India.

**N. Palaniswamy** is with the Corrosion Science and Engineering Division, Central Electrochemical Research Institute, Karaikudi, India.

### Abstract

The inhibition efficiency of the formulation consisting of 1-hydroxyethane-1, 1-diphosphonic acid (HEDP), molybdate and  $Zn^{2+}$  in controlling the corrosion of mild steel in neutral aqueous environment containing 60ppm  $Cl^-$  has been evaluated by the weight-loss method. The formulation consisting of 50ppm HEDP, 300ppm molybdate and 10ppm  $Zn^{2+}$  has 97 per cent inhibition efficiency. The nature of the protective film has been analysed by using x-ray diffraction (XRD), FTIR and fluorescence spectra. The protective film is found to be fluorescent and to consist of  $Fe^{2+}$ -HEDP complex,  $Fe_2(MoO_4)_3$  complex and  $Zn(OH)_2$ . A suitable mechanism of corrosion inhibition is proposed based on the results obtained from the weight-loss method, polarisation study, XRD, FTIR, fluorescence and atomic absorption spectra.

Among the various phosphonic acids used as corrosion inhibitors [1-23], 1-hydroxyethane-1, 1-diphosphonic acid (HEDP) has been extensively studied. Molybdates are among the most broadly applied inorganic inhibitors, chiefly because of their efficacy toward both ferrous and nonferrous metals and their very low order of toxicity [24]. Molybdates have been used along with phosphonic acids as corrosion inhibitors [4,9, 19-23]. The present study is undertaken:

- (1) to evaluate the inhibition efficiency of the formulation consisting of HEDP,  $Zn^{2+}$  and molybdate (as sodium molybdate) in controlling the corrosion of mild steel immersed in neutral aqueous environment containing 60ppm  $Cl^-$ ;
- (2) to understand the nature of the protective film by using x-ray diffraction (XRD), FTIR and fluorescence spectra; and
- (3) to propose a suitable mechanism of corrosion inhibition based on the results obtained from the weight-loss method, polarisation study, XRD study, FTIR, fluorescence and atomic absorption spectra.

## Experimental

### Preparation of the specimens

Mild steel specimens (iron containing 0.02 to 0.03 per cent S, 0.03 to 0.08 per cent P, 0.4 to 0.5 per cent Mn and 0.1 to 0.2 per cent C) of the dimensions  $1 \times 4 \times 0.2$  cm were polished to mirror finish and degreased with trichloroethylene and used for the weight-loss method and surface examination studies. For potentiostatic polarisation studies, mild steel rod encapsulated in Teflon was used as the working electrode. Its surface was polished to mirror finish and degreased with trichloroethylene.

### Weight-loss method

Three mild steel specimens were immersed in 100ml of the solutions containing various

S. Rajendran is thankful to the University Grants Commission, India, for awarding a fellowship, to the Executive Director, Sasha Industries Limited, Dindigul, to Mr Ranjit Soundarajan, the Correspondent, Prof. S. Ramakrishnan, the Principal, and Prof. P. Jayaram, H.O.D. of Chemistry, GTN Arts College, Dindigul, Mr A.A. Joseph and Mr M. Veluswamy, CECRI, Karaikudi, Dr R. Ramaraj, Madurai Kamaraj University and to Prof. G. Karthikeyan of Gandhigram University for their help.

concentrations of the inhibitor in the absence and presence of  $Zn^{2+}$ , for a period of seven days. The weights of the specimens before and after immersion were determined using a Mettler balance, AE-240.

### Potentiostatic polarisation study

This study was carried out in a three electrode cell assembly connected to a bioanalytical system (BAS – 100A) electrochemical analyser, provided with iR compensation facility, using mild steel as the working electrode, platinum as the counter electrode and saturated calomel electrode as the reference electrode.

### Surface examination study

The mild steel specimens were immersed in various test solutions for a period of two days. After two days, the specimens were taken out and dried. The nature of the film formed on the surface of the metal specimens was analysed by various surface analysis techniques.

### FTIR spectra

FTIR spectra were recorded using a Perkin-Elmer 1600 FTIR spectrophotometer.

### X-ray diffraction technique

XRD patterns of the film formed on the metal surface were recorded using a computer controlled x-ray powder diffractometer, JEOL JDX 8030 with  $CuK_{\alpha}$  (Ni-filtered) radiation ( $\lambda = 1.5418\text{\AA}$ ) at rating of 40kV, 20mA.

### Luminescence spectra

The luminescence spectra of the film formed on the metal surface were recorded using a Hitachi 650-10 S fluorescence spectrophotometer equipped with a 150W Xenon lamp and a Hamamatsu R 928F photomultiplier tube. The emission spectra were corrected for the spectral response of the photomultiplier tube used and the excitation spectra recorded were corrected for the beam intensity variation.

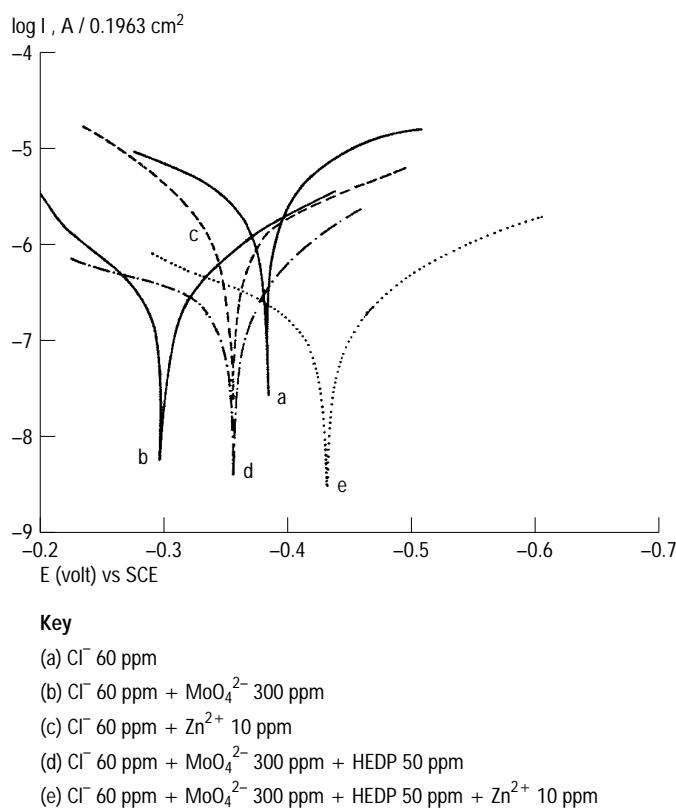
### Estimation of iron and zinc present in test solutions

The amount of iron and zinc present in various test solutions was determined by using a fully automatic, computer-controlled atomic absorption spectrometer (model 906; make GBC – Australia), using air-acetylene flame.

## Results and discussion

### Analysis of the results of the weight-loss method

The corrosion rates of mild steel immersed in the neutral aqueous environment containing 60ppm chloride, in the absence and presence of inhibitors, are given in Table I. The inhibition efficiencies of various formulations of inhibitors are also given in this table. It is observed from this table that the formulation consisting of 50ppm HEDP and 10ppm  $Zn^{2+}$  has an inhibition efficiency of only 22 per cent, whereas in the presence of 300ppm molybdate this inhibition efficiency increases from 22 per cent to 97 per cent. It is also seen from the table that the formulation consisting of 300ppm molybdate and 50ppm HEDP offers 95 per cent inhibition efficiency. This study reveals that a synergistic effect exists between HEDP and molybdate and also among HEDP, molybdate and  $Zn^{2+}$ .


### Analysis of the potentiostatic polarisation curves

The potentiostatic polarisation curves of mild steel in various environments are given in Figure 1. In the presence of 60ppm  $Cl^-$ , the corrosion potential is  $-389\text{mV}$  vs SCE. When 300ppm molybdate is added to the above environment, the potential is shifted to positive region (to  $-300\text{mV}$  vs SCE). When 10ppm  $Zn^{2+}$  is added, the potential is shifted to positive region (to  $-357\text{mV}$  vs SCE). The formulation consisting of 50ppm HEDP and 300ppm molybdate, shifts the potential to

Table I Corrosion rates of mild steel immersed in neutral aqueous environment ( $Cl^- = 60$  ppm) in the absence and presence of inhibitors  
Inhibitor system: HEDP +  $MoO_4^{2-}$  +  $Zn^{2+}$

| Sl. No. | HEDP (ppm) | $Zn^{2+}$ (ppm) | $MoO_4^{2-}$ (ppm) | Corrosion rate (mdd) | Inhibition efficiency (%) |
|---------|------------|-----------------|--------------------|----------------------|---------------------------|
| 1       | 0          | 0               | 0                  | 15.54                | -                         |
| 2       | 50         | 0               | 0                  | 13.83                | 11                        |
| 3       | 50         | 10              | 0                  | 12.12                | 22                        |
| 4       | 100        | 10              | 0                  | 10.88                | 30                        |
| 5       | 150        | 10              | 0                  | 10.10                | 35                        |
| 6       | 200        | 10              | 0                  | 9.63                 | 38                        |
| 7       | 300        | 10              | 0                  | 9.32                 | 40                        |
| 8       | 50         | 10              | 300                | 0.47                 | 97                        |
| 9       | 50         | 0               | 300                | 0.78                 | 95                        |
| 10      | 0          | 10              | 0                  | 13.99                | 10                        |
| 11      | 0          | 0               | 300                | 3.11                 | 80                        |

**Figure 1** Potentiostatic polarisation curves of mild steel in various environments



–358mV vs SCE (positive region). However, the formulation consisting of 50ppm HEDP, 300ppm molybdate and 10ppm  $\text{Zn}^{2+}$ , shifts the potential to negative region (to –432mV vs SCE). Polarisation study, thus, reveals that HEDP-molybdate combination controls the anodic reaction predominantly whereas the HEDP-molybdate– $\text{Zn}^{2+}$  formulation controls cathodic reaction predominantly.

### Analysis of FTIR spectra

FTIR spectra of the films formed on the surface of the metal immersed in various environments are given in Figure 2. The FTIR spectrum of the film formed on the surface of the metal immersed in the formulation consisting of 60ppm  $\text{Cl}^-$ , 50ppm HEDP and 300ppm molybdate is given in Figure 2a. It is observed that the P-O stretching frequency of the phosphonic acid (HEDP) has shifted from  $1,119\text{cm}^{-1}$  to  $1022\text{cm}^{-1}$ . This suggests the HEDP has coordinated with  $\text{Fe}^{2+}$  through the oxygen atom resulting in the formation of  $\text{Fe}^{2+}$ –HEDP complex on the metal surface [8–20, 25–29]. It is also seen that the Mo-O frequency of molybdate has decreased from  $818.1\text{cm}^{-1}$  to  $760\text{cm}^{-1}$ . It suggests the forma-

tion of iron molybdate complex on the metal surface [19,20].

FTIR spectrum of the film formed on the surface of the metal immersed in the environment consisting of 60ppm  $\text{Cl}^-$ , 50ppm HEDP, 300ppm molybdate and 10ppm  $\text{Zn}^{2+}$  is given in Figure 2b. It is observed that the P-O stretching frequency of HEDP has shifted from  $1,119\text{cm}^{-1}$  to  $1020\text{cm}^{-1}$ . This suggests the presence of  $\text{Fe}^{2+}$ –HEDP complex on the metal surface. The peak at  $1353\text{cm}^{-1}$  is due to zinc hydroxide formed on the cathodic sites of the metal surface [8–20, 25–29]. Further, it is seen that the Mo-O frequency decreases from  $818.1\text{cm}^{-1}$  to  $780\text{cm}^{-1}$ . This suggests the formation of iron molybdate complex on the metal surface [19,20].

### Analysis of x-ray diffraction

X-ray diffraction (XRD) patterns of surface of the metal immersed in various environments are given in Figure 3. The XRD pattern of the surface of the metal immersed in the environment consisting of 60ppm  $\text{Cl}^-$ , 50ppm HEDP and 300 ppm molybdate is given in Figure 3a. The peaks at  $21.4^\circ$  and  $66.2^\circ$  are due to  $\text{Fe}_2(\text{MoO}_4)_3$  [30]. The peaks due to iron appear at  $44.5^\circ$ ,  $65.0^\circ$  and  $82.3^\circ$ .

The XRD pattern of the surface of the metal immersed in the environment consisting of 60ppm  $\text{Cl}^-$ , 50ppm HEDP, 300ppm molybdate and 10ppm  $\text{Zn}^{2+}$  is given in Figure 3b. The peaks due  $\text{Fe}_2(\text{MoO}_4)_3$  appear at  $21.9^\circ$  and  $66.6^\circ$ . The peaks due to iron appear at  $44.7^\circ$ ,  $65.0^\circ$  and  $82.4^\circ$ .

**Figure 2** FTIR spectra of the films formed on the surface of the metal immersed in various environments

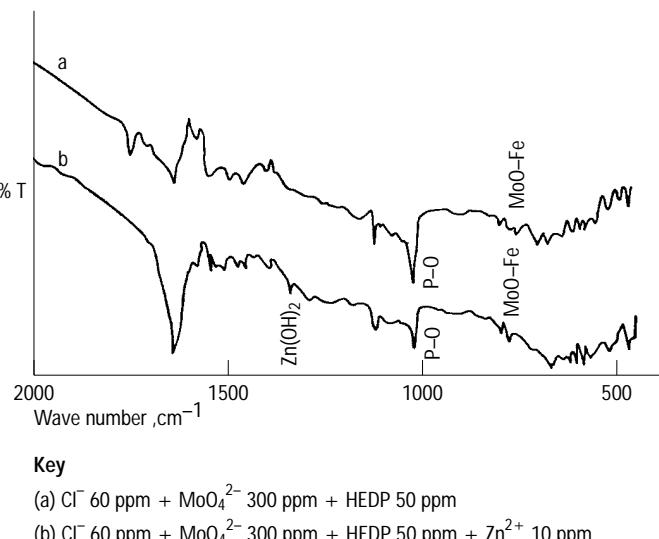
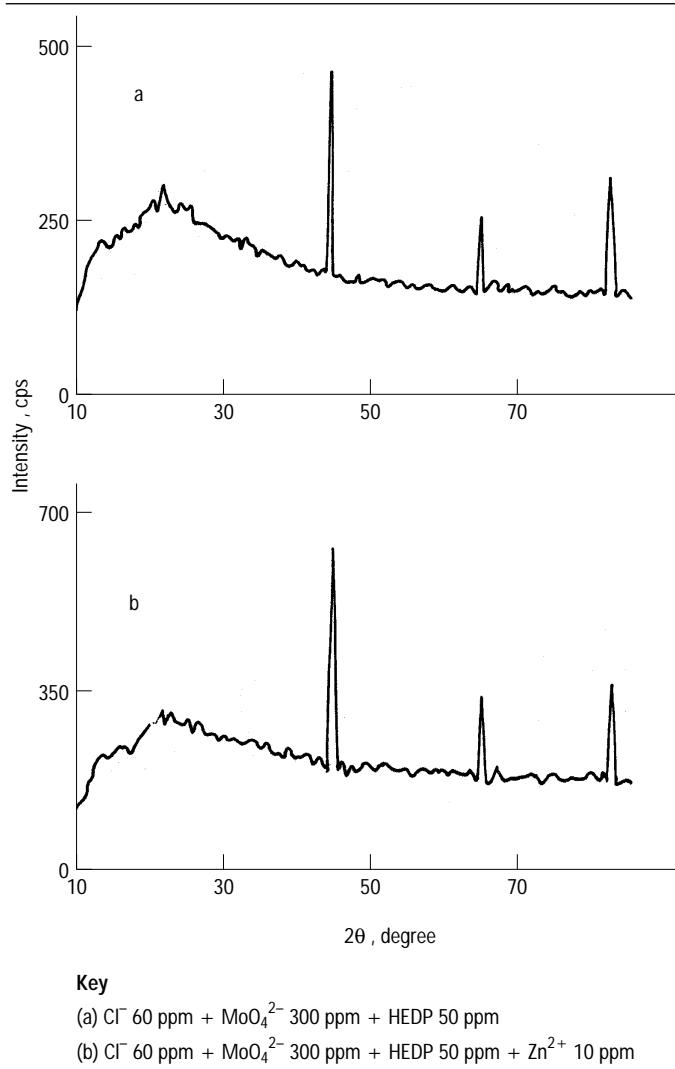
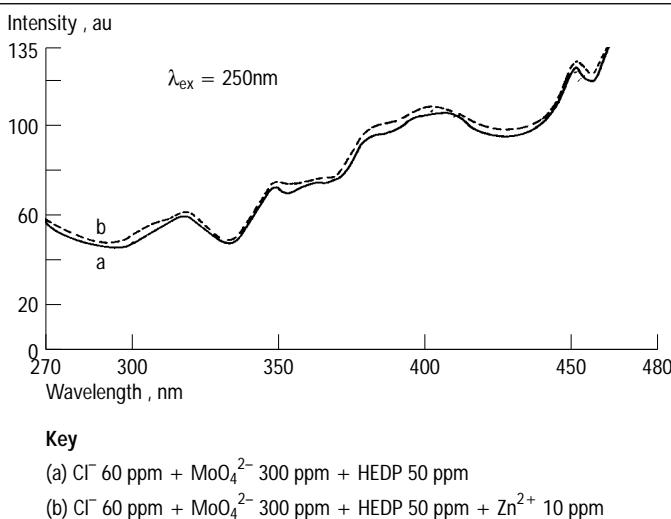




Figure 3 XRD patterns of the films formed on the surface of the metal immersed in various environments




#### Analysis of fluorescence spectra

The fluorescence spectra ( $\lambda_{\text{ex}} = 250\text{nm}$ ) of the films formed on the surface of the metal immersed in various environments are given in Figure 4. The fluorescence spectrum of the film formed on the surface of the metal immersed in the environment consisting of 60ppm  $\text{Cl}^-$ , 50ppm HEDP and 300ppm molybdate is given in Figure 4a. Peaks appear at 315, 348, 400 and 450nm. The spectrum is, probably, due to  $\text{Fe}^{2+}$  -HEDP complex and  $\text{Fe}_2(\text{MoO}_4)_3$  complex formed on the metal surface.

The fluorescence spectrum of the film formed on the surface of the metal immersed in the environment consisting of 60ppm  $\text{Cl}^-$ , 50ppm HEDP, 300ppm molybdate and 10 ppm  $\text{Zn}^{2+}$  is given in Figure 4b. Peaks appear at the same positions as in the previous case. However, a small increase in intensity is observed. This suggests that the formation of

Figure 4 Flourescence spectra of the films formed on the surface of the metal immersed in various environments



$\text{Fe}^{2+}$ -HEDP complex and  $\text{Fe}_2(\text{MoO}_4)_3$  complex is slightly enhanced in the presence of  $\text{Zn}^{2+}$ . This is in agreement with results of the weight-loss method which reveals that the inhibition efficiencies are 95 per cent and 97 per cent in the absence and presence of  $\text{Zn}^{2+}$  respectively.

#### Analysis of the results of atomic absorption spectra

The amount of metal ions present in various test solutions in which mild steel specimens were immersed for a period of seven days is given in Table II. When mild steel was immersed in the environment consisting of 60ppm  $\text{Cl}^-$ , 50ppm HEDP and 300ppm molybdate, the test solution contained 66 ppm of iron and zero ppm of molybdate. This indicates that all the molybdate has diffused from the bulk of the solution towards the metal surface and deposited there, probably, as iron molybdate complex (as revealed by XRD study).

It is also observed from Table II that in the presence of  $\text{Zn}^{2+}$ , the amount of iron present in the test solution after seven days is less,

Table II Amount of metal ions present in various test solutions in which mild steel specimens were immersed for a period of seven days

| SI.<br>no. | $\text{Cl}^-$<br>(ppm) | HEDP<br>(ppm) | $\text{MoO}_4^{2-}$<br>(ppm) | $\text{Zn}^{2+}$<br>(ppm) | Metal ions present<br>after seven days |               |                              |
|------------|------------------------|---------------|------------------------------|---------------------------|----------------------------------------|---------------|------------------------------|
|            |                        |               |                              |                           | Iron<br>(ppm)                          | Zinc<br>(ppm) | $\text{MoO}_4^{2-}$<br>(ppm) |
| 1          | 60                     | 50            | 300                          | -                         | 66                                     | -             | 0                            |
| 2          | 60                     | 50            | 300                          | 10                        | 55                                     | 6             | 0                            |

relative to the previous case (i.e. in the absence of  $Zn^{2+}$ ). This suggests that the rate of dissolution of the protective film (iron complexes) formed on the metal surface is higher in the former case than in the latter case. It is seen from Table II that the amount of molybdate present in the test solution is found to be zero. This suggests that all molybdate has diffused from the bulk of the solution to the metal surface and deposited there as iron molybdate complex (as revealed by XRD study). It is also seen from Table II that out of 10 ppm  $Zn^{2+}$  added to the environment 4 ppm  $Zn^{2+}$  has diffused to the metal surface and deposited there as  $Zn(OH)_2$  as confirmed by FTIR spectra.

### Mechanism of corrosion inhibition

The results of the weight loss method reveal that the formulation consisting of 50 ppm HEDP, 300 ppm molybdate and 10 ppm  $Zn^{2+}$  has 97 per cent inhibition efficiency. Polarisation study reveals that this formulation controls the cathodic reaction predominantly. FTIR spectrum suggests that the protective film consists of iron molybdate complex,  $Fe^{2+}$ -HEDP complex and  $Zn(OH)_2$ . XRD study reveals that the iron molybdate complex formed on the metal surface is  $Fe_2(MoO_4)_3$ .

Fluorescence spectrum reveals that the protective film is fluorescent. In order to explain all these observations in a holistic way, the following mechanism of corrosion inhibition is proposed.

- When the environment containing 60 ppm  $Cl^-$ , 50 ppm HEDP, 300 ppm molybdate and 10 ppm  $Zn^{2+}$  is prepared, there is formation of  $Zn^{2+}$ -HEDP complex and  $Zn^{2+}$ - $MoO_4^{2-}$  complex in solution.
- When the metal is immersed in this environment,  $Zn^{2+}$ -HEDP complex and  $Zn^{2+}$ - $MoO_4^{2-}$  complex diffuse from the bulk of the solution to the surface of the metal.
- On the surface of the metal,  $Zn^{2+}$ -HEDP complex is converted into  $Fe^{2+}$ -HEDP complex in the local anodic sites.  

$$Zn^{2+}$$
-HEDP +  $Fe^{2+} \Rightarrow Fe^{2+}$ -HEDP +  $Zn^{2+}$
- Similarly,  $Zn^{2+}$ - $MoO_4^{2-}$  complex is converted into iron molybdate complex, namely,  $Fe_2(MoO_4)_3$ .  

$$3 Zn^{2+}$$
- $MoO_4^{2-}$  + 2  $Fe^{2+} \Rightarrow Fe_2(MoO_4)_3$  + 3  $Zn^{2+}$

- The released  $Zn^{2+}$  forms  $Zn(OH)_2$  in the local cathodic regions.  

$$Zn^{2+} + 2 OH^- \Rightarrow Zn(OH)_2 \downarrow$$
- Thus the protective film consists of  $Fe^{2+}$ -HEDP complex,  $Fe_2(MoO_4)_3$  complex and  $Zn(OH)_2$ .

### Conclusions

- The formulation consisting of 50 ppm HEDP, 300 ppm molybdate and 10 ppm  $Zn^{2+}$  has 97 per cent corrosion inhibition efficiency.
- This formulation controls the cathodic reaction predominantly.
- The protective film is found to be fluorescent and to consist of  $Fe^{2+}$ -HEDP complex,  $Fe_2(MoO_4)_3$  complex and  $Zn(OH)_2$ .
- This formulation can be used in cooling water systems.

### References

- Falewicz, P. and Kuczkowska, S., *Werkst. Korros.*, Vol. 43, 1992, p. 43.
- Kuznetsov, Yu.I. and Raskol'nikov, A.F., *Zashch. Met.*, Vol. 29, 1993, p. 29.
- Zocher, G., *Zashch. Met.*, Vol. 26, 1990, p. 664.
- Airey, K., Armstrong, R.D. and Handyside, T., *Corrosion Science*, Vol. 28, 1988, p. 449.
- Ashcraft, R., Bohnsack, G., Holm, R., Kleinstueck, R. and Stop, S., *Mater. Perf.*, Vol. 27, 1988, p. 31.
- Veres, A., Reinhard, G. and Kalman, E., *Br. Corrosion J.*, Vol. 27, 1992, p. 147.
- Gunasekaran, G., Palaniswamy, N., Apparao, B.V. and Muralidharan, V.S., *Electrochim. Acta*, Vol. 49, 1997, p. 1427.
- Rajendran, S., Apparao, B.V. and Palaniswamy, N., *Proc. 8th Europ. Symp. Corros. Inhibitors*, Ferrara, Vol. 1, 1995, p. 465.
- Rajendran, S., Apparao, B.V. and Palaniswamy, N., *Proc. 2nd Arabian Corrosion Conference*, Kuwait, 1996, p. 483.
- Rajendran, S., Apparao, B.V. and Palaniswamy, N., *Bulletin of Electrochem.*, Vol. 12, 1996, p. 15.
- Rajendran, S., Apparao, B.V. and Palaniswamy, N., *EUROCORR'96*, Nice, Paper No. II, p. 1.
- Rajendran, S., Apparao, B.V. and Palaniswamy, N., *EUROCORR'97*, Trondheim.
- Sekine, I. and Kirakawa, Y., *Corrosion*, Vol. 42, 1986, p. 276.
- Fang, J.L., Li, Y., Ye, X.R., Wang, Z.W. and Liu, Q., *Corrosion*, Vol. 49, 1993, p. 266.
- Rajendran, S., Apparao, B.V. and Palaniswamy, N., *Anti-Corrosion Methods and Materials*, Vol. 44, p. 308.

16 Rajendran, S., Apparao, B.V. and Palamiswamy, N., *Anti-Corrosion Methods and Materials*, May/June, 1998.

17 Rajendran, S., Apparao, B.V. and Palamiswamy, N., *Anti-Corrosion Methods and Materials*, July/August, 1998.

18 Rajendran, S., Ph.D. thesis, Ganhigram Rural Institute, Ganhigram, 1996.

19 Rajendran, S., Mani, A., Apparao, B.V. and Palamiswamy, N., *Anti-Corrosion Methods and Materials*, January/February, 1998.

20 Rajendran, S., Apparao, B.V. and Periasamy, V., Garthikeyan, G. and Palaniswamy, N., *Anti-Corrosion Methods and Materials*, March/April, 1998.

21 Breske, T.C., *Material Performance*, Vol. 16, 1977, p. 17.

22 Lipinski, R.J. and Weidner, R.F., *Heating/Piping/Air Conditioning*, Vol. 50, 1978, p.103.

23 Robitaille, D.R. and Bilek, J.G., *Chem.Eng.*, Vol. 83, 1976, p. 79.

24 Vukasovich, M.S. and Farr, J.P.G., *Materials Performance*, May 1986, p. 9.

25 Silverstein, R.M., Bassler, G.C., and Morrill, T.C., *Spectrometric Identification of Organic Compounds*, John Wiley and Sons, New York, NY, 1981, p. 95.

26 Nakamoto, K., *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, Wiley-Interscience, New York, NY, 1986, p. 168.

27 Cross, A.D., *Introduction to Practical Infrared Spectroscopy*, Butterworths Scientific Publication, London, 1960, p. 73.

28 Smith, T.D.J., *Inorg. Nucl. Chem.*, Vol. 9, 1959, p. 150.

29 Horner, L. and Horner, C.L., *Werkst. Korros.*, Vol. 27, 1976, p. 223.