BRIEF NOTES

—dY/dx = —y, v is the kinematic viscosity of the liquid and V is the
two-dimensional gradient operator.

Cantwell [1] has reported a 10-parameter Lie group of space-time
coordinates transformations that leaves (1) invariant. Infinitesimally,
this 10-parameter Lie group is described by

i =x+ek+ 0(e?),
7 + ¢p + O(e?),
% y+ep+0(e?) @
t=t+er+ 0(?),
V=y+en+ 0@,
where
‘t=ax+ by +ety+fi(t) +d
= —bx + ay — ctx + folt) +
x +ay —ctx + folt) + e 3)

=2at+h
7= 1/2c(x2+ y2) — fa(t)x + f1(t)y + s(t) + p.

a, b, c,d, e, h, p are constants and f1(¢), f2(t), and s(t) are arbitrary
functions of t. In (3), the dot denotes derivative with respect to
time. .

It is the purpose of this communication to show that the plane
squeeze film flow of a viscous fluid admits a similarity solution if the
velocity of approach of the plates is proportional to (2at + h)~1/2

To do that, we need to find a particular subgroup of (3) that leaves
the boundary conditions of the plane squeezing flow invariant. Now
the velocity field at the upper plate (y = H(t)) must satisfy

ulx,y=H(t)) = \/{y (x,y=H(t)=0 - 4
v(x,y = H(t)) = ¢, (x,y = H(t)) = —H(t) (5)

Invariance of the boundary curve y = H(t) implies

y=H({)
that is,
pla,y =H(®) =H(@) 7(x,y = H(t))
which requires that
—bx + aH(t) — ctx + falt) + e = H(t)(2at + h).
For this to be satisfied identically we need b = 0 = ¢ and-
Fo(t) = H(t)(2at + h) — aH(t) — e. ' (6)
Next, invariance of (4) implies
¥y (x,y = H(t)) =
which requires that
Dq _ E
Dy

aty = H(t). D/Dx; is the total derivative (Bluman and Cole [2]) de-
fined in the four-dimensional space (x, y, ¢, ¥) by

b +¢— ort
_—— X=X, Y, .
Dx; bx, ' g[/ ! Y

Condition (7) requires that f; = 0 or f1(t) = constant.
[nvariance of the second boundary condition (5) requires that

Vi (x,y = H(t)) = H{D)

‘// _Dpk[/y__\//t—o Y]

which implies
Dy D¢
Dx DX
that is,

D D .
Ve _D—£¢y—D—;\bt=H(t)T at y=H(t),

fot) = —H({t)(2at + h) — aH(¢). (8)

Compatibility between (8) and (5) dictates that the normal velocity .

of approach of the plates must satisfy
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that is,
H(t) = q(2at + h)~172, H(t) = 9 0at + R)l/2 ©)
a
that is, if H(t) is given by (9}, then the plane squeezing flow admits

similarity solutions described by the following 6-parameter Lie group
of transformations

E=ax+f
p=ay (10)
T=2at+h
n=s(t)+p

For example, the case where § = p = 0 = 5(t) admits the following
similarity solution:

—= s = (11)
ax ay 2at+h 0
that is,
¥ = F(&y, &), (12)
where ‘
x y
=——— and = 13
b V2at+h b v 2at + h (13)

are two invariants of (11).

Substitution of (12) into (1) results in a reduction in the order of
the p.d.e. Alternatively, the velocities can be scaled appropriately
according to (12) and their substitution into the Navier-Stokes
equations results in an ordinary differential equation. This equation
has been studied extensively by Wang [3] who found that when H is
proportional to v/1 — at a similarity solution for the plane (and cir-
cular) squeezing flow is possible. The flow is then described by a single
parameter S = aR?/v, where R is a length scale. Among many other
things reported in this paper, Wang has shown numerically that the
squeezing force may not necessarily follow the direction of approach
for certain values of S.
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Torsional Vibrations of
Poroelastic Cylinders
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Introduction

The study of torsional vibrations is of importance, both from the-
oretical and practical considerations. Such vibrations, for example,

1 Presently, Kothagudem School of Mines, Osmania University, KOTH-
AGUDEM-—507 101, India; formerly, Department of Mathematics, Regional
Engineering College, Warangal 506 004, India.

2 Department of Mathematics, Regional Engineering College, Warangal 506
004, India.

Manuscrlpt received by ASME Applied Mechanics D1v151on, June, 1978; final
revision, June, 1979,

Transactions of the ASME

Copyright © 1980 by ASME

$20Z 4890100 GZ uo Jasn [ebusepn -ABojouyos] jo sinpsu| [euoleN Aq ipd° L1 2/6218.8G/v L2/ L/ Ly/pd-8onie/solueyoswpaiidde/Bio-swse uonosjjoojenbipawse//:dny wouy pspeojumoq


http://fo.it
https://crossmark.crossref.org/dialog/?doi=10.1115/1.3153616&domain=pdf&date_stamp=1980-03-01

BRIEF NOTES

48 \ : 48[ A
B ‘\ 0= 0:92, 0520, 055=0-08
aar V| 0'92’0‘_252|’R§;=L2DE , aal- FIRST MODE
-\ |~ —--sEconp mope A R >ECOND MODE
aof 40l
36k 36k
32+ 32
- C -
Cpy -3 (__1 ~3
=P 1
24 24+
20 20r
16 16}
12+ 12+
i A
8 8l
al
~aby=1-0 4
L Sbye1-0
2b1=0-01 L
: : — b0
6701 02 03 04 05 06 07 O~ .9 10 %birg. . b 1<~
—y 8 09 1O%eod 0 OT 02 03 04 05 06 07 08 09 10%o
e
Fig. 1 Fig. 2
are used in delay lines. Further, based on the reflections and refrac- 24r
tions during the propagation of a pulse, imperfections can be identi- =092, Or=0, 03;=008
. . . . A . . + ~
fied. Still another use of torsional vibrations is the measurement of - FIRST MODE S
the shear modulus of a crystal. [ I — SECOND MODE o/ !

In this Note, torsional vibrations of an infinite, isotropic, homo-
geneous poroelastic cylinder are studied. Plots of nondimensional
phase velocity, group velocity, and wavelength as a function of non-
dimensional frequency are presented.

Solution of the Problem

Let r, 8, z be cylindrical polar coordinates with z-axis along the axis
of the cylinder. The nonzero displacement component of solid ug and
liquid Uy are to be determined from

22 ' o
2 _ =2y, = o . Lo, -
N(V2 —r=Hu, 22 (p11ug + p12Up) + b o> (vg = Up)

0?2 4]
0 = (pyates + prlUs) = b~ (g — Up). 1
>0 (p1aug + paaUs) o (uo — Up) )

Here p11, p12, and p2s are mass densities as introduced in [1], N is a
shear modulus, b is a dissipation coefficient, and V2 is the Laplacian
operator. From the conditions of stress-free curved surface, the fre-
quency equation of torsional vibrations of a circular poroelastic cyl-
inder of radius a is )

Ja(R) =0, - 2)

where J5 is the Bessel function of first kind and of order two.
The propagation mode shapes are given by

_ [ClJl(knr) exp [i(az + pt)] when k, =0 @)
Cyrexp [i(az + pt)] when k, =0,
where « is the wave number, p is the frequency, and /1 is the Bessel 0 01 02 03 04 (,)"5 06 07 08 09 10
function of first kind and of order one. In these equations, R, is the : _ — Y
nth nonzero root of equation (2) and Fig. 3
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2 — 2
Rn?= k%2 kp?= pAruTe = 7129 o, ()
Nty

where
ib ib ib
TNN=P11—, Tiz=pre+—, T = pog——.
p . p p

The roots of equation (2) are well known.
On combining and rearranging equations (4), we can write
N(R,2 + a2%a?
N3 00D _ B, - ik
a’p?p
where
_ Y2ous(011022 — 015%) + bs?
Y2022 + by?
ybilo12 + 029)° .
E; = ——— 5)

¥2099% + by?

E,

»

b1, y, oij are nondimensional dissipation coefficient, frequency, and
mass densities, respectively, defined by
ab a pij N
bi=——, y1=— o=, p=pu+202+pum co?=—.
pPCo co 14

Because of the dissipative nature of the medium, in general, the wave
number « is complex [1]. Letting

o=+ Lo,

then phase velocity ¢, (= p/| e |) is given by

cpleg = 212y (By + Bg)~V/2 (6)
The group velocity is )
Cg/Co = 23/2B3_1(B1 + BZ)I/Z. (7)

The attenuation x, (= 1/} a;}) is

xala = 2Y%(B; — By)7172, 8

where
By = yME2 + E?) ~ 2y*EcR.? + RaW, By = y2E, - R,?,
By = yZGl(]_ + yzE,Bl“l - R,,ZBl'—l) + ZyE,(l - RHZBI_I)
+ y3B1~YyE;Gs + 2E,.2 + 2E;?),
2b:2(E, - 1) (012 — y2092?) E;
L T - y(y2o202 + b1

It is observed that the square of the wave number is the average of By
and Bs.

9

Discussions

In the general case, even the least mode is observed to be dispersive
where as it is nondispersive in the absence of dissipation. Conse-
quently, the least mode can be used in delay lines [2]. In higher modes
vibrations are dispersive. Phase velocity, group velocity, wavelength
are calculated for different values of frequency for a cylindrical bone
whose parameters are given in [3] and are presented graphically. From
Fig. 1, it is observed that when dissipative coefficient increases from
0.01 to 0.10, the phase velocity curves of first and second modes in-
tersect around the wavelength (= y) is equal to 0.4. For wavelength
greater than 0.4 phase velocity is decreasing in both the modes and
when dissipative force is equal to 1, the wave velocity is higher than
in all other cases. The group velocity and wavelength are given in Figs.
2 and 3. When the values of dissipative force are small, the graphs for
wavelength are straight lines and their slope increases with increasing
by.

In absence of dissipative force vibrations are not attenuated and
the same conclusions as that of classical theory are valid.
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A Condition of Bending-Free
Torsion to Define the Center of
Twist

N. G. Stephen'

. Introduction .

A beam subjected to terminal tractions and displacement restraints
will in general experience direct and shearing stresses dependent on
the magnitude and distribution of the stresses over the end surface
rather than the types of forces and couples producing these terminal
stresses. However, it is convenient for the engineer to be able to
identify the stress resultants in terms of the applied loads. Thus a
cantilevered beam subjected to a terminal shearing force [1] will ex-
perience direct and shearing stresses and it is convenient to differ-
entiate between direct stresses due to bending and warping restraints,
and shearing stresses due to shear and torsion. Toward this end the
center of flexure is defined as that point through which the terminal
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shearing force must pass in order to produce “torsion-free bending,”
a state usually defined [2] by zero overall local rotation of the section
which is mathematically equivalent to zero rotation of the centroid
of the section, vanishing of shearing stresses due to torsion and hence
zero torsional stress resultant.

The center of twist is usually defined [3] according to a minimum
potential energy of warping, which can easily be shown to correspond
mathematically to rotation about an axis such that the warping in-
tegral will be a minimum. The relationship between the two centers
as defined previously is shown in [4]. The exact solution for torsion
with restrained warping is not known, but since restraint gives rise
to axial direct stresses it seems natural to investigate the condition
under which these stresses do not constitute a resultant bending
moment, equivalent to “bending-free torsion,” and it is shown that
this leads to coordinates of the center of twist agreeing with those
obtained on the basis of minimum warping energy.

Theory

If x and y are the principal axes and z coincides with the axis of
centroids then for a uniform isotropic rod the most general form of
the displacements during twist are [3]

dé
u=—(—zy+a+qz—ry) (1a)

dz

dé
v=—@Ex+b+rx—pz) (1b)

dz

df
W= (d(x,y) + ¢ + py — qx) (1¢c)

Transactions of the ASME

$20Z 4890100 GZ uo Jasn [ebusepn -ABojouyos] jo sinpsu| [euoleN Aq ipd° L1 2/6218.8G/v L2/ L/ Ly/pd-8onie/solueyoswpaiidde/Bio-swse uonosjjoojenbipawse//:dny wouy pspeojumoq


file:///yHEr2



