
BRIEF NOTES 

— d\p/dx = —\f/x, v is the kinematic viscosity of the liquid and V is the 
two-dimensional gradient operator. 

Cantwell [1] has reported a 10-parameter Lie group of space-time 
coordinates transformations that leaves (1) invariant. Infinitesimally, 
this 10-parameter Lie group is described by 

where 

* = x + e£ + 0(c2), 

| y = y + ep + 0(e2), 

| i = £ + er + 0(e2), 

^= f + 67? + 0(f2), 

'£ = ax + by + cty + f±(t) + d 

\ p = —bx + ay - ctx + hit) + e 

| T = 2at + h 

,7; = l /2cU 2 + y2) - f2(t)x + h(t)y + sit) + p. 

(2) 

(3) 

a, b, c, d, e, h, p are constants and hit), fo.it), and s(t) are arbitrary 
functions of t. In (3), the dot denotes derivative with respect to 
time. 

It is the purpose of this communication to show that the plane 
squeeze film flow of a viscous fluid admits a similarity solution if the 
velocity of approach of the plates is proportional to (2at + h)~1/2. 

To do that, we need to find a particular subgroup of (3) that leaves 
the boundary conditions of the plane squeezing flow invariant. Now 
the velocity field at the upper plate (y = H(t)) must satisfy 

u(x, y = H(t)) = ty (x, y = H(t)) = 0 

u(x, y = H{t)) = -iix ix, y = Hit)) = -Hit) 

Invariance of the boundary curve y = Hit) implies 

y = Hit) 

that is, 

pix,y = Hit))=Hit)rix,y = Hit)) 

which requires that 

-bx + aHit) - ctx + hit) + e = H(t)(2at + h). 

For this to be satisfied identically we need b = 0 = c and 

hit) = Hit)i2at + h)- aHit) - e. 

Next, invariance of (4) implies 

^ ix, y = Hit)) =0, 

which requires that 

D£ On D_ 

(4) 

(5) 

(6) 

By Dy*x Dy^ Dy™ ' 
(7) 

etty = Hit). D/Dxi is the total derivative (Bluman and Cole [2]) de­
fined in the four-dimensional space ix, y, t, \p) by 

D d , d 
= 1- \pi — , xi = x, y, or t. 

Dxi dxi d\j/ 

Condition (7) requires t h a t / i = 0 or / i ( t ) = constant. 
Invariance of the second boundary condition (5) requires that 

h(x,y = Hit))=Hii) 

which implies 

D-n /J£ Dp DT 
n 7T?** n +y—Z-+t =H(t)r at y = Hit), 
Dx DX Dx Dx 

that is, 

hit) = -Hit)i2at + h)- aHit). (8) 

Compatibility between (8) and (5) dictates that the normal velocity 
of approach of the plates must satisfy 

H + - -H=0, 

that is, 

2at + h 

Hit) = qiiat + h)~1/2, Hit) = - (%at + h)^2 
0) 

that is, if Hit) is given by (9), then the plane squeezing flow admits 
similarity solutions described by the following 6-parameter Lie group 
of transformations 

(10) 
\ P = ay 

IT = 2at + h 

,n = «W +p 

For example, the case where (I = p = 0 = sit) admits the following 
similarity solution: 

dx dy dt d\p 

that is, 

where 

* i 

ax ay 2at + h 0 

and £2
 : 

V2at + h y/2at + h 

(11) 

(12) 

(13) 

are two invariants of (11). 
Substitution of (12) into (1) results in a reduction in the order of 

the p.d.e. Alternatively, the velocities can be scaled appropriately 
according to (12) and their substitution into the Navier-Stokes 
equations results in an ordinary differential equation. This equation 
has been studied extensively by Wang [3] who found that when H is 
proportional to V l _ ott a similarity solution for the plane (and cir­
cular) squeezing flow is possible. The flow is then described by a single 
parameter S = aR2/v, where R is a length scale. Among many other 
things reported in this paper, Wang has shown numerically that the 
squeezing force may not necessarily follow the direction of approach 
for certain values of S. 
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Torsional Vibrations of 
Poroelastic Cylinders 

M. Tajuddin1 and K. S. Sarma2 

I n t r o d u c t i o n 
The study of torsional vibrations is of importance, both from the­

oretical and practical considerations. Such vibrations, for example, 
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are used in delay lines. Further, based on the reflections and refrac­
tions during the propagation of a pulse, imperfections can be identi­
fied. Still another use of torsional vibrations is the measurement of 
the shear modulus of a crystal. 

In this Note, torsional vibrations of an infinite, isotropic, homo­
geneous poroelastic cylinder are studied. Plots of nondimensional 
phase velocity, group velocity, and wavelength as a function of non-
dimensional frequency are presented. 

Solution of the Problem 
Let r, 6, z be cylindrical polar coordinates with z-axis along the axis 

of the cylinder. The nonzero displacement component of solid Uo and 
liquid Uo are to be determined from 

24 

iV(V2 - r-2)ue = — (pnu, + puUg) + b — (u„-
i>ti dt 

Uo) 

0-
dt2 (Pl2«0 + P22U0) 

d 

dt 
Uo). (1) 

Here p\\, P12, and P22 are mass densities as introduced in [1], N is a 
shear modulus, fe is a dissipation coefficient, and V2 is the Laplacian 
operator. From the conditions of stress-free curved surface, the fre­
quency equation of torsional vibrations of a circular poroelastic cyl­
inder of radius a is 

J2(R) = 0, (2) 

where J2 is the Bessel function of first kind and of order two. 
The propagation mode shapes are given by 

CiJi(knr) exp [i(az + pt)] when kn ^ 0 

Pir exp [i(az + pt)] when kn = 0, 

where a is the wave number, p is the frequency, and J i is the Bessel 
function of first kind and of order one. In these equations, Rn is the 
nth nonzero root of equation (2) and 

uo •• (3) 

(ao(,)xio 

0^ = 0-92, °TF= °-> E^ = Q'0 8 

SECOND MODE V 

/ ^1 

/ 1 
/ 1 

/ 1 

Fig. 3 

Journal of Applied Mechanics MARCH 1980, VOL. 47 / 215 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/47/1/214/5878129/214_1.pdf by N
ational Institute of Technology- W

arngal user on 25 O
ctober 2024



BRIEF NOTES 

t\fi ~~ fifi u t " n 
P 2 ( T H T 2 2 - T I 2 2 ) 

NT22 
(4) 

where 

ib ib ib 
T\\ = Pu , i"i2 = P12 H — , T22-P22 • 

P • P P 

The roots of equation (2) are well known. 
On combining and rearranging equations (4), we can write 

N(Rn
2 + a2a2) 

where 

: Er - iEu . 

y2T22(.au(T22 - 0122) + &1 

Ei 

y2o22
2 + bi2 

yb i (g i2 + (T22)2 

y2<T222 + bl2 
(5) 

b\, y, Oij are nondimensional dissipation coefficient, frequency, and 
mass densities, respectively, defined by 

, ab ap pij N 
bi = , yi = —, <ry = —, p = Pn + 2p2 + P22, c0

z = — . 
pco co 

Because of the dissipative nature of the medium, in general, the wave 
number a is complex [1]. Letting 

a = ar + icti, 

then phase velocity cp (= pi \ ar \) is given by 

cp/co = 2^2y{B1 + B 2 ) - 1 / 2 (6) 

The group velocity is 

cg/c0=2^2B3-HB1+B2)
1'2. (7) 

The attenuation xa (= 1/|«,-1) is 

xa/a = 2l'2(Bl-B2)-
m, (8) 

where 

Bi = \yHEr2 + E^) - 2y2ErRn
2 + >VI1 / 2 , B2 - y2Er - Rn

2, 

S3 = y 2G x( l + y^ErBr1 ~ Rn
2Brl) + 2yEr(l - Rn

2Brl) 

+ y3B1-HyEiG2+2Er
2+2Ei

2), 

G^_ 2biHEr-D Ci_(bl
2-y2a222)Ei 

y(y20222 + bi2)' y(y2<*222 + 612) 

It is observed that the square of the wave number is the average of S j 
and B2. 

D i s c u s s i o n s 
In the general case, even the least mode is observed to be dispersive 

where as it is nondispersive in the absence of dissipation. Conse­
quently, the least mode can be used in delay lines [2]. In higher modes 
vibrations are dispersive. Phase velocity, group velocity, wavelength 
are calculated for different values of frequency for a cylindrical bone 
whose parameters are given in [3] and are presented graphically. From 
Fig. 1, it is observed that when dissipative coefficient increases from 
0.01 to 0.10, the phase velocity curves of first and second modes in­
tersect around the wavelength (= y) is equal to 0.4. For wavelength 
greater than 0.4 phase velocity is decreasing in both the modes and 
when dissipative force is equal to 1, the wave velocity is higher than 
in all other cases. The group velocity and wavelength are given in Figs. 
2 and 3. When the values of dissipative force are small, the graphs for 
wavelength are straight lines and their slope increases with increasing 
hi. 

In absence of dissipative force vibrations are not attenuated and 
the same conclusions as that of classical theory are valid. 
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A Condition of Bending-Free 
Torsion to Define the Center of 
Twist 

N. G. Stephen1 

In troduc t ion 
A beam subjected to terminal tractions and displacement restraints 

will in general experience direct and shearing stresses dependent on 
the magnitude and distribution of the stresses over the end surface 
rather than the types of forces and couples producing these terminal 
stresses. However, it is convenient for the engineer to be able to 
identify the stress resultants in terms of the applied loads. Thus a 
cantilevered beam subjected to a terminal shearing force [1] will ex­
perience direct and shearing stresses and it is convenient to differ­
entiate between direct stresses due to bending and warping restraints, 
and shearing stresses due to shear and torsion. Toward this end the 
center of flexure is defined as that point through which the terminal 

shearing force must pass in order to produce "torsion-free bending," 
a state usually defined [2] by zero overall local rotation of the section 
which is mathematically equivalent to zero rotation of the centroid 
of the section, vanishing of shearing stresses due to torsion and hence 
zero torsional stress resultant. 

The center of twist is usually defined [3] according to a minimum 
potential energy of warping, which can easily be shown to correspond 
mathematically to rotation about an axis such that the warping in­
tegral will be a minimum. The relationship between the two centers 
as defined previously is shown in [4]. The exact solution for torsion 
with restrained warping is not known, but since restraint gives rise 
to axial direct stresses it seems natural to investigate the condition 
under which these stresses do not constitute a resultant bending 
rnoment, equivalent to "bending-free torsion," and it is shown that 
this leads to coordinates of the center of twist agreeing with those 
obtained on the basis of minimum warping energy. 

Theory 
If x and y are the principal axes and z coincides with the axis of 

centroids then for a uniform isotropic rod the most general form of 
the displacements during twist are [3] 
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u = — ( - zy + a + qz - ry) 
dz 

d6 , 
v = — (zx + b + rx — pz) 

dz 

dz 
((j>(x,y) + c + py - qx) 

(la) 

(16) 

(lc) 

216 / VOL. 47, MARCH 1980 Transactions of the ASME 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/47/1/214/5878129/214_1.pdf by N
ational Institute of Technology- W

arngal user on 25 O
ctober 2024

file:///yHEr2



