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Abstract

Surge control is investigated in conjunction with rotating stall control for axial flow compressors using a bifurcation approach. Test
functions are developed to determine the existence and stability of the Hopf bifurcation associated with surge for closed-loop systems
under linear state feedback. A control design method is proposed for the synthesis of linear feedback laws that eliminate surge,
coupled with rotating stall for any given compact parameter set. Comparisons are made with existing results. Stabilization results are
demonstrated with numerical simulations. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that the compression system exhibits
nonlinear hysteresis at the operating point of maximum
pressure rise that is termed rotating stall, and nonlinear
flow oscillation in the vicinity of the maximum pressure
rise that is called surge. The nonlinear phenomena of
rotating stall and surge are flow instabilities that effec-
tively reduce the performance of aeroengines and limit
further improvements on reliability and efficiency of fu-
ture jet airplanes. Hence the suppression of rotating stall
and surge is the key issue for compressor control.

This paper focuses on bifurcation control for axial flow
engine compressors. The Moore-Greitzer model from
McCaughan (1990) is adopted for analysis. As shown by
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McCaughan (1990), rotating stall is associated with
transcritical and saddle-node bifurcations, and surge
with a Hopf bifurcation. This motivated the bifurcation
approach to compressor control in the past several years.
Feedback control of the transcritical bifurcation at the
axisymmetric equilibrium point has been studied by
many authors. See for instance, Liaw and Abed (1996),
Krener (1995), Eveker et al. (1995), Gu et al. (1996) and
Kang (1995). There exists a family of state feedback laws
which stabilize the nonaxisymmetric equilibria near the
operating point and eliminate the hysteresis induced by
rotating stall. However, the Hopf bifurcation associated
with surge remains intact under these feedback laws. In
this paper, we introduce test functions whose zeros are
critical to the Hopf bifurcation for the closed-loop sys-
tem. These test functions are given in compact form.
A particular test function is developed to determine the
stability of the periodic solutions born at a Hopf bifurca-
tion. The analysis based on these test functions leads to
a new method of feedback design for control of both
stationary and Hopf bifurcations in axial flow compres-
sors. In fact, using the techniques proposed in this paper,
feedback controllers can be designed to meet several
bifurcation control requirements, including elimination
of surge, coupled with rotating stall.
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The paper is organized as follows. In Section 2, the
three-state Moore—Greitzer model is introduced and the
feedback control laws from Krener (1995) are presented
that soften the transcritical bifurcation. However, the
closed-loop system may still exhibit a Hopf bifurcation
associated with surge. In Section 3, a test function is
developed for the existence of Hopf bifurcation in the
closed-loop compression system. The existence of a sta-
tionary bifurcation is studied in Section 4 where a differ-
ent test function is derived. The results of these two
sections show that, for any given compact set of
parameters, there exists a linear feedback law such that
the closed-loop system does not have a stationary bifur-
cation, nor a Hopf bifurcation along the curve of
nonaxisymmetric equilibria. In Section 5, a particular
test function is developed to determine the stability of the
family of periodic solutions born at the critical point of
a Hopf bifurcation. Finally in Section 6, a linear feedback
law is designed for a compression system, and simulation
results are used to show the stability of the closed-loop
system, as well as feedback stabilization in the presence of
both rotating stall and surge. Comparisons are made
with existing results in Krstic et al. (1995) and Eveker
et al. (1995).

2. Background

This section introduces the three-dimensional
Moore—Greitzer model for axial flow compressors. Some
key results of McCaughan (1990), Liaw and Abed (1996),
and Krener (1995) are reviewed. The compression system
in consideration is described by ordinary differential
equations (ODEs):

R =0R(1 — &> —R),
b= — V¥ 4+ VP (P)—3DR, (2.1)

|

V= 7 (D — D(P)),
where the performance and throttle characteristics are of
the form

Pp)=Peo+ 1430 —1¢>  &p=./y¥ 1.2

All variables are nondimensionalized with & correspon-
ding to annulus averaged mass flow rate, ¥ the pressure
rise, and R the square amplitude of the rotating stall cell.
The parameter ¥, reflects the engineering nature of the
compressor, and ff combines a group of parameters
including wheel speed, plenum volume as well as the
cross-sectional area of the compressor. It is assumed that
the throttle parameter 7 can be decomposed into
J7y=u+p, where u is proportional to the cross-
sectional area of bleed valves and used as actuator, and
u is a parameter synthesized the effect of disturbances

from inlet and combustion chamber. The compressor
model described in Egs. (2.1) and (2.2) can then be written
into

R
& | =f(R,®,¥)+g(R, &, P) (u+ p), (2.3)
14
oR(1 — > —R)
f(R,®,¥V)=| — ¥ + ¥ (P)—3PR |,
¥ (@ + 1)
0
gR, o, ¥)=| 0 (2.4)

- JY
Following the notation in Kang (1995), the equilibrium
set of the control system is given by

E= {(R’ (D, lP> :u) |E|u0
such that f(R, @, ¥) + g(R, ®, ¥) (o) = 0}.  (2.5)

Clearly R <0 has no physical meaning. Therefore, we
only focus on the subset of E such that R > 0. It has two
branches governed by

lIle = '{’C(¢e)9 Re = 09

o (2.6)
et
(u+:u)e: , D.eR.
N2
3 5 4 )
qle:qj00+1_§¢e+§(pea Rezl_cbea
2.7)
D, +1

—l<o, <1

(u + we = N

The equilibrium subset for R > 0 in the R®¥-space is
shown in Fig. 1.

An axisymmetric equilibrium point is a point in E
with R = 0 (defined by Eq. (2.6)), and a nonaxisymmetric
equilibrium point is a point in E with R > 0 (defined by
Eq. (2.7)). On the branch of axisymmetric equilibrium
points, the maximum pressure rise occurs at the follow-
ing critical operating point:

QDO S 1, IPO = qjco + 2, RO = 0 (28)

The dotted curve in Fig. 1 consists of equilibrium points
that are not stabilizable. The system has a bifurcation at
point (2.8) where two branches of the equilibrium points
meet. The bifurcations of system (2.1) have been thor-
oughly studied by McCaughan (1990), and are briefly
summarized as follows:

(i) System (2.1) has a transcritical bifurcation at critical
point (2.8).
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Fig. 1. The equilibrium set of E for the compressor system in R@¥-space, ®.o = 2.

(1) If ¥, < 4, there exists a point on the curve (2.7) at
which Eq. (2.1) has a saddle-node bifurcation.

(ii1) At some points of Eq. (2.7), the system exhibits Hopf
bifurcation at critical values of  which are depen-
dent on the equilibrium point.

Bifurcations (i) and (ii) cause the hysteresis on the plane
of the compressor characteristic curve, which reduce the
performance of the compressor. The periodic solutions
due to the Hopf bifurcation (iii) reflect the surge with
rotating stall, which can cause catastrophic consequences
or severe damage to aeroengines. The feedback control of
the bifurcation at point (2.8) has been studied by many
authors. The goal is to find a feedback law such that it
locally stabilizes the equilibrium points for the case
R > 0. If such a feedback law exists, the transcritical
bifurcation (i) is said to be softened. All linear state
feedback laws that soften the bifurcation (i) are character-
ized by Krener (1995), and restated in Theorem 2.1.

This paper focuses on the detection and control of the
bifurcations (i)—(iii). A fundamental difference between
the transcritical bifurcation (i) and the bifurcations (ii)
and (iii) is that the system is linearly uncontrollable at
point (2.8), but linearly controllable at all points of
Eq. (2.7). At a nonaxisymmetric equilibrium point, a state
feedback law can remove or delay the bifurcation so that
they do not occur for a given range of the parameters.
The proposed multipurpose feedback design method
leads to state feedback which fulfills several bifurcation
control requirements. A feedback introduced in Section 4
is effective for the simultaneous control of the bifurca-
tions (i)—(iii).

The feedback control law under investigation has the
form

u=o(R, D, V), (2.9)

where « is a C' function. Its linear approximation at
critical point (2.8) is given by

(X(R, ¢, T) = klR + kz((p — ¢0) + k3(¥l — To)

+OR, ®— Dy, ¥ — W) (2.10)

The state feedback law for control of the transcritical
bifurcation (i) is summarized in the following theorem. Its
proof can be found in Krener (1995). The feedback law in
Theorem 2.1 stabilizes critical operating point (2.8), and
the nonaxisymmetric equilibrium points locally. For this
purpose, the nonlinear terms in the feedback do not
matter. More general results on bifurcation stabilization
can be found in Kang (1995) and Gu et al. (1997).

Theorem 2.1. Suppose that the feedback law of Egs. (2.9)
and (2.10) satisfies

- _ 6—Y%
ky <WPol2 ky> — W32 2k1—k2—6k3>ﬁ3/20.
(2.11)

Then closed-loop system (2.3)—(2.9) has a transcritical bi-
furcation at the operating point (2.8). Moreover, the system
is locally asymptotically stable at the points of Eq. (2.7) in
the vicinity of the critical point (2.8), and it is asymp-
totically stable at the points of Eq. (2.6) with @ > &, .
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3. Test function for the existence of Hopf bifurcations

In this section, a test function is sought for the exis-
tence of Hopf bifurcations at points (2.7). It is known that
a system has a Hopf bifurcation if its linearization has a
pair of imaginary eigenvalues. The following gives a
sufficient condition for the existence of imaginary
eigenvalues in a 3 x 3 real matrix. Its algebraic proof is
omitted.

Lemma 3.1. Given a 3 x 3 real matrix A. Suppose that
det(A — trace{A}I) # 0, where I denotes a 3 x 3 identity
matrix. Then the matrix A has no eigenvalues on the
imaginary axis.

Define the function F by

F(R, @, ¥, p):= % (@ — /PR, &, P) + )+ 1). (3.1)

Denote Fg, Fy4, and Fy the partial derivatives of F with
respect to R, ¥, and Y, respectively. Substituting feed-
back law (2.9) into the system (2.1), and linearizing the
closed-loop system at the equilibrium points (2.7) give an
A matrix of the form

—oR. —20R.®. O
A=| — 30, — 3R, —1{. (3.2)

Elementary row operations transform the matrix
A — trace{A}I into

%Re - F‘P
— 39,
FR - 3¢e(aRe + % Re)
— 20R. D, 0
oR, — Fy —1

FtP + (GRe - F‘I’)(O-Re + % Re) 0

Thus the determinant of A — trace{A}I is obtained as
F¢(%Re_F*P)+(%Re +O-Re) (O-Re_F‘I’)(%Re_F'I’)
+ 26R. P Fr — 66R. P35 R, + oR.).

Multiplying the above by f* and making substitution:

=—p \/>05R,
1—\/7%

— B 2<O‘(Re’ fj/l{i + Ue +\/>th/>,

F (Re» ¢e’ q/

F¢(Re> (pe: lII

F‘I’(Re’ ¢es 'Ile) =

O((Rea P, 'I/e) + phe = (33)

St 1
Jo

we obtain the test function

1
T @ ) = (1 =/ Tna)E R + 5 -

+/Ver) = 2B20R D/ Pt

— 6p*cR2DI3 + 0)

D, + 1
R R.f% +
+ R.(3 + 0)(6R.p* + v

2 o, + 1
+ Teﬁxw)<3 R.p* + Sy +V Te“lp)- (3.4)

Since ¥. and R. are functions of @, by Eq. (2.7), the
function Ty, has only two independent variables
@, and f. The following result follows from Lemma 3.1.

Theorem 3.1. Suppose that
THopf(¢e> ﬁ) ;é Oa for(¢e7 ﬁ) € (¢ela ¢62) X (0> ﬁl] (35)

where —1 <@y <®., <1 and f{>0. Then closed-
loop system (2.3)+2.9) has no Hopf bifurcation at the points
(27)f0r ﬁ € (07 ﬁl] Cll’ld ¢e € (¢ela ¢e2)'

Remark. The condition in Theorem 3.1 is sufficient.
However, it becomes necessary if no stationary bifurca-
tions exist at points of Eq.(2.7), and if the feedback
softens the transcritical bifurcation at point (2.8). More
specifically, if the feedback satisfies Eqs. (2.11) and (4.3) in
the next section, then condition (3.5) holds if and only if
the system (2.3)+2.9) has no Hopf bifurcation at the
points of Eq. (2.7) for the given interval of .

Remark. Consider a linear feedback

Suppose that k3 >0. Then 3R.f> + (®, + 1)2¥, +
\/?60(.1, > 0. Therefore for any fixed f3;, a large value of
— k, guarantees that TyepdP., f) # 0. This argument
proves the fact that, for any given domain
D = (®.4, D.,) % (0, f1], there always exists a state feed-
back under which the system does not have Hopf
bifurcation point in D.

4. Test function for the existence of stationary
bifurcations

In this section, a function of @, is obtained to test the
existence of stationary bifurcations at nonaxisymmetric
equilibrium points given by Eq. (2.7). Based on the test
function, sufficient conditions are given under which the
feedback removes the saddle-node bifurcation (ii) from
the closed-loop system.

In this section, we still focus on the nonaxisymmetric
equilibrium points. Consider matrix A in Eq. (3.2).
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Substituting Eq. (3.3) into det(A4) yields

det(4) = “ReT VAL ( — 20,0,

N +1+ 3+15<p
2y 2 0 2 °°¢

Ly %) @)

N2

The following function

+1
Tstationary((pe) = - 2¢eaR + <2'II3/2 + OC'I’)

+ g 4.2)

is called the test function for stationary bifurcations
along curve (2.7). Since R, # 0 and ¥, # 0 at the points
of Eq. (2.7), det(4) = 0 if and only if Tyagionary = 0. It is
known that the closed-loop system (2.3)«2.9) has no
stationary bifurcation if the “A” matrix of linearization
has full rank. This is equivalent to the fact that
T'stationary 7 0. Therefore the following result holds.

Theorem 4.1. On the branch of nonaxisymmetric equilib-
rium points (2.7), closed-loop system (2.3)42.9) has no
stationary bifurcation for @, € (., D.,) if

Tstationary(gpe) 7& 09 (pel < Qe < (peZ' (43)

Remark. It is easy to check that

dR, dvy,
det(A4) = aRe<— Fy— FR?Q - Fwd@e >>
dR, dv. du
Fs+ F F F— =0.
o+ Rd(P + Wd + ”d¢

Therefore Taionar(@e) = (B2/</ P )F (dpte/d D). This im-
plies that the system can have statlonary bifurcation at
those points where u has a local extreme value. For
example, it is shown in McCaughan (1990) that system
(2.1) has a saddle-node bifurcation at the operating point
where y has a local maximum value.

If the linear feedback law (3.6) is used, the test function
for stationary bifurcation is

P, +1
Tslalionary(¢e) = — 2¢ kl < + k3>
X(=3+5 0+ —= + k. (44)

Remark. Since the values of @, and ¥, are bounded on
curve (2.7), the function as in Eq. (4.4) is always less than
zero if the value of — k, is large enough for any fixed
values of k; and k;.

It is known in Section 3 that condition (3.5) holds if
— k, is sufficiently large and k3 > 0. A positive k3 and
a large value of — k, can also soften the transcritical
bifurcation at the point (2.8) (Theorem 2.1). The remark
above shows that a large value for — k, guarantees
inequality (4.3). The combination of these results implies
the existence of a state feedback law satisfying Eq. (2.11)
such that the closed-loop system has no stationary nor
Hopf bifurcation points of Eq. (2.7) in (@, 4, D.,) X [0, f1].
In summary, we have the following result on the exis-
tence of a feedback law which treats the three bifurca-
tions (i)—(iii) simultaneously.

Theorem 4.2. Given —1 <@, <®, <1 and f{ >0,
there always exists a (linear) state feedback law
(2.9) satisfying Egs. (2.11), (3.5) and (4.3) in (P, f)e
(Pe1, DPer) X (0, B1]. Under this feedback, the closed-loop
system (2.3)+2.9) meets the following requirements:

(a) The state feedback softens the transcritical bifurca-
tion at point (2.8).

(b) There is no stationary bifurcation for the closed-loop
system at the nonaxisymmetric equilibrium points
(2.7), provided that @, € (®.q, D.»).

(c) The closed-loop system has no Hopf bifurcation
point along curve (2.7) if (D, f) € (D1, Pe>) X (0, f1].

Remark. The conclusion (c) does not necessarily imply
the vanish of periodic solution. It is possible that, a Hopf
bifurcation occurs at a point of Eq. (2.7) with fyg > f;.
The periodic solution may bifurcate into the region of
f < Pus. This implies the existence of periodic solutions
for p (0, f,]. However, the conclusions (b) and (c) to-
gether imply that the periodic solution must be unstable
if it exists for some f§ € (0, ;], and its amplitude decays to
zero eventually. Practically, the closed-loop system does
not exhibit surge with rotating stall under the state feed-
back given in Theorem 4.2. Furthermore, the example in
Section 6 shows that the closed-loop system can have
a periodic solution only around (R., @., ¥.) which is not
close to (Ry, @y, Vo) if f (0, 1].

5. Stability of the periodic solution around a Hopf
bifurcation point

In this section, a method is proposed to determine the
stability of the periodic solutions in the presence of Hopf
bifurcations. The Hopf bifurcation is called supercritical
if the periodic solutions are stable, and called subcritical
if the periodic solutions are unstable.

Suppose that the feedback satisfies the conditions in
Theorem 4.2. The linearization of the closed-loop system
at a point of Eq. (2.7) does not have pure imaginary
eigenvalues for § € (0, f,]. However, it is possible to have
a Hopf bifurcation inception point fyg which is larger
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than ;. In other words, the feedback “delays” the Hopf
bifurcation, but does not eliminate it. In this case, the
stability of the periodic solutions needs be determined.

Suppose that the linearization matrix 4 of closed-loop
system (2.3)+2.9) has a pair of imaginary eigenvalues
+w,/ —1 at a point (R., @, ¥.) for f = fus. Then,
there exists a nonsingular matrix T satisfying

0 —w O
T AT =lw 0 0
0 0o 2

The linear change of coordinates
[z, z, z3]"=T[R—R, ®—, ¥ —-¥]" (51)

transforms Egs. (2.3)+(2.9) into the following form:

Zl 0 — W 0 Z1 1[2](219 Z2, Z3)
L=|lo 0 0||z|+ | e, 22 25)
Zs 0 0 2llz 12Az1, 25, 23)

+ O(2)*. (52)

The center manifold of Eq.(5.2) has the form
z3 = m(zy, z,) such that the first-order derivatives of
n(z4, z,) equal zero at (0, 0). Furthermore, it satisfies the
following equation:

in +f3[2](zla Z2, TC) + o

on

= 57( —wz;, + I zy, 20 m) + o)
1
on 21
+762 (wzy + f27z1, 22, ) + ---). (5.3)
2

From the results in Carr (1981), the center manifold is
approximated to the quadratic degree by solving
Eq. (5.3) to the second degree. By comparing the
quadratic terms in Eq. (5.3), we have the following.

Corollary 5.1. Let  7(zy, z,) = azi + bzyz, + cz3 +
O(zy, 2,)°, then the coefficients a, b and ¢ are given by
a Y e
bl=|200 1 — 2w Vaizs | (5.4)
c 0 w A Virz,

where ... is the coefficient of z;z; in 12z, z,,0).

The reduced dynamic system on the center manifold is
obtained as

B P B I e |
= -+
Z, w 0 Z, 12z, 25, )

_ fl(zla Zz)
- [fz(zb 22)]' (5.5)

Then define

_ 1 - ~ = _
THopf = 1_6 (flzlz121 +f221zlz2 +flzlzzz2 +f2222222)

1 - ~ - - _
+— (flzlzz(flzlzl +f1z2z2) _szlzz(f2z1z1
16w

+ﬁzzzz) _ﬁzlzlﬁzlzl +f_12222f_22222)> (56)

where all the partial derivatives are evaluated at the
equilibrium point (z4, z,, z3) = (0, 0, 0). Since points (2.7)
are determined by the value of @,, Ty can be con-
sidered as a function of @,. It is proved in Glendinning
(1994) that the Hopf bifurcation is supercritical if
Thopr < 0, and is subcritical if Ty,pr > 0. A drawback of
this test function is that a compact formula for Ty, is
not available because it involves the eigenvalues and
eigenvectors. This made the theoretical analysis difficult.
However, given any equilibrium point of Eq. (2.7) and
any Hopf bifurcation inception point f§ = fyg, the value
of Th,pr can be computed rather easily. The computation
of T is coded in MAPLE, which is used in the example
and the simulation in the next section.

6. A design example and discussions

In this section, Theorem 4.2 is applied to system (2.1)
and a feedback law is designed which removes the hyster-
esis and guarantees elimination of surge with rotating
stall in the system performance for a given range of f and
®@,. The data for our simulation is from the MG3 com-
pressor of Caltech:

A =125, I,=21.67, B=02, a=01,
H =0.0616, W =0.1341, ¥, =0.1469.
The values of ¢ and f§ are

3al 2BH
= °_ =15.7756 =——=0.1837.
T 1t+a ’ b w

Suppose that the parameter f is varying in the finite
interval (0, 0.8). There exists a linear feedback law as in
Eq. (3.7) satisfying the conditions in Theorem 4.2, that in
turn is equivalent to

k, < 0.6825, ks> —0.3179,
2ky — ky — 6ks > 1.2249. (6.1)

We choose k; = 0. Therefore, it is not necessary to
measure the rotating stall. It is known from the
previous sections that one method of finding a feedback
satisfying Eq. (3.5) and (4.3) is to fix k3 > 0, and then
choose a value for — k, which is large enough. We
take k, = —4.7,k; =0.5. The plots of the functions
T stationary a0d Ty (see Figs. 2 and 3) show that these two
functions do not equal zero for &.e(—1,1) and
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p e (0,0.8). In other words, conditions (4.3) and (3.5) are
satisfied.

Therefore, the closed-loop system under the linear
feedback

U= —47d — do) + 0.5(¥ — Vo) (6.2)

meets the requirements (a)-(c) in Theorem 4.2. More
specifically, the closed-loop system has the following
properties: (a) the feedback softens the transcritical bifur-
cation at point (2.8); (b) the closed-loop system does not
have any stationary bifurcation around the points in the
set of Eq. (2.7); (c) there is no Hopf bifurcation point for
(@, P)e(— 1,1)x(0,0.8); (d) the closed-loop system is
locally asymptotically stable at all the nonaxisymmetric
equilibrium points (2.7) if 0 < f < 0.8.

hi

-8

Flg 2. The graph of Tstalionary(¢e)'

Simulations are carried out to test the performance of
the designed feedback. The stability of the system is
illustrated for f = 0.18 with the responses of the state
variables (x, X5, Xx3) = (R — R, ® — @, ¥ — V) versus
time variable ¢ as shown in Fig. 4. The initial values are
R=045 & = —0.7 and ¥ = 1.58 with &, = — 0.5 for
Fig.4a,and R = 045, ® = 0.7 and ¥ = 0.4 with &, = 0.5
for Fig. 4b.

Fig. 5 shows the trajectory of a different simulation, in
which the feedback is used to control surge in the pres-
ence of rotating stall. As pointed out in McCaughan
(1990), stable periodic solutions exist near the
nonaxisymmetric equilibria if ¥ o, > ~2.07. In this simu-
lation, the parameters are chosen as ¥, =2.5 and
p =0.6698. At time ¢ = 0, the system has no feedback
control, and rotating stall cells coupled with surge appear
at u = 0.9029, which is the periodic curve shown in solid
line in Fig. 5a. At time & = 50, feedback (6.2) is applied to
the system, and the state variables are driven to the
operating point (2.8). See the dotted curve in Fig. 5a.
Fig. 5b shows the response of the state variables
(%1, X2, x3) =(R— Ry, ® — &y, ¥ — ¥,) versus time ¢&.
In the simulation, the parameter u in the closed-loop
system assumes its nominal value u = 0.9428. Otherwise,
the states may converge to a different point nearby. The
system can have both supercritical and subcritical Hopf
bifurcations at fyp > 0.8. The plot of Tyyp(®.) is shown
in Fig. 6. For |®,| < ~0.61, the Hopf bifurcation is sub-
critical because Tyepr > 0. For [@ > ~0.61, Tyop(P.)

< 0 and the Hopf bifurcation at Sy is supercritical. At
a point of Eq. (2.7) near @, = 1, the Hopf bifurcation is
supercritical and the system is stable for f e (0, 0.8).
Therefore, there are no periodic solutions around a point
of Eq. (2.7) near Eq. (2.8) if 0 < f# < 0.8. However, if
p > 0.8, it is possible to have stable periodic solutions.

0.81

Fig. 3. The graph of Tyeu(®Pe, ).
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Fig. 5. Periodic trajectory in 5(a) and state time response in 5(b).
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-0.44

-0.67
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1t

Fig. 6. The graph of Tiop(Pe).

Fig. 7 is the graph of a periodic solution at p = 0.7801,
p = 1.3476.

It is known that the value of f§ is dependent on the
value of B, which combines wheel speed, volume of
plenum and cross-sectional area of the compressor duct.
Among other factors, a plenum with larger size can
increase the value of . In order to control the surge
coupled with rotating stall for larger values of f, it is
necessary to use larger gain in the feedback. Numerical
experiments are carried out to obtain the feedback law

for fe(0,1.8). In this interval of f, the upper limit is
almost ten times as large as the value of f introduced at
the beginning of this section. Since the system is not likely
to run very close to the equilibrium with &, = — 1, we
focus on the interval @.e(— 0.7, 1). The gains in the
state feedback law are

kl = 0, k2 = — 165, k3 = 23

The graph of T yutionary @0d Tyy,p are shown in Figs. 8 and
9, respectively. The test functions do not equal zero for

(@, f)e [ — 0.7, 1)x (0, 1.8). (6.3)

Therefore, the closed-loop system meets the requirements
(a)~c) in Theorem 4.2. In other words, the closed-loop
system is stabilized at the equilibria with @, e[ — 0.7, 1)
and there is no Hopf bifurcation point on Eq. (2.7) if
(P, p) lies in domain (6.3).

Before concluding this section, it is necessary to com-
pare our proposed design method with the existing ones
as in Eveker et al. (1995) and Kirstic et al. (1995). Both
investigated rotating stall and surge control with differ-
ent feedback laws. In Eveker et al. (1995) the feedback
law is a linear combination of rotating stall control law in
Liaw and Abed (1996) and surge control law of Badmus
et al. (1996). Specifically the control input is given by

u= KR + K.

It was shown in Eveker et al. (1995) that such a control
law is effective for simultaneous control of rotating stall
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Fig. 8. The graph of Tagionary(Pe)-

and surge. Moreover, the above control law is experi-
mentally validated. Our control method is apparently
different from that of Eveker et al. (1995). We have
employed the same feedback control law for both rota-
ting stall and surge controls, and the use of derivative of
flow rate @ is avoided. More importantly the surge con-
trol law of Badmus et al. (1996) is derived from nonlinear
model-based Luenberger-type observer, and our surge
control method is based on Hopf bifurcation theory.
Hence our results provide an alternative for the compres-
sor control law proposed in Eveker et al. (1995). Regard-

Fig. 9. The graph of TypdPe, f).

ing the control law in Krstic et al. (1995), the global
stability of the peak operating point was shown using
backstepping method. While global stability is important
and impressing, its robustness is not clear especially with
respect to the throttle and B parameters at critical oper-
ating points of Eq. (2.7) due to the possible Hopf bifurca-
tion associated with surge. Our results are local (that is
also the case for the work of Eveker et al. (1995). How-
ever, the stability of the equilibrium trajectory achieved
using both our method and the method of (Eveker et al.,
1995) admit certain robustness with respect to the
throttle and B parameters.
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7. Conclusion

In summary, the contributions of this paper are (a) test
functions are obtained for closed-loop systems under any
nonlinear state feedbacks, which can be used to test the
existence of stationary or Hopf bifurcations and to test
the stability of periodic solutions; (b) feedback design
method is given which can meet several bifurcation con-
trol requirements, mainly to soften the transcritical bifur-
cation and to remove stable periodic solutions around
nonaxisymmetric equilibria within a given range of
parameters. Comparisons are made with existing results
for rotating stall and surge control investigated in Krstic
etal. (1995) and Eveker and et al. (1995). Stabilization
results are demonstrated with numerical simulations.
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