

Phosphorus, Sulfur, and Silicon and the Related Elements

ISSN: 1042-6507 (Print) 1563-5325 (Online) Journal homepage: www.tandfonline.com/journals/gpss20

A FACILE ONE STEP SYNTHESIS OF [3-(2-HYDRAZINO-4-THIAZOLYL) COUMARINO] DIMETHYL METHINES AND SOME 3-SUBSTITUTED-7H-6-(6/8,6,8-SUBSTITUTED-3-COUMARINO)-S-TRIAZOLO[3,4-b][1,3,4]THIADIAZINES

V. Rajeswar Rao, V. Ravi Kumar & V. Aditya Vardhan

To cite this article: V. Rajeswar Rao, V. Ravi Kumar & V. Aditya Vardhan (1999) A FACILE ONE STEP SYNTHESIS OF [3-(2-HYDRAZINO-4-THIAZOLYL) COUMARINO] DIMETHYL METHINES AND SOME 3-SUBSTITUTED-7H-6-(6/8,6,8-SUBSTITUTED-3-COUMARINO)-S-TRIAZOLO[3,4-b][1,3,4]THIADIAZINES, *Phosphorus, Sulfur, and Silicon and the Related Elements*, 152:1, 257-264, DOI: [10.1080/10426509908031634](https://doi.org/10.1080/10426509908031634)

To link to this article: <https://doi.org/10.1080/10426509908031634>

Published online: 24 Sep 2006.

Submit your article to this journal

Article views: 76

View related articles

Citing articles: 1 View citing articles

A FACILE ONE STEP SYNTHESIS OF [3-(2-HYDRAZINO-4-THIAZOLYL) COUMARINO] DIMETHYL METHINES AND SOME 3-SUBSTITUTED-7H-6- (6/8, 6, 8-SUBSTITUTED- 3-COUMARINO)-s- TRIAZOLO[3, 4-b][1, 3, 4]THIADIAZINES

V. RAJESWAR RAO*, V. RAVI KUMAR and V. ADITYA VARDHAN

*Department of Chemistry, Regional Engineering College, Warangal 506 004 (AP),
India*

(Received May 02, 1998; In final form March 02, 1999)

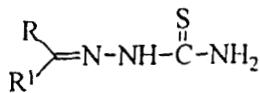
Some [3-(2-hydrazino-4-thiazolyl) coumarino]dimethyl methine derivatives (III) have been prepared by the condensation of 3-(2-bromoacetyl)-coumarin and thiosemicarbazide in acetone. These compounds formation was further confirmed by the condensation of acetone thiosemicarbazone (I) and p-N,N-dimethyl amino benzaldehyde thiosemicarbazone (II) with 3-(2-bromoacetyl)coumarin in anhydrous ethanol and dimethyl formamide in a two step process. 3-Substituted-7H-6-(6 or 8 or 6,8-disubstituted 3-coumarino)-s-triazolo[3, 4-b] [1, 3, 4]thiadiazines (V) have also been prepared from simple condensation of appropriate 4-amino-5-mercaptop-1, 2, 4-triazole with various 3-(2-bromoacetyl) coumarins in anhydrous ethanol and dimethyl formamide.

Keywords: Thiadiazine; thiazole; thiazolyl coumarin

INTRODUCTION

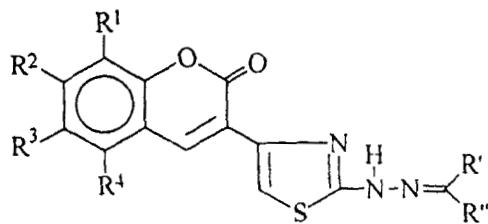
Coumarin nucleus is found in a variety of natural products which exhibit various pharmacological effects. Derivatives of coumarin also form components of important drugs having varied properties. There are excellent monographs and review articles^[1-5] describing the structure, synthetic reactions and properties of coumarin. Numerous reports have appeared in the literature describing antimicrobial^[6,7], antiradiation^[8,9] and antipara-

* Corresponding Author.

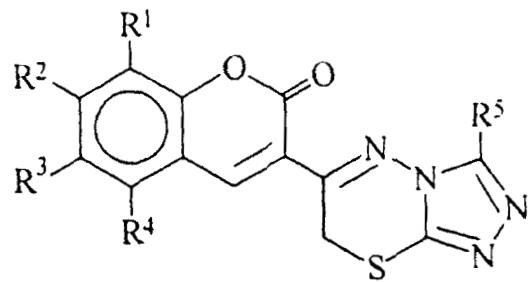

sitic [10] properties of the thiazole ring. Various 1, 2, 4-triazoles and N-bridged heterocycles derived from them are found to be associated with diverse pharmacological activity^[11-16]. The 1, 2, 4-triazole nucleus has recently been incorporated into a wide variety of therapeutically interesting drugs including H₁/H₂ histamine receptor blockers, choline esterase active agents, CNS stimulants antianxiety agents and sedatives^[17].

Prompted by the above observations and in continuation of our search for biologically active nitrogen and sulfur containing heterocycles^[18-20] it was decided to synthesize these heterocyclic coumarins.

RESULTS AND DISCUSSION


Synthesis of [3-(2-hydrazino-4-thiazolyl)coumarino]dimethyl methine (III) derivatives has been achieved by the condensation of 3-(2-bromo acetyl)coumarin, thiosemicarbazide and acetone in a single step under cold condition. The structure of these compounds were further confirmed by condensation of 3-(2-bromoacetyl)coumarins with acetone thiosemicarbazone (I) in anhydrous ethanol and dimethyl formamide. The compounds obtained by both methods are identical (by mixed m.p. measurements, Co-TLC, IR spectra). Reaction of p-N,N-dimethyl amino benzaldehyde thiosemicarbazone (II) with 3-(2-bromoacetyl)coumarin in anhydrous ethanol and dimethyl formamide resulted in the formation of [3-(2-hydrazino-4-thiazolyl)coumarino]phenyl methine. All the [3-(2-hydrazino-4-thiazolyl)coumarino]dimethyl methine (III) derivatives and corresponding phenyl methine derivatives (IV) displayed characteristic absorption bands due to C=N and lactone C=O at 1608 and 1716 cm⁻¹. The ¹H-NMR spectra of IIIa exhibited a characteristic singlet for the thiazole and coumarin C₄-protons at 87.9 and 8.6 respectively. The remaining protons are observed in the usual region (Table I).

The 7H-6-(6 or 8 or 6, 8-substituted 3-coumarino-s-triazolo[3,4-b]-[1,3,4]thiadiazines (V) were synthesized by condensing various 4-amino-5-mercapto-1, 2, 4-triazoles with 3-(2-bromoacetyl)coumarins in equal volumes of anhydrous ethanol and dimethyl formamide. All the compounds displayed strong absorption bands due to -C=N- and lactone carbonyl of coumarin absorptions at 1644 and 1716 cm⁻¹. The ¹H-NMR spectrum of Va exhibited a characteristic singlet for -CH₂- of thiadiazine at 84.5. The remaining protons were observed in the expected regions (Table I).


I) $\text{R} = \text{R}^1 = \text{CH}_3$

II) $\text{R} = \text{H}, \text{R}^1 = \text{p-Dimethyl amino phenyl}$

III) $\text{R}' = \text{R}'' = \text{CH}_3$

IV) $\text{R}' = \text{H}, \text{R}'' = \text{p-Dimethyl amino phenyl}$

(V)

TABLE I Spectral Data of Compounds

Compd	IR C=N	(ν _{max} cm ⁻¹) -C-O- (lactone)	¹ H-NMR (δ ppm) ^a	Mass spectra (m/z %)
IIIa	1608	1722-3	2.18(s,6H, 2 \times CH ₃), 7.39-7.80 (m,4H Ar-H), 7.80(s,1H,C ₅ of thiazole), 8.68(s,1H,C ₄ of coumarin), 11.8-12.0 (b,s,1H, NH, D ₂ O exchangeable)	102(12), 145(15), 173(22), 174(20), 243(25), 257(10), 284(85), 299(100%)
IIIb	1610	1722-3	2.21(s,6H, 2 \times CH ₃), 4.0 (s,3H,OMe), 7.16-7.40 (m,3H,Ar-H), 7.88(s,1H,C ₅ of thiazole), 8.59(s,1H,C ₄ of coumarin), 11.8-12.0(b,s,1H,NH,D ₂ O exchangeable)	---
IV	1604	1 722-3	---	145(30), 146(2.7), 211(20), 244(100), 390(22)
Va	1644	1718	4.5(s,2H, -S-CH ₂), 7.8-8.8(m,4H, Ar-H), 8.6(s,1H, triazole), 8.8(s,1H, C ₄ of coumarin)	143(70), 171(7.5), 188(50), 203(30), 284(10).
Vb	1644	1718	4.0(s,3H, OCH ₃), 4.7(s,2H, -SCH ₂), 7.15-7.35(m, 3H,Ar-H), 8.45(s, 1H, triazole) and 8.6 (s, 1H, C ₄ of coumarin)	---
Vc	-	-	4.65 (s, 2H, -SCH ₂), 7.75 (d, 1H, J=2Hz), 8.0 (d, 1H, J=2Hz), 8.3 (s, 1H, triazole) and 8.45 (s, 1H, C ₄ of coumarin)	---
Vd	-	-	4.7 (s, 2H, -SCH ₂), 7.5 - 7.9 (m, 3H, Ar-H), 8.2 (s, 1H, triazole) and 8.7 (s, 1H, C ₄ of coumarin)	---
Vi	-	-	3.98 (s, 3H, OCH ₃), 4.9 (s, 2H, -CH ₂), 7.6 (d, 1H, J=2Hz, Ar-H), 7.8 (d, 1H, J=2Hz, Ar-H), 8.6 (s, 1H, triazole) and 8.8 (s, 1H, C ₄ of coumarin)	---

^aCompound IIIa, Va, Vb, is in CDCl₃ + DMSO-d₆, Vc, Vd and Vi is in DMSO-d₆ and IIIb in CDCl₃. Compound IV is insoluble in common organic solvents, hence, NMR could not be taken.

TABLE II Analytical Data of III, IV and V

Compd	<i>R</i> ¹	<i>R</i> ²	<i>R</i> ³	<i>R</i> ⁴	<i>R</i> ⁵	<i>m.p.</i> (°C)	Elemental Analyses— <i>Calcd.</i> (<i>Found</i>)			
	C	H	N	S						
IIIa	H	H	H			235–237	60.20	4.34	14.04	10.70
IIIb	OMe	H	H			220–222	58.35 (58.31)	4.55 (4.52)	12.76 (12.73)	9.72 (9.70)
IIIc	H	H	Br			255–257	47.61	3.14	11.11	8.46
IIId	H	Br	Br			205–207	47.58 (39.35)	3.14 (2.20)	11.10 (9.16)	8.43 (7.00)
IIIe	OCH ₃	H	H	NO ₂		219–221	56.14	4.09	16.37	9.35
IIIf	H	H	H	H		244–246	57.14 (57.11)	4.12 (4.10)	13.33 (13.30)	10.15 (10.12)
II Ig	Br	Br	Br	H		225–227	38.05	2.32	8.87	6.73
II Ih	OH	OH	Cl	H		240–242	38.00 (53.97)	2.30 3.59	(8.84)	(6.70)
II Ii	Cl	Cl	Cl	H		236–238	48.91 (48.90)	2.98 (2.95)	11.21 (11.20)	8.69 (8.66)
IVa	H	H	H	H		265–267	64.12 (64.00)	5.34 (5.31)	14.24 (14.20)	8.14 (8.10)
Va	H	H	H	H		168–170	54.92 (54.91)	2.81 (2.78)	19.71 (19.68)	11.26 (11.23)

Compd	$R^1 R^2$	$R^3 R^4$	R^5	$m.p. (^\circ C)$	Elemental Analyses – Calcd. (Found)			
					C	H	N	S
V _b	OCH ₃	H	H	115–117	53.50 (53.46)	3.18 (3.14)	17.83 (17.80)	10.19 (10.14)
V _c	Br	Br	H	85–87	35.29 (35.25)	1.35 (1.32)	12.66 (12.63)	7.23 (7.21)
V _d	H	Cl	H	110–112	18.97 (18.96)	2.19 (2.16)	17.58 (17.55)	10.04 (10.00)
V _e	Cl	Cl	H	198–200	44.19 (44.15)	1.69 (1.65)	15.86 (15.83)	9.06 (9.00)
V _f	C ₄ H ₄	H	H	115–117	61.07 (61.00)	2.99 (2.96)	16.76 (16.73)	9.58 (9.54)
V _g	H	H	H	123–125	54.93 (54.90)	2.81 (2.80)	19.71 (19.68)	11.26 (11.23)
V _h	Br	Br	H	145–147	35.29 (35.25)	1.35 (1.31)	12.67 (12.62)	7.23 (7.20)
V _i	OCH ₃	Br	H	123–125	44.56 (44.52)	2.38 (2.34)	14.85 (14.81)	8.48 (8.46)
V _j	OMe	NO ₂	H	135–137	48.90 (48.86)	2.62 (2.60)	20.40 (20.36)	9.32 (9.30)

Compounds IIIa–IIIi were recrystallized from MeOH. Compounds IVa, Va to Vj were recrystallized from Ag-DMF. All compounds were obtained in 70–85% yield.

EXPERIMENTAL

All melting points were determined in open capillary tubes using sulfuric acid both and are uncorrected. IR spectra ($\nu_{\text{max}} \text{ cm}^{-1}$) were recorded on Perkin Elmer-282 instrument. The $^1\text{H-NMR}$ spectra were recorded on a varian 200 MHz spectrometer using tetramethyl silane as internal standard chemical shift values are expressed in δ ppm. Mass spectra were scanned on a Jeol-JMS-300 spectrometer at 70 eV. The purity of compounds was monitored by TLC performed on silicagel plates (Merck) using benzene and acetone (3:1) solvent.

The 4-amino-5-mercapto-1, 2, 4-triazole^[21] and 3-(2-bromoacetyl) coumarins^[22] were prepared according to the literature procedure.

Synthesis of [3-(2-hydrazino-4-thiazolyl)coumarino]dimethyl methine (IIIa)

A mixture of 3-(2-bromoacetyl)coumarin (0.01 mol) and thiosemicarbazide (0.01 mol) was taken in 20 ml of acetone and stirred for 5 minutes at room temperature. The solid separated was filtered and recrystallized viz. Table I.

Alternative synthesis of IIIa

A mixture of acetone thiosemicarbazone (0.01 mol) and 3-(2-bromoacetyl)coumarin (0.01 mol) was refluxed in an equal volumes of anhydrous ethanol and DMF for 30 minutes. The resulting solid was filtered and recrystallized viz. Table I.

Synthesis of [3-(2-hydrazino-4-thiazolyl)coumarino]-p- N,N-dimethylamino phenyl methine (IVa)

A mixture of N,N-dimethyl amino benzaldehyde thiosemicarbazone (II, 0.01 mol) and 3-(2-bromoacetyl) coumarin (0.01 mol) in anhydrous ethanol and dimethyl formamide was refluxed for 30 minutes. The solid separated was filtered and crystallized viz. Table I.

Synthesis of 7H-6-(6 or 8 or 6, 8-substituted-3-coumarino)-s-triazolo-[3,4-b][1,3,4]thiadiazines (V)

An equimolar mixture of 4-amino-5-mercaptop-1, 2, 4-triazole (0.01 mol) and 3- (2-bromoacetyl) coumarin (0.01 mol) in anhydrous ethanol and dimethyl formamide (10 ml each) was heated under reflux for 2 hours. The reaction mixture was then cooled to room temperature. The precipitated triazolothiadiazines were collected by filtration washed with ethanol, dried and recrystallized viz. Table I.

Acknowledgements

The authors express their sincere thanks to the Principal, Regional Engineering College, Warangal for providing research facilities.

References

- [1] S. Wawzonek. *Heterocyclic Compounds*, John Wiley & Sons, New York, 2, 173 (1975).
- [2] F.M. Dean, *Naturally Occurring Oxygen Ring Compounds*, Butter Worths, London, 176 (1963).
- [3] R. Livingstone, *Rod's Chemistry of Carbon Compounds*, 2nd ed. 4, (1996), Elsevier Amsterdam (1977).
- [4] *Comprehensive Heterocyclic Chemistry*, ed. by Karritzky A.R. and Rees, C.W., 3, Pergaman Press, Oxford (1984).
- [5] J. Starnton, *Comprehensive Organic Chemistry*, ed. by Barton, D.H.R. and Ollis, W.D., Pergaman Press, Oxford, 4, 629 (1979).
- [6] M.D. Friedmann, P.L. Stoller, T.H. Porter and K.J. Folkevs, *J. med. Chem.*, **16**, 1314 (1973).
- [7] A.S. Hamamam and H.S. El-Kasher, *Egyptian Pharmaceutical Congress Cario*, 7–10, Dec. 1975.
- [8] R.D. Westland, M.H. Lin, R.A. Cooley Jr., M.L. Zuviester and M.M. Grenan, *J. med. Chem.*, **16**, 328 (1973).
- [9] P.S. Furmer, C.C. Heung and M.K. Luie, *J. med Chem.*, **16**, 411 (1973).
- [10] W.J. Ross, W.R. Jamieron and M.C. Mc Lower, *J. med. Chem.*, **16**, 347 (1973).
- [11] A. Walser, T. Flynn and C. Musan, *J. Het. Chem.*, **28**, 1121 (1991).
- [12] T. Hirota, K. Sajaki, H. Yumamoto and T. Nakayama, *J. Het. Chem.*, **28**, 257 (1991).
- [13] J.M. Kane, B.M. Barton, M.W. Dudley, S.M. Sorenson and M.A. Stueger, *J. med. Chem.*, **33**, 2772 (1990).
- [14] R.H. Bradbury and J.E. Rivett, *J. med. Chem.*, **34**, 151 (1991).
- [15] T. Kumamoto, K. Toyooka, M. Nishida, H. Kuwahara, Y. Yoshiyuki, J. Kawada and S. Kubota, *Chem. Pharm. Bull.*, **38**, 2595 (1990).
- [16] P.F.A. Ashour and S.A.H. Almazroa, *Farmaco*, **45**, 1207 (1990).
- [17] N.D. Heindel and J.R. Reid, *J. Het. Chem.*, **17**, 1 087 (1980) and references cited therein.
- [18] V. Rajeswar Rao, G. Mohan Rao, V. Ravikumar and V. Aditya Vardhan Phos. Sulf and Silicon, 996 Vol. 113, pp. 47–51 (1996).
- [19] P. Ravinder, V. Rajeswar Rao and T.V. Padmanabha Rao, *Collect. Czch. Chem. Commun.*, **53**, 326 (1988).
- [20] V. Aditya Vardhan and V. Rajeswar Rao, *Ind. J. Chem.*, **36B**, 1085 (1997).
- [21] Gotam Chandra Sahakushida Khayer and Md. Rabitll Isdam and Md. Shabudin Kabir Chowdhury, *Ind. J. Chem.*, **31B**, 547 (1992).
- [22] C.F. Koelsch, *J. Am. Chem. Soc.*, **72**, 2993 (1950).