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Abstract

In spite of having several advantages, [IR adaptive filters have not been getting their due share in applications because
of the need for stability monitoring during adaptation and uncertainty in convergence time for stochastic inputs which
can be mainly attributed to the involved nonquadratic criterion function. Because of this type of criterion function, it has
been very difficult to estimate the nature of convergence in the stochastic frame work. Recently, it is shown that the
ensemble mean parameter updating equations of the IIR adaptive algorithms can be represented by the associated
ordinary differential equations (ODEs). In this paper a method of solving the ODEs in order to analyse the mean
convergence behaviour of these filters, given the mean description of the input in the form of power spectral density is
presented. Further, this procedure is applied to study the convergence behaviour of general IIR adaptive filters.
Effectiveness of this method is shown through several analytical and simulation results obtained from two adaptive
filtering examples. © 1997 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Adaptive [IR-Filter haben trotz ihrer verschiedenen Vorteile keine grofe Bedeutung in den Anwendungen gefunden.
Dies ist begriindet durch die Notwendigkeit, wihrend der Adaption die Stabilitit zu beobachten sowie durch die
Unsicherheit beziiglich der Konvergenzdauer bei stochastischen Eingéingen, was vorwiegend auf die verwendete nicht-
quadratische Kriteriumsfunktion zuriickzufiihren ist. Wegen dieses Typs von kriteriumsfunktion war es sehr schwierig,
die Art der Konvergenz im stochastischen Rahmen zu analysieren. Vor kurzem wurde gezeigt, daB die tiber das Ensemble
gemittelten Parameterupdate-Gleichungen des adaptiven IIR-Algorithmus durch die zugeordneten gewohnlichen
Differentialgleichungen (ODE’s) reprisentiert werden konnen. In der vorliegenden Arbeit wird eine Methode zur Lésung
der ODE’s vorgestellt. Diese Methode dient zur Analyse des mittleren Konvergenzverhaltens dieser Filter bei bekannter
mittlerer Beschreibung des Eingangs durch die spektrale Leistungsdichte. Das Verfahren wird weiters auf die Untersuchung
des Konvergenzverhaltens allgemeiner adaptiver IIR-Filter angewandt. Die Effektivitiat dieser Methode wird durch
mehrere analytische und Simulationsergebnisse bewiesen, welche fiir zwei Beispiele adaptiven Filterns erhalten
wurden. © 1997 Elsevier Science B.V. All rights reserved.
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Résumé

Bien que présentant de nombreux avantages, les filtres adaptatifs ITR ne sont guére utilisés dans les applications du £
de la nécessité de contrdler leur stabilité durant 'adaptation et de lincertitude sur le temps de convergence pour d
entrées stochastiques, qui peut étre principalement attribuée a leur fonction critére non quadratique complexe. Ce!
fonction critére rend trés difficile estimation de la nature de la convergence dans un contexte stochastique. I a ¢
montré récemment que les équations de mise & jour des paramétres en moyenne d’ensemble des algorithmes adaptat
IIR peuvent &tre représentées par les équations differentielles ordinaires (ODE) associées. Nous présentons dans ¢
atricle une meéthode de résolution de ces ODE permettant d’analyser le comportement de convergence moyen de ¢
filtres, sur la base d’une description moyenne de I'entrée sous la forme de sa densité spectrale de puissance. Subséquemme
cette procédure est appliquée a I'étude du comportement de convergence de filtres IIR adaptatifs généraux. L’efficacité
cette méthode est montrée par plusieurs résultats analytiques et de simulation obtenus sur deux exemples de filtra
adaptatif. © 1997 Elsevier Science B.V. All rights reserved.
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1. Introduction

The last decade has seen an increased interest
in the area of IIR adaptive filters [1, 3, 5-8, 11, 19,
20]. It has been due to the following advantages of
IIR adaptive filters over their FIR counter parts. In
many situations, it is possible to approximate an
FIR filter of a large order by an IIR filter of a much
lower order. Further, an IIR filter may represent an
optimum structure (ARMA or ARMAX) for many
of the signals such as an AR signal process in noise
which is commonly encountered in practice [7, 11].
The main drawbacks of an IIR adaptive filter are
the need for stability monitoring during adaptation,
and the uncertainty in the convergence time for
stochastic inputs, which is as a result of the involved
nonquadratic performance surface. The nature of
convergence and convergence time may be different
even for the same input signal when the noise
sample set is different. In the case of IIR adaptive
filters, while handling stochastic signals, it is very
difficult to estimate the nature of convergence and
convergence time. If the estimator dynamics is
known, some idea regarding the stability and the
convergence time required can be obtained. There-
fore in such situations it is of interest to estimate the
nature including the time of ensemble mean conver-
gence, at least.

In this paper, we have presented a method of
analysing the ensemble mean-convergence behav-
iour of recursive adaptive filters, given the mean
description of the input. The basis for this analysis

is the ordinary differential equation (ODE) repre
entation of the recursive adaptive filters [10].

Originally, the ODE approach was presented |
Ljung for the convergence analysis of recursi
identification algorithms [10]. It was shown th
the asymptotic behaviour of an identificati(
algorithm can be obtained by solving the OD:.
corresponding to the identification algorith
The recursive algorithms use an adaptation ste
size which tends to zero as time tends to infinis
Whereas in an adaptive filter the step-si
is a constant so that the algorithm can tra
the variations in the input. Later, the ODE a
proach was extended to IIR adaptive filte
[2,4,13-16,18]. In [14] it was shown that t
ensemble mean behaviour of IIR adaptive filte
can be represented by their coresponding ODI
Earlier, we applied this approach to study t
convergence behaviour of constrained IIR adapti
filters [15, 16].

In this paper, we applied this approach to t
general IIR adaptive filters and derived a procedu
of obtaining the solution to the ordinary different;
equation representation of the adaptive algorithn
given the power spectral density of the input. Fu
ther, this procedure is applied to study the conv¢
gence behaviour of general IIR adaptive filters. T
ODE:s representing an IIR adaptive filtering alg
rithm are nonlinear and it is extremely difficult
obtain a general closed-form expression for conve
gence time and nature of convergence. It is or
possible to evaluate and find solutions for speci



R.V. Raja Kumar, C.B. Rama Rao [ Signal Processing 63 (1997) 229-240 231

filtering problems using numerical procedures.
Hence, a method of solving the ODEs given the
mean description of the input is derived in this
paper. This analytical method involves computation
of the ODE solutions numerically which can be
applied to study the convergence behaviour. This
analysis provides a means to obtain a good idea
about the nature of parameter adjustment, stability
and convergence time. Effectiveness of this method
1s shown through several analytical and simulation
results obtained from adaptive filtering examples.

This paper is organised as follows. In Section 2
the formulation for an IIR adaptive predictor and
the algorithm recursions of the recursive maximum
likelihood (RML) algorithm are presented. In Sec-
tion 3, the ODEs of the adaptive algorithms are
given. A method of obtaining the ODE solution is
also presented in this section. Section 4 describes
some analytical and simulation results obtained
from two problems of adaptive filtering. The im-
portant concluding remarks drawn from this work
are given in Section 5.

2. The formulation of an IIR adaptive predictor

Let us consider the problem of predicting an
ARMA process as shown in Fig. 1 for the derivation
of the analytical method. When the ARMA process
consists of a deterministic signal in noise, output of
the prediction filter yields enhanced output [20].
Let the prediction filter of order (p — 1,7) be given as

H(z) = %% )

where B(z)=b, + bz ' + - +b,z"?"' and
C@)=14ciz '+ - +cz"

Then the prediction error filter corresponding to
H(z) will be of order (p,r) which can be expressed as

Gz) =1 —z *H(2). (2)
In view of Egs. (1) and (2) the outputs of the

prediction and prediction error filters, respectively,
can be expressed as

2= ¢:0,- &)

t
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Fig. 1. Block diagram of the A-step predictor for the adaptive
enhancement of a signal corrupted by white noise.
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where 0, =[bib,...byc1c5...c,]" and ¢, =

[X - 1X—g e Xy p — Rimy . —%—,]". In a time-
varying situation b;’s and ¢;’s are time-dependent.
For simplicity of notation, the time-dependence is
suppressed from the equations.

The RML algorithm recursions for estimating
0, can be given as [7, 11]

& = X — ¢;r§t—1’ (5a)

5 1 4 Pt—1¢tl//tTﬁ:~1]

Pi=—-\Py -7} Sb
‘ ’1[ T+ Y P 1, (59)

gt = gt—l + Hptlpzﬁn (5¢)
where ¥, = ¢,/D(q) and
D(g)=1+kég™ '+ - +Keq™" (5d)

Here q is the delay operator and A is the forgetting
factor (0 < 4 < 1) used for computing the covarience
matrix P, recursively and u is the adaptation step-
size. k is an algorithm parameter which controls the
transient behaviour of the algorithm. Usually & is
taken as 1. Here Eq. 5(d) implies that ¢, is a vector
whose individual elements are obtained by filtering
the corresponding elements of ¢, by the all pole
filter with polynomial [1/D(q)] whose z-transform
is given by 1/D(z). When the adaptation is slow,
however, i, can be approximated to be consisting
of the delayed samples of x,/D(q) and X,/D(q). This
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algorithm is initialized by P(0) = oI and 8(0) =
0 where o is a suitable scalar. In the Gauss—
Newton algorithm form, (5) can be expressed as
[7,11]

gt = 9:—1 + I‘Rt_ I'I/tet,

(6)
R =AR,_y + Yy,

where R, = P, ! is the Hessian matrix.

3. Convergence behavioural analysis using the ODE
representation [9]

3.1. ODE representation

In [14], it is shown that the ensemble mean
updating equations of Egs. (5b) and (5c) can be
represented in the following ordinary differential
equation form:

dé,

’n = uP.E[Y(6)e(6))], (7a)
dpP, _ (1 B I)P _ P E[Y(0)YT(0)1P, -,

dt  \4 U A+ EYT0)1P— ¥(6)

(7b)

That is, the behaviour of the discrete-time algorithm
is expressed in terms of the corresponding continu-
ous-time ODE.

Here the denominator in Eq. (7b) involves com-
putation of E[y"(6,)P,-y(f,)] which can be ex-
pressed as

M

T PuELHGONEO,

i=1
where pj, is the (i,k)th element of the matrix P,_, and
¥(i,0,) is the ith element of the vector y(6,).

While the ODEs corresponding to the recursive
identification algorithms represent the asymptotic
behaviour [10], the ODEs corresponding to the
adaptive filters represent the ensemble mean behav-
iour [14]. The constant step-size used in adaptive
filters is responsible for this. In addition to the
regularity conditions required for the ODE repres-

entation given in [10], the ensemble mean repres-
entation requires an additional assumption on the
input and the adaptive filter. It is necessary that the
transient response of the adaptive filter dies down
before the input changes appreciably. This means
that there is a restriction on the rate at which the
input signal characteristics can vary. That is, the
rate of variation in the characteristics of the input
should be much smaller than the inverse of the
dominating time constant of the adaptive filter.
Further in [14] it is shown that the solutions of the
ODEs represent the mean trajectories of the para-
meter estimates, ,. It also means that the algorithms
converge in mean to the stable stationary points of
the ordinary differential equations.

3.2. Mean-convergence behavioural analysis

As explained in the Introduction, the convergence
behaviour of an adaptive filter in a specific applica-
tion can be obtained by solving the ODEs corres-
ponding to the algorithm, given the ensemble-mean
description of the input such as the power spectral
density (psd). When the input to be estimated is an
ARMA process, the expectations of the gradient
and the covariance matrix are nonlinear functions
of 6,. Then the differential equations are nonlinear
by nature. Therefore, to obtain analytical solutions,
given a general input description, we have to resort
to numerical procedures.

For solving these equations it is necessary
to compute the expectations of RICAVACAIN
[W(B)eB)] and [YG.OW(kB)] for 1<i<p,
1 < k < r. Expressions for these are derived in the
following way.

Let the psd of the discrete input be given as

P,,(2) = X(2)X"(2). ®

In view of Egs. (2), (4) and (5d), the z-transforms of
the error output of the prediction filter and the
regression vector can be expressed as

€(2) = G(2)X(2), ©
1
¥(z) = D@ 2(2), (10)
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where &(z) = [z7'X(2)...27 " " VX(z) — z 7 'H(z)
X(z)... —z""H(2)X(z)]. Then the expectations
required for solving Egs. (7a) and (7b) can be
expressed in terms of €(z) and ¥(z) as

1
ELOW 0] = 5 v o) F )
ELHO0)] = 5 preree) S 12
and

1
ELYG.0)w(k0)] = Emﬁw(i,zw*(k,z)‘—izf. (13

For 1 €i<p, 1 <k<r, where the + sign indi-
cates the Hermition operation. These integrations
can be computed using 0, and @,.[(z) using
Egs. (8)10) and can be used to solve Eq. (7). Here,
it is assumed that the power spectral density of the
input is known.

The procedure to obtain the ODE solutions can
be summarised as follows. At any given time t,
given the parameter vector §, and the input power
spectral description @,,(z), expectations of
(YO (0], [¥(0)e(0)] and [Y(i.0 (k0] can be
obtained using Eqgs. (11)(13). Substituting these in
the ODEs Eqgs. (7a) and (7b), the increments to the
ODEs at time ¢ can be computed numerically.
Using these increments 8, , ; can be obtained. Then
using 6,,, and input power spectral description,
the same procedure can be repeated to get 0, ,.
Continuing this procedure until 8, attains a value
very close to the optimum, the parameter trajecto-
ries can be obtained.

Usually, the convergence behaviour of an adap-
tive algorithm is tested for a known general input.
Then, the present analysis can be applied starting
with the known psd of the input @,(z). On the
other hand, when performance for specific input
signals is to be analysed, as a preliminary step, it is
necessary to first estimate the power spectral density
[@,.(2), z = €] of the input signal using any one of
the standard estimators such as the periodogram
and the maximum-entropy methods [12] before
applying the analytical procedure.

The parameter trajectories are the basis for the
study of convergence behaviour. Speed of conver-

gence, dynamics of the estimates during the process
of adaptation including the initial, intermediate and
final convergence, and the time taken for conver-
gence, etc., can be obtained from the ODE solutions.
Dependence of these on the input SNR and the
algorithm parameters also can be obtained from
these characteristics. Although this analytical
method cannot provide closed-form solutions for
the convergence analysis, it provides us with en-
semble convergence behaviour. Individual conver-
gence plots may deviate slightly from these
characteristics for noisy inputs. When the input
SNR is reasonably high, the deviation is not much
and the ODE solutions give us a good idea about
the nature of convergence including the convergence
time for stochastic inputs. In view of Egs. (8)H13), it
can be seen that the convergence is effected by
¢.(z) which includes power spectral density of the
input noise.

Since the extended least-squares (ELS) and re-
cursive least-squares (RLS) algorithms can be
treated as simplified and approximate versions of
the RML algorithm [7], the analytical method
presented here is applicable to these algorithms
also. Although the hyperstable adaptive recursive
filter (HARF) and its modified version (SHARF)
[3, 17] are based on a different reasoning, recursions
of these algorithms are also nearly the same as
those of the RLS algorithm but for using a filtered
gradient. Hence, the analytical procedure given here
is applicable for these algorithms also.

4. Experimental results

To examine the validity of the present analysis,
the analytical procedure derived in Section 3 is
applied to several adaptive filtering problems using
different algorithm parameters and SNRs. Here
we present some of the representative resuits ob-
tained from the following two examples of adaptive
filtering.

Example 1. In this example the output of a sec-
ond-order IIR system driven by pseudo-Gaussian
noise is considered as the deterministic part of the
noisy signal for prediction. The transfer function
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Fig. 2. Theoretical and simulated (a) pole and (b) zero parameter trajectories of the adaptive algorithm for ¢ = 0.02, A = 0.98 and
SNR = 1000.
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considered here is

_ 1 "f—CIZ—‘l +CZZ_2

T 1+ aiz Y +asz
1 —[2x0.8xcos(0.2m)]z" " + 0.64z"*
T 1—-[2x09co0s(0.31)] z~ ' + 081z 2

Glz)

2

where the normalised frequency and radius of the
conjugate poles are 0.15 and 0.9, respectively, and
the normalised frequency and radius of the conju-
gate zeros are 0.1 and 0.8, respectively. Variance of
the input noise = 1.0. Independent and appropriate
amount of pseudo-white noise is added to this system
output to form a noisy signal at different SNRs.

Example 2. The second example considered here
consists of two-sinusoids of different frequencies in

additive noise which may be expressed as
x, = +/25(cos w;it + /25,08 Wyt + Ay,

where S, and S, are the powers of the individual
sinusoides whose frequencies are w; and ,, respec-
tively.

1.20

0.20

Parameter

-0.80

-1.80

ot vy 4oy [ T B L4t f

1000

No. of

Here w; =25mn/128 and S; =10, and w, =
50m/128 and S, = 0.5. Variance of the input noise
= (S, + §,)/(the required SNR).

Fig. 2(a) and 2(b) illustrate the pole and zero
parameter trajectories of the system identification
problem. These figures include both the analytical
and individual simulation plots. These are obtained
for u =0.02, A = 098 and SNR = 1000.0. It is seen
from these figures that the theoretical plot which
gives the ensemble mean behaviour is in close
agreement even with the individual simulation plot.
From Fig. 2(a) it can be seen that the parameter
¢; attains near optimum value in around 3000
iterations. Fig. 3 illustrates the simulated ensemble
mean behaviour of the IIR adaptive algorithm along
with the analytical results. It shows the trajectories
of the first two parameters (#; and #,) of the
parameter vector, 0] = [0,,0,,03,0,]. This plot is
also obtained by applying the RML algorithm to
the system identification problem. The simulation
plot is obtained by averaging 50 individual simula-
tion plots. It can be seen from this plot that the
ensemble mean of the simulation results is in very

Theoretical
_______ Simulation

2000 3000 4000
Ilterations

Fig. 3. Comparison between the theoretical and mean-simulation parameter trajectories of the adaptive algorithm.
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Fig. 4. The (a) pole and (b) zeto parameter trajectories of the adaptive algorithm for the two sinusoidal input (input SNR = 10dB,
u=0.1and 1 = 0995).
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close agreement with the mean parameter trajectory
obtained by solving the ODBEs. It clearly shows that
the ODE solutions very closely yield the ensemble
convergence behaviour of the IIR adaptive algo-
rithms. To avoid redundancy, trajectories of rest of
the parameters are not included here.

Fig. 4(a) and 4(b) illustrate the pole and zero
parameter trajectories of the adaptive algorithm for
Example 2. These are obtained for an input SNR of
10 dB keeping the values of u and 4 at 0.1 and 0.995,
respectively. From these figures also it can be seen
that there is a very good agreement between the
theoretical and individual simulation results.
Since a high-input SNR is used, the parameter
noise variance is very small here. Fig. 5 presents
the simulated and theoretical pole parameter tra-
jectories for an SNR of 0dB while the values of
u and A are the same as those of Fig. 4. Since the
parameter noise variance increases with additive

3.50 —

—

3] ~

L

é} -

o 7 o=
— —

o

a —

noise power, Fig. 5 exhibits a higher noise variance
than Fig. 4. Comparing these plots, it can be ob-
served that the convergence speed increases with
the input SNR.

Figs. 6 and 7 are obtained for different values of
w and A while the input SNR = 0dB which is same
as that of Fig. 5. From all these figures, it can be
seen that there is a good agreement between the
theoretical and simulation results. These plots show
that the parameter ¢, attains the optimum value in
about 5000, 6000 and 2700 iterations, respectively.
It can be observed that the convergence speed is
proportional to u and (1 — ). To reduce the
redundancy, the zero parameter trajectories are not
included here. These figures illustrate that during
the initial convergence the adaptive algorithm is
very slow while during the intermediate convergence
it is very fast. The speed of final convergence falls
in between those of the initial and intermediate

----=---Theoretical
Simulation

-4.50 FIT T T T I YT [T ¥ T T T T T T i T T TI1 iy rrprrrrrTtTrTiTg
0 2000 4000 6000 8000
No.of lterations

Fig. 5. The pole parameter trajectories of the adaptive algorithm for the two sinusoidal input (input SNR = 0dB, z = 0.1 and 4 = 0.995).
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Fig. 6. The pole parameter trajectories of the adaptive algorithm for the two sinusoidal input (input SNR = 0dB, x = 0.05 and 1 = 0.995).

convergence. This kind of behaviour is as a result of
the nonquadratic performance function. Usually,
the slope of the criterion function is relatively small,
far away from the optimum. The slope increases
sharply as the parameter vector comes close to the
optimum. The parameter covariance also decreases
sharply as the optimum is approached which yields
a very fast intermediate convergences. The nature
and time of convergence is specific for the problem
and the input psd. However, the analytical results
are general enough to represent the mean charac-
teristics.

5. Conclusions

In this paper, a method of solving the ODEs,
which represent the ensemble behaviour of the TR

adaptive filtering algorithms is derived to analyse
the mean convergence behaviour of these filters.
This method uses the mean description of the input
in the form of the psd. Further in this work, this
procedure is applied to study the convergence
behaviour of an IIR predictor. Effectiveness of this
method is illustrated through several analytical and
simulation results obtained from two examples of
adaptive prediction.

It is shown that the analytical method presented
here can determine the ensemble convergence
behaviour of IIR adaptive filters, very accurately.
The speed of convergence is nearly proportional
to u(l —42) and increases slightly with the
input SNR. IIR adaptive filters exhibit slow initial
convergence and high intermediate convergence
speeds when initialised by values away from the
optimum.
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Fig. 7. The pole parameter trajectories of the adaptive algorithm for the two sinusoidal input (input SNR = 0dB, p = 0.05 and 1 = 0.985).

The present method of analysis yields conver-
gence results which are specific for the problem and
input. However, these are general enough to repres-
ent the ensemble behaviour which gives a good idea
regarding the nature and time of convergence.
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