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Abstract 

In spite of having several advantages, IIR adaptive filters have not been getting their due share in applications because 
of the need for stability monitoring during adaptation and uncertainty in convergence time for stochastic inputs which 
can be mainly attributed to the involved nonquadratic criterion function. Because of this type of criterion function, it has 
been very difficult to estimate the nature of convergence in the stochastic frame work. Recently, it is shown that the 
ensemble mean parameter updating equations of the IIR adaptive algorithms can be represented by the associated 
ordinary differential equations (ODES). In this paper a method of solving the ODES in order to analyse the mean 
convergence behaviour of these filters, given the mean description of the input in the form of power spectral density is 
presented. Further, this procedure is applied to study the convergence behaviour of general IIR adaptive filters. 
Effectiveness of this method is shown through several analytical and simulation results obtained from two adaptive 
filtering examples. 0 1997 Elsevier Science B.V. All rights reserved. 

Zusammenfassung 

Adaptive IIR-Filter haben trotz ihrer verschiedenen Vorteile keine grolje Bedeutung in den Anwendungen gefunden. 
Dies ist begriindet durch die Notwendigkeit, wahrend der Adaption die Stabilitlt zu beobachten sowie durch die 
Unsicherheit beztiglich der Konvergenzdauer bei stochastischen Eingangen, was vorwiegend auf die verwendete nicht- 
quadratische Kriteriumsfunktion zuriickzuftiren ist. Wegen dieses Typs von kriteriumsfunktion war es sehr schwierig, 
die Art der Konvergenz im stochastischen Rahmen zu analysieren. Vor kurzem wurde gezeigt, dal3 die iiber das Ensemble 
gemittelten Parameterupdate-Gleichungen des adaptiven IIR-Algorithmus durch die zugeordneten gewijhnlichen 
Differentialgleichungen (ODE’s) reprasentiert werden kiinnen. In der vorliegenden Arbeit wird eine Methode zur L&sung 
der ODE’s vorgestellt. Diese Methode dient zur Analyse des mittleren Konvergenzverhaltens dieser Filter bei bekannter 
mittlerer Beschreibung des Eingangs durch die spektrale Leistungsdichte. Das Verfahren wird weiters aufdie Untersuchung 
des Konvergenzverhaltens allgemeiner adaptiver IIR-Filter angewandt. Die Effektivitlt dieser Methode wird durch 
mehrere analytische und Simulationsergebnisse bewiesen, welche fiir zwei Beispiele adaptiven Filterns erhalten 
wurden. 0 1997 Elsevier Science B.V. All rights reserved. 
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Bien que presentant de nombreux avantages, les filtres adaptatifs IIR ne sont guere utilises dans les applications du f: 
de la nbcessite de controler leur stabilite durant l’adaptation et de l’incertitude sur le temps de convergence pour d 
entrees stochastiques, qui peut &tre principalement attribuee a leur fonction crittre non quadratique complexe. Cei 
fonction critere rend tres difficile l’estimation de la nature de la convergence dans un contexte stochastique. 11 a i 
montre rtcemment que les equations de mise a jour des paramttres en moyenne d’ensemble des algorithmes adaptat 
IIR peuvent Ctre represent&es par les equations differentielles ordinaires (ODE) associees. Nous presentons dans ( 
atricle une methode de resolution de ces ODE permettant d’analyser le comportement de convergence moyen de c 
filtres, sur la base dune description moyenne de l’entree sous la forme de sa densitt spectrale de puissance. Substquemme 
cette procedure est appliquke a l’ttude du comportement de convergence de filtres IIR adaptatifs generaux. L’efficacite 
cette methode est montree par plusieurs resultats analytiques et de simulation obtenus sur deux exemples de filtra 
adaptatif. 0 1997 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The last decade has seen an increased interest 
in the area of IIR adaptive filters [l, 3,5-8, 11, 19, 
201. It has been due to the following advantages of 
IIR adaptive filters over their FIR counter parts. In 
many situations, it is possible to approximate an 
FIR filter of a large order by an IIR filter of a much 
lower order. Further, an IIR filter may represent an 
optimum structure (ARMA or ARMAX) for many 
of the signals such as an AR signal process in noise 
which is commonly encountered in practice [7, 111. 
The main drawbacks of an IIR adaptive filter are 
the need for stability monitoring during adaptation, 
and the uncertainty in the convergence time for 
stochastic inputs, which is as a result of the involved 
nonquadratic performance surface. The nature of 
convergence and convergence time may be different 
even for the same input signal when the noise 
sample set is different. In the case of IIR adaptive 
filters, while handling stochastic signals, it is very 
difficult to estimate the nature of convergence and 
convergence time. If the estimator dynamics is 
known, some idea regarding the stability and the 
convergence time required can be obtained. There- 
fore in such situations it is of interest to estimate the 
nature including the time of ensemble mean conver- 
gence, at least. 

In this paper, we have presented a method of 
analysing the ensemble mean-convergence behav- 
iour of recursive adaptive filters, given the mean 
description of the input. The basis for this analysis 

is the ordinary differential equation (ODE) reprc 
entation of the recursive adaptive filters [lo]. 

Originally, the ODE approach was presented 1 
Ljung for the convergence analysis of recursi 
identification algorithms [lo]. It was shown th 
the asymptotic behaviour of an identificatic 
algorithm can be obtained by solving the OD: 
corresponding to the identification algorithm 
The recursive algorithms use an adaptation ste 
size which tends to zero as time tends to infini 
Whereas in an adaptive filter the step-si 
is a constant so that the algorithm can tral 
the variations in the input. Later, the ODE a 
preach was extended to IIR adaptive filte 
[2,4,13-16,183. In [14] it was shown that t 
ensemble mean behaviour of IIR adaptive filte 
can be represented by their coresponding ODI 
Earlier, we applied this approach to study t 
convergence behaviour of constrained IIR adapti 
filters [15, 161. 

In this paper, we applied this approach to t 
general IIR adaptive filters and derived a procedu 
of obtaining the solution to the ordinary different 
equation representation of the adaptive algorithn 
given the power spectral density of the input. FL 
ther, this procedure is applied to study the convc 
gence behaviour of general IIR adaptive filters. T 
ODES representing an IIR adaptive filtering alg 
rithm are nonlinear and it is extremely difficult 
obtain a general closed-form expression for convc 
gence time and nature of convergence. It is or 
possible to evaluate and find solutions for speci 
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filtering problems using numerical procedures. 
Hence, a method of solving the ODES given the 
mean description of the input is derived in this 
paper. This analytical method involves computation 
of the ODE solutions numerically which can be 
applied to study the convergence behaviour. This 
analysis provides a means to obtain a good idea 
about the nature of parameter adjustment, stability 
and convergence time. Effectiveness of this method 
is shown through several analytical and simulation 
results obtained from adaptive filtering examples. 

This paper is organised as follows. In Section 2 
the formulation for an IIR adaptive predictor and 
the algorithm recursions of the recursive maximum 
likelihood (RML) algorithm are presented. In Sec- 
tion 3, the ODES of the adaptive algorithms are 
given. A method of obtaining the ODE solution is 
also presented in this section. Section 4 describes 
some analytical and simulation results obtained 
from two problems of adaptive filtering. The im- 
portant concluding remarks drawn from this work 
are given in Section 5. 

2. The formulation of an IIR adaptive predictor 

Let us consider the problem of predicting an 
ARMA process as shown in Fig. 1 for the derivation 
of the analytical method. When the ARMA process 
consists of a deterministic signal in noise, output of 
the prediction filter yields enhanced output [20]. 
Let the prediction filter of order (p - 1,r) be given as 

H(z) =f& 

where B(z) = bi + b2ze1 + ... + b,zwP+’ and 
C(z) = 1 + ciz-r + ... + c,z_I. 

Then the prediction error filter corresponding to 
H(z) will be of order (p,r) which can be expressed as 

G(z) = 1 - z- ‘H(z). (2) 

In view of Eqs. (1) and (2) the outputs of the 
prediction and prediction error filters, respectively, 
can be expressed as 

t* = I#& 1 (3) 

xt 
Input 6t 

Prediction 
Error 

Fig. 1. Block diagram of the d-step predictor for the adaptive 

enhancement of a signal corrupted by white noise. 

and 

A 

E, = x, - x*, (4) 

where 0, = [bib2 . . b,clc2 . . . c,lT and 4t = 
[x~-~x~-~ . ..x._~ - z?_~ . . . - Xhr_l]T. In a time- 
varying situation bts and cI)s are time-dependent. 
For simplicity of notation, the time-dependence is 
suppressed from the equations. 

The RML algorithm recursions for estimating 
0, can be given as [7, 111 

where $t = 4JD(q) and 

D(q) = 1 + &c^lq-l + ... + Ri?,q-r. (W 

Here q is the delay operator and ;1 is the forgetting 
factor (0 -=c 2 < 1) used for computing the covarience 
matrix p, recursively and p is the adaptation step- 
size. cis an algorithm parameter which controls the 
transient behaviour of the algorithm. Usually fi is 
taken as 1. Here Eq. 5(d) implies that tit is a vector 
whose individual elements are obtained by filtering 
the corresponding elements of c#+ by the all pole 
filter with polynomial [l/D(q)] whose z-transform 
is given by l/D(z). When the adaptation is slow, 
however, ll/t can be approximated to be consisting 
of the delayed samples of x@(q) and $/D(q). This 
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algorithm is initialized by p(O) = al and 8(O) = 
0 where a is a suitable scalar. In the Gauss- 
Newton algorithm form, (5) can be expressed as 

c7,111 

cq = L!?_ 1 + j&- f!+,&,, 
(6) 

IIt = nR,- 1 + qJt$T, 

where & = P; ’ is the Hessian matrix. 

3. Convergence behavioural analysis using the ODE 
representation [9] 

3.1. ODE representation 

In [14], it is shown that the ensemble mean 
updating equations of Eqs. (5b) and (5~) can be 
represented in the following ordinary differential 
equation form: 

p, - dXIC/(WT(W’~ - I 
A + mw,w- dw,)* 

(W 

That is, the behaviour of the discrete-time algorithm 
is expressed in terms of the corresponding continu- 
ous-time ODE. 

Here the denominator in Eq. (7b) involves com- 
putation of l?[t,/~~(e,)P,_ I$(0,)] which can be ex- 
pressed as 

where Pik is the (i,k)th element of the matrix P, _ 1 and 
t&Q is the ith element of the vector J/(0,). 

While the ODES corresponding to the recursive 
identification algorithms represent the asymptotic 
behaviour [lo], the ODES corresponding to the 
adaptive filters represent the ensemble mean behav- 
iour [14]. The constant step-size used in adaptive 
filters is responsible for this. In addition to the 
regularity conditions required for the ODE repres- 

entation given in [lo], the ensemble mean repres- 
entation requires an additional assumption on the 
input and the adaptive filter. It is necessary that the 
transient response of the adaptive filter dies down 
before the input changes appreciably. This means 
that there is a restriction on the rate at which the 
input signal characteristics can vary. That is, the 
rate of variation in the characteristics of the input 
should be much smaller than the inverse of the 
dominating time constant of the adaptive filter. 
Further in [ 141 it is shown that the solutions of the 
ODES represent the mean trajectories of the para- 
meter estimates, &. It also means that the algorithms 
converge in mean to the stable stationary points of 
the ordinary differential equations. 

3.2. Mean-convergence behavioural analysis 

As explained in the Introduction, the convergence 
behaviour of an adaptive filter in a specific applica- 
tion can be obtained by solving the ODES corres- 
ponding to the algorithm, given the ensemble-mean 
description of the input such as the power spectral 
density (psd). When the input to be estimated is an 
ARMA process, the expectations of the gradient 
and the covariance matrix are nonlinear functions 
of 13,. Then the differential equations are nonlinear 
by nature. Therefore, to obtain analytical solutions, 
given a general input description, we have to resort 
to numerical procedures. 

For solving these equations it is necessary 
to compute the expectations of [IJ?(&)$~(&)], 
C@&(&)I and [ICl(i,&)lCl(k,&)l for 1 < i f p, 
1 < k < r. Expressions for these are derived in the 
following way. 

Let the psd of the discrete input be given as 

c&,(z) = X(z)xl(z). (8) 

In view of Eqs. (2), (4) and (5d), the z-transforms of 
the error output of the prediction filter and the 
regression vector can be expressed as 

~(4 = GWW, (9) 

‘y’(z) = & G(z), 



R. V. Raja f&mar, C.B. Rama Rao / Signal Processing 63 (1997) 229-240 233 

where Q(z) = [z-‘X(z) . . . z-@-~)X(Z) - z-‘H(z) 
X(z). . . - z-‘H(z)X(z)]. Then the expectations 
required for solving Eqs. (7a) and (7b) can be 
expressed in terms of E(Z) and Y(z) as 

(11) 

(12) 

For 1 6 i < p, 1 6 k Q Y, where the + sign indi- 
cates the Hermition operation. These integrations 
can be computed using Bt and Q,,(z) using 
Eqs. (Q-o-(O) and can be used to solve Eq. (7). Here, 
it is assumed that the power spectral density of the 
input is known. 

The procedure to obtain the ODE solutions can 
be summarised as follows. At any given time t, 
given the parameter vector 19, and the input power 
spectral description Q_(z), expectations of 

obtained using Eqs. (1 lH13). Substituting these in 
the ODES Eqs. (7a) and (7b), the increments to the 
ODES at time t can be computed numerically. 
Using these increments 8,+ I can be obtained. Then 
using tIr+ I and input power spectral description, 
the same procedure can be repeated to get 8,+,. 
Continuing this procedure until 8, attains a value 
very close to the optimum, the parameter trajecto- 
ries can be obtained. 

Usually, the convergence behaviour of an adap- 
tive algorithm is tested for a known general input. 
Then, the present analysis can be applied starting 
with the known psd of the input @idz). On the 
other hand, when performance for specific input 
signals is to be analysed, as a preliminary step, it is 
necessary to first estimate the power spectral density 
[@Jz), z = ej”‘] of the input signal using any one of 
the standard estimators such as the periodogram 
and the maximum-entropy methods [12] before 
applying the analytical procedure. 

The parameter trajectories are the basis for the 
study of convergence behaviour. Speed of conver- 

gence, dynamics of the estimates during the process 
of adaptation including the initial, intermediate and 
final convergence, and the time taken for conver- 
gence, etc., can be obtained from the ODE solutions. 
Dependence of these on the input SNR and the 
algorithm parameters also can be obtained from 
these characteristics. Although this analytical 
method cannot provide closed-form solutions for 
the convergence analysis, it provides us with en- 
semble convergence behaviour. Individual conver- 
gence plots may deviate slightly from these 
characteristics for noisy inputs. When the input 
SNR is reasonably high, the deviation is not much 
and the ODE solutions give us a good idea about 
the nature of convergence including the convergence 
time for stochastic inputs. In view of Eqs. (8H13), it 
can be seen that the convergence is effected by 
&_.(z) which includes power spectral density of the 
input noise. 

Since the extended least-squares (ELS) and re- 
cursive least-squares (RLS) algorithms can be 
treated as simplified and approximate versions of 
the RML algorithm [7], the analytical method 
presented here is applicable to these algorithms 
also. Although the hyperstable adaptive recursive 
filter (HARF) and its modified version (SHARF) 
[3, 171 are based on a different reasoning, recursions 
of these algorithms are also nearly the same as 
those of the RLS algorithm but for using a filtered 
gradient. Hence, the analytical procedure given here 
is applicable for these algorithms also. 

4. Experimental results 

To examine the validity of the present analysis, 
the analytical procedure derived in Section 3 is 
applied to several adaptive filtering problems using 
different algorithm parameters and SNRs. Here 
we present some of the representative results ob- 
tained from the following two examples of adaptive 
filtering. 

Example 1. In this example the output of a sec- 
ond-order IIR system driven by pseudo-Gaussian 
noise is considered as the deterministic part of the 
noisy signal for prediction. The transfer function 
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Fig. 2. Theoretical and simulated (a) pole and (b) zero parameter trajectories of the adaptive algorithm for 1( = 0.02, A= 0.98 and 
SNR = 1000. 
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considered here is 

G(z) = 
1 + ciz-l + czz-2 

1 + alz-’ + u2z-2 

1 - [2 x 0.8 x cos(O.27~)]z-~ + 0.64~-~ 

= 1 - [2 x 0.9cos(O.37~)] z-l + 0.81~-~’ 

where the normalised frequency and radius of the 
conjugate poles are 0.15 and 0.9, respectively, and 
the normalised frequency and radius of the conju- 
gate zeros are 0.1 and 0.8, respectively. Variance of 
the input noise = 1.0. Independent and appropriate 
amount of pseudo-white noise is added to this system 
output to form a noisy signal at different SNRs. 

Example 2. The second example considered here 
consists of two-sinusoids of different frequencies in 
additive noise which may be expressed as 

xt = &cos olt + J2s,cos a2t + n,, 

where S1 and S2 are the powers of the individual 
sinusoides whose frequencies are w1 and 02, respec- 
tively. 

Here w1 = 25x/128 and S1 = 1.0, and w2 = 
50x/128 and SZ = 0.5. Variance of the input noise 
= (S, + S,)/(the required SNR). 

Fig. 2(a) and 2(b) illustrate the pole and zero 
parameter trajectories of the system identification 
problem. These figures include both the analytical 
and individual simulation plots. These are obtained 
for .D = 0.02, A = 0.98 and SNR = 1000.0. It is seen 
from these figures that the theoretical plot which 
gives the ensemble mean behaviour is in close 
agreement even with the individual simulation plot. 
From Fig. 2(a) it can be seen that the parameter 
c1 attains near optimum value in around 3000 
iterations. Fig. 3 illustrates the simulated ensemble 
mean behaviour of the IIR adaptive algorithm along 
with the analytical results. It shows the trajectories 
of the first two parameters (0, and 0,) of the 
parameter vector, 0]r = [81,82,83,04]. This plot is 
also obtained by applying the RML algorithm to 
the system identification problem. The simulation 
plot is obtained by averaging 50 individual simula- 
tion plots. It can be seen from this plot that the 
ensemble mean of the simulation results is in very 

- Theoretical 
------- Simulation 

1000 2000 3000 4000 

No. of Iterations 

Fig. 3. Comparison between the theoretical and mean-simulation parameter trajectories of the adaptive algorithm. 
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Fig. 4. The (a) pole and (b) zero parameter trajectories of the adaptive algorithm for the two sinusoidal input (input SNR = lOdB, 
p = 0.1 and 1= 0.995). 
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close agreement with the mean parameter trajectory 
obtained by solving the ODES. It clearly shows that 
the ODE solutions very closely yield the ensemble 
convergence behaviour of the IIR adaptive algo- 
rithms. To avoid redundancy, trajectories of rest of 
the parameters are not included here. 

Fig. 4(a) and 4(b) illustrate the pole and zero 
parameter trajectories of the adaptive algorithm for 
Example 2. These are obtained for an input SNR of 
10 dB keeping the values of p and A at 0.1 and 0.995, 
respectively. From these figures also it can be seen 
that there is a very good agreement between the 
theoretical and individual simulation results. 
Since a high-input SNR is used, the parameter 
noise variance is very small here. Fig. 5 presents 
the simulated and theoretical pole parameter tra- 
jectories for an SNR of OdB while the values of 
,LI and A are the same as those of Fig. 4. Since the 
parameter noise variance increases with additive 

noise power, Fig. 5 exhibits a higher noise variance 
than Fig. 4. Comparing these plots, it can be ob- 
served that the convergence speed increases with 
the input SNR. 

Figs. 6 and 7 are obtained for different values of 
p and ;1 while the input SNR = OdB which is same 
as that of Fig. 5. From all these figures, it can be 
seen that there is a good agreement between the 
theoretical and simulation results. These plots show 
that the parameter cl attains the optimum value in 
about 5000, 6000 and 2700 iterations, respectively. 
It can be observed that the convergence speed is 
proportional to p and (1 - A). To reduce the 
redundancy, the zero parameter trajectories are not 
included here. These figures illustrate that during 
the initial convergence the adaptive algorithm is 
very slow while during the intermediate convergence 
it is very fast. The speed of final convergence falls 
in between those of the initial and intermediate 

1 

I”“““’ I ’ “1 1”’ ’ I 1’ 1 “““I 1 ““““I 
0 2000 4000 6000 8000 

No.of Iterations 

Fig. 5. The pole parameter trajectories of the adaptive algorithm for the two sinusoidal input (input SNR = OdB, p = 0.1 and I = 0.995). 
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3.50 
---^--- Theoretical 

-4.50 I I I I I I I I I, Ii I I I I I II 11 1 

0 2000 4000 100 
No.of Iterations 

Fig. 6. The pole parameter trajectories of the adaptive algorithm for the two sinusoidal input (input SNR = 0 dB, p = 0.05 and I = 0.995). 

convergence. This kind of behaviour is as a result of 
the nonquadratic performance function. Usually, 
the slope of the criterion function is relatively small, 
far away from the optimum. The slope increases 
sharply as the parameter vector comes close to the 
optimum. The parameter covariance also decreases 
sharply as the optimum is approached which yields 
a very fast intermediate convergences. The nature 
and time of convergence is specific for the problem 
and the input psd. However, the analytical results 
are general enough to represent the mean charac- 
teristics. 

5. Conclusions 

In this paper, a method of solving the ODES, 
which represent the ensemble behaviour of the IIR 

adaptive filtering algorithms is derived to analyse 
the mean convergence behaviour of these filters. 
This method uses the mean description of the input 
in the form of the psd. Further in this work, this 
procedure is applied to study the convergence 
behaviour of an IIR predictor. Effectiveness of this 
method is illustrated through several analytical and 
simulation results obtained from two examples of 
adaptive prediction. 

It is shown that the analytical method presented 
here can determine the ensemble convergence 
behaviour of IIR adaptive filters, very accurately. 
The speed of convergence is nearly proportional 
to ~(1 - A) and increases slightly with the 
input SNR. IIR adaptive filters exhibit slow initial 
convergence and high intermediate convergence 
speeds when initialised by values away from the 
optimum. 



R. V. Raja Kumar, C.B. Rama Rao / Signal Processing 63 (1997) 229-240 239 

_______ Theoretical 

~-“““““““““““““” 1000 2000 3000 

No.of Iterations 

Fig. 7. The pole parameter trajectories of the adaptive algorithm for the two sinusoidal input (input SNR = 0 dB, p = 0.05 and I = 0.985). 

The present method of analysis yields conver- 
gence results which are specific for the problem and 
input. However, these are general enough to repres- 
ent the ensemble behaviour which gives a good idea 
regarding the nature and time of convergence. 
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