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A mathematical model for a virus disease with mutual interference between the 
viruses attacking the organ and the organ’s immune system is investigated. The 
non-negativity of the solutions and the conditions for asymptotic stability of the 
diseased chronic equilibrium state have been established. 0 1992 Academic PESS, IX. 

1. INTRODUCTION 

The mathematical study of the growth, spread, and stability/control of 
the infectious disease with/without interaction between diverse biological 
species has become a subject of extensive study in recent times. Bailey [ 1 ] 
gave a detailed account of mathematical theories of infectious diseases. The 
simplest mathematical model for a virus disease was proposed by Marchuk 
et al. [7,8] in the form of a set of first order ordinary coupled differential 
equations with delayed arguments. In their work, the existence-uniqueness 
and the non-negativity of the solutions of the model are established. 
Further, the stability analysis of the equilibrium states and the analytical 
and numerical illustrations of the clinical forms of the disease noted from 
the model have been examined at length. 

In the present work, a mathematical model for a virus disease with due 
importance to the mutual interference among the viruses attacking the 
organ, the antibodies fighting with viruses, and the plasma-cells producing 
the immunocompetent-cells is proposed in Section 2. Further, time-delay in 
the immune response is taken care of to make the model more general. In 
Section 3, the non-negativity of the solutions of the model under prescribed 
initial conditions is established. Section 4 presents the derivation of the 
characteristic equation of the diseased chronic equilibrium state. Section 5 
deals with the derivations of conditions for asymptotic stability of the dis- 
eased state, namely, the time-delay interval in which the stable state cannot 
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get destabilized and also the realisation of the criterion for no change 
in stability. These criteria are illustrated by a numerical example. Final 
conclusions are presented in Section 6. 

2. THE MODEL 

Motivated by the investigations of Marchuk et al. [7, 81 on virus 
diseases and those of Beddington, Erbe, Freedman, and others [2, 4-6,9] 
on food-chains with mutual interference, the model for a virus disease with 
mutual interference between the viruses attacking the organ and the 
organ’s immune system proposed in this investigation is characterized by 
the following set of first order ordinary coupled differential equations with 
delayed arguments: 

V(t) = (PWN - Y( Uth J-(t))) V(r) 

F’(t) = pWf))C(t) - VI4 Vt), F(t)) V(t) - Pf W) 

C’(t)=~(m)ct(V(t),F(t-T))?qt-T)-p,(C(t)-Zi) 

m’(t) = Q( v(t), F(r)) v(r) -/4&t), 

with initial conditions 

In the above equations, V(t), F(t), and C(t) are the concentrations of the 
viruses attacking the organ, antibodies resisting viruses, and the plasma- 
cells present in the organ, respectively, at the instant t of the observation. 
Further, m(t) is the relative characteristic at time t of the damaged organ, 
defined as 

m = 1 - WJM,), 

where 

M, = a characteristic (say, mass or area, etc.) of a normal, i.e., 
perfectly heaithy organ, 

and 

M, = the corresponding characteristic of the damaged part of 
the organ. 



278 SRINIVAS AND PATTABHI RAMACHARYULU 

For a perfectly healthy organ, m = 0 and when it is completely damaged, 
m = 1. Evidently, 0 < m < 1. Also ’ indicates derivative with respect to 
time t. 

The functions occurring in the model are assumed to be positive and are 
at least continuously differentiable for non-negative values of their 
arguments. Further, the following restrictions on the fuctions have been 
made: 

(H,) B(V) is the virus multiplication function, characteristic of the 
damage to the organ, such that 

apt v) /?(O)=O, F>O. 

(H,) y( V, F) is the probability functional response to neutralise the 
viruses, such that 

Y(O, F) > 0, Y( J-5 0) < 0, dyuv)<o 
av '3 

aew,O 
7’ . 

(H,) p(F) is the growth function of the production rate of antibodies 
by a plasma-cell, such that 

(HJ q is a positive constant, indicating the fraction/number of 
antibodies, involved in the virus multiplication. 

(H,) cur is the coeffkient, inversely proportional to the time-decay of 
an antibody. 

(H6) a( V, F) is the function characterizing the propability of an 
encounter of “antigen-antibody,” the stimulation of the Cascade reaction, 
and the number of newly generated cells, such that 

a(0, F) > 0. 

(H,) t(m) is the general aggravation of symptoms of the disease and 
describes the dysfunction of the immune system due to considerable organ- 
damage, such that 
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(H,) T is the time-delay and describes the time duration of a 
Cascade formation of the plasma-cells. 

(H,) pL, is the coefficient equal to the inverse of the plasma-cell life 
time. 

(Hi,) c is the normal level of the immuno-competent plasma-cells, 
before the attack of viruses. 

(H ii) a( V, P) is a special function of the disease and acts as a multi- 
plication function to the growth of the relative characteristic of the 
damaged organ, such that 

a(0, F) = 0, WV F)>O 
av ’ 

WK F)<o 
dF 

W,d PL, is the inverse of the recuperation period of the organ 
multiplied by e times (i.e., the organ-damage time-constant). 

3. NON-NEGATIVITY OF THE SOLUTIONS 

From the first equation of the system (2.1), it follows that 

which is non-negative for all t. 
If possible, let there exist a negative solution for F(r). From the con- 

tinuity of F(t), there exists a moment t, , for which, F(tl) = 0 and F'(t,) < 0. 
But from the second equation of (2.1), 

F’(t,)=p(F(t,))C(t,)-rly(V(t,),F(t,))V(t,)-~~F(t,) 
= -rlY(~(~,),O)~(~,)~O. (3.2) 

This is a contradiction. Further, t, is non-negative. Hence F(t) 2 0 for all 
t20. 

To establish the non-negativity of C(t), consider an instant t E IO, where 
I,= [nT, (n+ l)T], n=O, 1,2, 3, . . . . the gestation interval. Then the third 
equation in (2.1) reduces to 

C’(t) = -p,(C(t) - c;). (3.3) 
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Let this equation possess a negative solution. Then there exists a moment 
t,, for which C(t,)=O and C’(t,)<O. But from (3.3) 

C’(t,) = -&.(C(t,) - z;) 

=p$>O, (3.4) 

which is a contradiction. So t, 6 Z, and C(t) > 0 for all t E I,. Also 
?‘(t - T) > 0, F(t - T) 2 0, and a( k’, F) > 0. Proceeding in a similar way 
and noting the non-negativity of C(t) in each previous interval, the 
non-negativity of C(t) for t E Z,,, Vn can be established. Hence C(t) b 0 for 
all t 2 0. 

For realizing the non-negativity of m(t), let there be, if possible, a 
moment t,, for which m(t,)=O and m’(t,)<O. But from (3.3), 

m’(t,)= -~u,m(t,)+o(V(t,),F(t,))V(t,) 

=a(V(t,),F(t,))V(t,)~O, (35) 

gives the contradiction. So m(t) > 0 for all t > 0. 

4. CHARACTERISTIC EQUATION OF THE DISEASED CHRONIC STATE 

Marchuk [7] noted four different states of a virus disease: (i) subclinical, 
(ii) acute with recovery, (iii) chronic, and (iv) lethal outcome. Some salient 
features of these are given in the Appendix, for an immediate reference. Of 
these four states, it is the state (iii), the diseased chronic state, when it is 
in equilibrium, that is investigated for stability. 

Let E*( V*, F*, C*, m*) represent the diseased chronic equilibrium 
state, where V*, F*, C*, and m* are the equilibrium values of V(t), F(t), 
C(t), and m(t), respectively. 

Let V,(t), F,(t), C,(t), and ml(t) be small deviations in V(t), F(t), C(t), 
and m(t) from their equilibrium values V*, F*, C*, and m*, respectively, 
with r(m) = 1 (following Marchuk [7]). Then the linearised version of the 
system (2.1) can be obtained as 

F;(t)=B, vl(t)+BzFl(t)+p(F*)C,(t) 

C;(t)=D, ?‘l(t- Z-)+a(V*, F*)F,(t)+&F,(t- T)-p,C,(t) 
(4.1) 

m;(t)=4 v,(t)+EzF,(t)-~L,m,(t), 
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where 

afit w A,=p(v*)+ v*7- dY( v*, J-*1 
av -y(V*, F*) 

‘4 
2 

= -V*ay(v*,F*)<() 
aF 

B, = -q 
( 

y( v*, F*) + v* ay( y;F*’ 
> 

) 

B 
2= 

cc+t a~@‘*) 
dF 

-qv* aytv*, F*) 
dF -b 

D _ v* a4 v*, F*) 
1- av 

D _ v* W v*, F*) 
2- dF 

E,=a(V*,F*)-t aV WV*, F*),O 

and 

E 2zv*W'*J*)<0 
8F ' (4.2) 

Consider 

1 eAr 
(4.3) 

as a trial solution for the system (4.1). Then ,I satisfies the characteristic 
equation 

f(A) = (A f P,) F(J) = 0, (4.4) 

where 

W(a)) 



282 SRINIVAS AND PATTABHI RAMACHARYULU 

with the coefficients 

S=(pL,.-A,-B,) 
E=A,B*-A,B,-~L,(A,+B,) 
e= -&4*E, -A,&-p(F*)A,) 

x = -P(F*P* 
$d = p(F*)(A,D* - a( v*, F*)A,). 

(4.W)) 

If all the roots of (4.4) are negative real or complex with negative real 
parts, then E*( I’*, F*, C*, m*) would be asymptotically stable. From 
(4.4), one root A = -p,,, is real and negative. So it is enough to discuss the 
roots of the quasicharacteristic equation s(A) = 0. Further, the 
Routh-Hurwitz conditions checked in (4.4) yield 6 > 0, (0 + 4) >O, 
(E + x) > 0, and B(E + 1) - (0 + 4) > 0, which confirms the asymptotic 
stability of E*( I’*, F*, C*, m*) in the absence of time-delay (T= 0). These 
inequalities continue to hold even in the presence of delay, throughout our 
discussion. 

Setting 

l(T)=p(T)+iv(T) (4.6) 

in 9(A) = 0 and separating real and imaginary parts, we get 

$ - 3Pv* + ~(~2 - ?) + EP + e 
+{(~p++)cosvT+~vsinvT}e-TP=O 

and 

- V3 + 3,U*V + 2&O’ + EV 

+ {xvcos VT-(~p+#)sin vT}E-‘~=O. (4.7) 

Defining the space of all real-valued continuous functions on [ - T, co), 
such that V,(t)aO, F,(t)20, C,(t)aO, and m,(t)>0 on C-T, t,] and 
applying the Laplace transforms to the system (4.1), we obtain 

(~--dm)=~*m4+ v,(h) 

(s--B,)F,(~)=B,P,(s)+P(F*)C~(~)+F,(~~) 

(s+p,)C,(s)=Dle-Ts P,(.s) + (a( V*, F*) + Dze-Ts)P,(s) (4.8) 

+D,e-T”V,i~,+D2e-T”V,i~,+C,(tO) 

(~+P,)%(~)=E, ~,(s)+E*F~(s)+~,(~,), 
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where Pi(s), F,(S), C,(s), and fi, (s) are the Laplace transforms of k’(t), 
F(t), C(t), and m(t), respectively. Further, I’,(?,), F,(t,), C,(t,), m,(t,) are 
non-negative. Also 

0 

Vlinl= 
s 

0 

e-‘“VI(t) dr and Flinr = 
s 

e-‘“Fl(t) dr. 
-T -T 

Solving the system (4.8), for any one of the variables, say til(s), we obtain 

m,(s)= g(s) 
(s + PmW(S)’ (4.9) 

where 9( .) is the quasicharacteristic polynomial given by (4.5(a)) and 

g(s)=E,CA,p(F*)(D,e~T” vlint+cI(v*, F*)e-TsFlm,+ cl(fO)) 

+ V1(to){(s--B2)(~+~L,.)-((p(F*)cr(V*,F*)fDze~T”)) 

+ (WI(S) + m,(to))~(s)l. (4.10) 

For the state E*( V*, I;*, C*, m*) to be locally asymptotically stable, 
til(s) should have the poles with terms that exponentially decrease with 
time so that their real parts are negative. This can be achieved by employ- 
ing the Nyquist’s criterion, which states that, if s is the arc length along a 
curve encircling the right half plane, then the curve ml(s) will encircle the 
origin a number of times equal to the difference between the number of 
poles and the number of zeros of ml(s) in the right half plane. Following 
l-4-61, the conditions for asymptotic stability of E*( V*, F*, C*, m*) are 
given by 

Im 9( iv,) > 0 

and 

Re 9(ivo) = 0. 

In the present case, these conditions reduce to 

and 

(4.11) 

(4.12) 
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5. CONDITIONS FOR STABILITY OF THE DISEASED STATE 

In this section, we derive two conditions for the asymptotic stability of 
E*( V*, F*, C*, m*) by using the results of the above section. The first 
condition gives an estimate for the length of time-delay to preserve the 
stability in an interval [0, T+) where Tf is the maximum value of T and 
the second one yields a criterion for no stability change in an interval 
[0, v+] where v + is the maximum value of v. A numerical example is 
identified to illustrate the analysis carried out in this section. 

From the equality of (4.12) 

6v~=e+~Cosv,T+~v,Sinv,T~181+(~I+I~I vO. (5.1) 

So if 

v+J+JiF=6w41) 
26 (5.2) 

then v,, < v+. From the inequality of (4.12), 

v;<~+~Cosv~T- 
q5 Sin v0 T 

vo 

Substituting the equality of (4.12) in (5.3) and simplifying, 

P(T, vo)<Z 

where 

P(T,v,)=(x~-d)(l-Cosv,T)+ XV,+: Sinv,T 
( > 

and 

Using the inequalities 

. ,voT (~6-~)(1-Cosv,T)=2(~6-~)Sm 2 

~ (v + 9’ -y- IXS-4; 

(Xvof~) SinvoT<(lxI (v+)‘+ 141 d)T, 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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the inequality (5.4) reduces to 

XT* + YT< Z, (5.7) 

where 

and 

y= 1x1 tv+ 1’ + 141 6. (53) 

From the inequality (5.7) we notice the maximum time-delay to be 

T++$-Y+J%6i). (5.9) 

The diseased state E* maintains its stability if (5.9) is satisfied in the 
interval of time-delay 0 < T < T +. 

Further, the stability of E* can change only when p =O. This is true 
because the equations (4.7) will have purely imaginary roots, i.e., the 
perturbed system is oscillatory with finite amplitude. In what follows we 
derive a criterion under which this cannot happen for an arbitrary time- 
delay. 

Let f and v^ satisfy the equations (4.7) with p = 0, i.e., 

-69*+0+~Cos$~+XSinG~=O 

and 

--G3 + EG + ~0 Cos Fi?- 4 Sin 0= 0. 

We rewrite these equations as 

4 Cos i@+ XG Sin Of= 69* - 8 

and 
1 

q5 Sin OT- ~0 Cos Of= EQ - G3. 

Choosing R and Y, such that, 

d=RCos Y and XC = R Sin Y, 

then 

R=dw and !P= tan-’ 

(5.10) 

(5.11) 

(5.12) 

(5.13) 
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Substituting (5.12) into (5.1 l), we get 

602-8 
Cos(PF- Y) = 7 

and 

(5.14) 

From (5.14), we can write 

R>Max{1S2-01, D Is-?*I}, 

i.e., 

(5.15) 

~~>Max{lSj2--BI, 0 IE-$‘[}. (5.16) 

There can be no change in stability if (5.16) is satisfied for 0 < D < v +. 

EXAMPLE. Consider the system 

V’(t) = { V(f) - (fly) - v(N) V(t) 

P’(t)=hF(t)C(t)-3(F(t)- V(t))V(t)-&F(f) 

C’(t)=(-2V(r)+8F(t-T))V(t-T)-p,(C(t)-2;) 

m’(t) = (Ut)lF(t)) V(f) - Pmdt). 

For the above set, E*( V*, 2V*, 24V* + 16~~~ V*/2p,) is an interior 
equilibrium point. Let the following inequality hold: 

Now 

A, =2v*, A,= -v*, B,=O, B, = -3V*, D, = -2V*, 

D,=8P, E,= -a. 

Further, 

6=(/4+ v*), E = (pcV* - 6V*2), O= - 6p,V*+7 , 
> 

x= -v**, (p=y v*3. 
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so 

v+ - - 2(~,: v*,{ V*2 +,/V*4 + 8I’*(p(, + I’*)(3pL, + W**)}. 
‘ 

Also 

and 

Hence 

1 
T+ =(4&+ 19V*)(v+)2 

[ 

-15(/l,+ V*)V*-4(v+)2 

X 
+ {15(/.&+ V*)V*+4(v+)*}* 

( 

+4(pC+ 19I’*) -2ll’*- 12p,+s(6+pC) 
i I 

l/2 . 

The state E* cannot get destabilized for 0 < T< T + and there can be no 
change in stability if 

!,/225V*‘+16%‘>Max 1-(6V*2-G2+~rV*)l v^; 
1 

6pCV*+q+(pC+ l”*)F* , 

for O<v^<v+. 

6. CONCLUSIONS 

In this work, a generalization of Marchuk’s model for a virus disease has 
been proposed giving due importance to the mutual interference among the 
viruses attacking the organ and the organ’s immune system. The solutions 

409/170/l-20 
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are observed to be non-negative, by inspection. The stability analysis of the 
diseased equilibrium state has been carried out by deriving its characteristic 
equation as the function of time-delay. It is observed that the state cannot 
get destabilized in the time-delay interval [0, T+), where the estimated T + 
is given by (5.9). Further, there can be no change in stability if (5.16) is 
satisfied for [0, v+], where v + is given by (5.2). An explicit numerical 
example satisfying these criteria is presented. 

More realistic models with multiple delays can be proposed with more 
generalised, yet reasonable, restrictions such as (Hi )-(H i2) on the mutual 
interference functions and the stability analysis of the diseased state can be 
carried out on similar lines. 

APPENDIX: MARCHUK'S CLASSIFICATION ON THE MODEL OF 
A VIRUS DISEASE 

The well-known four forms of a disease are (i) subclinical, (ii) acute with 
recovery, (iii) chronic, and (iv) lethal outcome. 

(i) The subclinical form. In this case, the viruses attacking the 
organ cannot break the immunologic barrier. The virus concentration 
tends to zero with time, regardless of the dose of viruses, which could cause 
infection or the extent of the organ-damage or the delay as well as the 
degree of immune response. In this state, there may be a bleak chance of 
having a considerable damage to the organ attacked by viruses. 

(ii) Acute with recovery. This is a case in which the growth of virus 
concentration with time would be followed by a sharp drop of the concen- 
tration. This may sometimes result in complete elimination of viruses from 
the organ. Hence it may be possible to have a recovery from an acute state 
of the disease. 

(iii) Chronic. It is this form of the disease which is more important 
and needs more attention in the analysis. In this case, the virus concentra- 
tion tends to a constant nonzero level. The viruses, while attacking the 
organ, break the immunologic barrier to offer resistance to antibodies. The 
antibodies improve their population, with immunocompetent cells, sup- 
plied by plasma-cells. There could also be a continued growth, which may 
not be rapid, in the relative characteristic of the damaged organ. It would 
result in the existence of a non-washed-out equilibrium state, i.e., a state in 
which the viruses and antibodies can coexist in the damaged organ. The 
stability of this state depends very much upon the strength of the immune 
system contained in the organ. The destability of this state may result as 
the lethal outcome. 
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TABLE I 

Form of the 
disease 

Subclinical 

Acute with 
recovery 

Chronic 

Lethal 

Condition for 
occurrence 

B<YF 

B>YF 
P'BYtl. 

b>(O, 33)dayss’ 

B>YE 
UP>P<W, 

/?<(0,33)days-’ 

B>Yii 
P<llYrl 

Special features 

V(t)-+Oasf+a, 

Rapid reduction of 
V(I) after increase 

V(f) + V* as f -+ m 

V(f) + cc as f -+ co 

Note. a = j - yp, F= pf?/p,, where “stands for the value at normal level. 

(iv) Lethal outcome. This occurs when the stimulation coefficient is 
small or the time-delay is large. This results in further weakening of the 
immune system and the unlimited growth of the viruses in the organ. 

From a qualitative analysis of the basic model proposed by Marchuk 
[7] for constant values of j?, y, 9, ~1, p, 6, it is possible to distinguish the 
above four forms of the development of the disease, when the organ is 
slightly damaged. The results of the analysis are given in Table I. 
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