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A mathematical model for a virus disease with mutual interference between the
viruses attacking the organ and the organ’s immune system is investigated. The
non-negativity of the solutions and the conditions for asymptotic stability of the
diseased chronic equilibrium state have been established.  © 1992 Academic Press, Inc.

1. INTRODUCTION

The mathematical study of the growth, spread, and stability/control of
the infectious disease with/without interaction between diverse biological
species has become a subject of extensive study in recent times. Bailey [1]
gave a detailed account of mathematical theories of infectious diseases. The
simplest mathematical model for a virus disease was proposed by Marchuk
et al. [7,8] in the form of a set of first order ordinary coupled differential
equations with delayed arguments. In their work, the existence-uniqueness
and the non-negativity of the solutions of the model are established.
Further, the stability analysis of the equilibrium states and the analytical
and numerical illustrations of the clinical forms of the disease noted from
the model have been examined at length.

In the present work, a mathematical model for a virus disease with due
importance to the mutual interference among the viruses attacking the
organ, the antibodies fighting with viruses, and the plasma-cells producing
the immunocompetent-cells is proposed in Section 2. Further, time-delay in
the immune response is taken care of to make the model more general. In
Section 3, the non-negativity of the solutions of the model under prescribed
initial conditions is established. Section 4 presents the derivation of the
characteristic equation of the diseased chronic equilibrium state. Section 5
deals with the derivations of conditions for asymptotic stability of the dis-
eased state, namely, the time-delay interval in which the stable state cannot
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get destabilized and also the realisation of the criterion for no change
in stability. These criteria are illustrated by a numerical example. Final
conclusions are presented in Section 6.

2. THE MODEL

Motivated by the investigations of Marchuk et al. [7,8] on virus
diseases and those of Beddington, Erbe, Freedman, and others [2, 4-6,9]
on food-chains with mutual interference, the model for a virus disease with
mutual interference between the viruses attacking the organ and the
organ’s immune system proposed in this investigation is characterized by
the following set of first order ordinary coupled differential equations with
delayed arguments:

Vi(t)={B(V(1)) —y(V(2), F(1))} V(1)
F'(1)=p(F(1))C(t) —my(V(2), F(1)) V(1) — ps F(1)
C'(1) = E&m)a(V(1), F(t = D) V(1= T) = p(C(1) - T)
m'(1)=o(V (1), F(1)) V(1) — prm(2),

with initial conditions

V(t)lré[—T,to] = VO(t)>'07 F(t)lle[—T,lo] =F0(t)>07

(2.1)
C(to)=Co =0, m(ty) =my = 0.

In the above equations, V(¢), F(¢), and C(¢) are the concentrations of the
viruses attacking the organ, antibodies resisting viruses, and the plasma-
cells present in the organ, respectively, at the instant ¢ of the observation.
Further, m(¢) is the relative characteristic at time ¢ of the damaged organ,
defined as

m=1—(M,/M),),
where

M =a characteris_tic (say, mass or area, etc.) of a normal, ie,
perfectly healthy organ,

and

M, =the corresponding characteristic of the damaged part of
the organ.
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For a perfectly healthy organ, m =0 and when it is completely damaged,
m=1. Evidently, 0<m<1. Also ' indicates derivative with respect to
time ¢.

The functions occurring in the model are assumed to be positive and are
at least continuously differentiable for non-negative values of their
arguments. Further, the following restrictions on the fuctions have been
made:

(Hy) B(V) is the virus multiplication function, characteristic of the
damage to the organ, such that

BY)

FT% 0.

B(0)=0,

(H,) 7(V, F) is the probability functional response to neutralise the
viruses, such that

av(V,F)<0
aV ~ 3

6v(V,F)>0
oF =7

(0, F)>0, (V, 0)<0,

(H;) p(F) is the growth function of the production rate of antibodies
by a plasma-cell, such that

op(F)

p(0)=0, F

>0.

(Hs) n is a positive constant, indicating the fraction/number of
antibodies, involved in the virus multiplication.

(Hs) p,is the coefficient, inversely proportional to the time-decay of
an antibody.

(Hg¢) a(¥, F) is the function characterizing the propability of an
encounter of “antigen-antibody,” the stimulation of the Cascade reaction,
and the number of newly generated cells, such that

a(0, F)>0.
(H,) ¢&(m)is the general aggravation of symptoms of the disease and

describes the dysfunction of the immune system due to considerable organ-
damage, such that

0<é(m) <l
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(Hg) T is the time-delay and describes the time duration of a
Cascade formation of the plasma-cells.

(Hy) nu. is the coefficient equal to the inverse of the plasma-cell life
time.

(H,;) C is the normal level of the immuno-competent plasma-cells,
before the attack of viruses.

(H,,) a(V, F)is a special function of the disease and acts as a multi-

plication function to the growth of the relative characteristic of the
damaged organ, such that

60(V,F)>0 60(V,F)<0'

o(0, F)=0, 1% : oF

(H,,) u,, is the inverse of the recuperation period of the organ
multiplied by e times (ie., the organ-damage time-constant).

3. NON-NEGATIVITY OF THE SOLUTIONS

From the first equation of the system (2.1), it follows that

V(r)=Vito) exp [j {BIV() ~3(V(2), F(2)} dr] (3.1

which is non-negative for all ¢.

If possible, let there exist a negative solution for F(z). From the con-
tinuity of F(t), there exists a moment ¢,, for which, F(¢,)=0 and F'(t,) <0.
But from the second equation of (2.1),

F'(t)=p(F(1,)) C(t,) = ny(V(2)), F(1,)) V([l)_ufF(tl)
= —np(V(t,), 0)V(t,) = 0. (3.2)

This is a contradiction. Further, ¢, is non-negative. Hence F(¢)> 0 for all
t=0.

To establish the non-negativity of C(¢), consider an instant ¢ € I, where
I,=[nT,(n+1)T], n=0,1,2,3, .., the gestation interval. Then the third
equation in (2.1) reduces to

C'(t)= —p(C(1) - C). (33)
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Let this equation possess a negative solution. Then there exists a moment
t;, for which C(¢,)=0 and C'(¢t,) <0. But from (3.3)

C'(t)= —u(C(t))— 6)
=u.C>0, (3.4)

which is a contradiction. So ¢, ¢/, and C(1)=0 for all tel,. Also
V(t—-T)20, F(r—T)=20, and oV, F)>0. Proceeding in a similar way
and noting the non-negativity of C(z) in each previous interval, the
non-negativity of C(¢) for te1,, Vn can be established. Hence C(¢) =0 for
all t=0.

For realizing the non-negativity of m(r), let there be, if possible, a
moment ¢,, for which m(z,)=0 and m’'(r,) < 0. But from (3.3),

m'(t)= —p,m(t;)+a(V(t,), F(2,)) V(¢,)
=a(V(t,), F(1,)) V(1;) =0, (3.5)

gives the contradiction. So m(r) =0 for all 1> 0.

4, CHARACTERISTIC EQUATION OF THE DISEASED CHRONIC STATE

Marchuk [7] noted four different states of a virus disease: (i) subclinical,
(ii) acute with recovery, (iii) chronic, and (iv) lethal outcome. Some salient
features of these are given in the Appendix, for an immediate reference. Of
these four states, it is the state (iii), the diseased chronic state, when it is
in equilibrium, that is investigated for stability.

Let E*(V'* F* C* m*) represent the diseased chronic equilibrium
state, where V'*, F*, C*, and m* are the equilibrium values of V(¢), F(¢),
C(¢), and m(t), respectively.

Let V,(1), F,(t), Cy(t), and m,(¢) be small deviations in V(¢), F(t), C(¢),
and m(t) from their equilibrium values V*, F* C* and m*, respectively,
with {(m)=1 (following Marchuk [7]). Then the linearised version of the
system (2.1) can be obtained as

Vi) =A,V(t)+ A,F,(1)

Fi(t)=B, V. (t)+ B,F (t)+ p(F*)C,(¢) 1)
Ci(ty=D V,t—T)+a(V* F*)F (t)+ D, F (t—T)— u.C,(2)
mi(t)=E, V(1) + EyF, (1) — p,my (1),
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where
A =B(V*)+ V™ aﬁé‘;*)_a)’( ‘:;;’/F*)—y( V¥, F*)
Ay=—V* ———aY(V;F*)w
= (s oy e 2E)
PR N Tt T
D =v* aa(I;";,/F*)
D=~ v+ aa(I;’;F*)
E =qg(V*, F*)+a—a—(—%€2>0
and
PR Gt "
Consider

Vi(n Vi(t)
Fi(1) - F\(to) o
Ci(t) Ci(t)
m(¢) m(t,)

(4.3)

as a trial solution for the system (4.1). Then A satisfies the characteristic
equation

SA)=(A+p,) F(2)=0, (44)

where

FR)=L++ed+ 0+ (xh+g)e T (4.5(a))
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with the coefficients
6=(l"’('_Al —BZ)
e=A,B,— A, B —p (A4, + B,)
0= —p(A,B,—A,B,—p(F*)A4,) (4.5(b}))
x=—p(F*)D,
$ = p(F*)(4, D, — a(V*, F¥) 4,).

If all the roots of (4.4) are negative real or complex with negative real
parts, then E*(V* F* C* m*) would be asymptotically stable. From
(4.4), one root A= —p,, is real and negative. So it is enough to discuss the
roots of the quasicharacteristic equation %(4)=0. Further, the
Routh-Hurwitz conditions checked in (4.4) yield >0, (0+¢)>0,
{(e+x)>0, and d(e+y)—(0+¢)>0, which confirms the asymptotic
stability of E*(V*, F*, C*, m*) in the absence of time-delay (7'=0). These
inequalities continue to hold even in the presence of delay, throughout our

discussion.
Setting

MT)=u(T) +v(T) (4.6)
in #(A)=0 and separating real and imaginary parts, we get
W =3+ 8(ut—v) +eu+0
+ {(xu+¢@)cosvT+ yvsinvT}e =0
and
—v 4+ 3u%v + 20puv +ev
+ {yvcos vI'— (yu+ @) sinvT}e ™ =0. 4.7)

Defining the space of all real-valued continuous functions on [ — T, ),
such that V,(z)20, F,(t)=0, C,(t)=0, and m,(¢t)=0 on [T, ¢,] and
applying the Laplace transforms to the system (4.1), we obtain

(s—A)V(s)=A,F,(s)+ V(1)

(s—B,)F (s)=B,V,(s)+ p(F*)C,(s) + F\(t5)

(s+u)C(s)=Dye TV (s)+ (u(V* F*)+ Dye T)F,(s) (4.8)
+Die TV i+ Dre TV 1 + Cilt)

(s+u)m(s)=E, V,(s)+ E,F,(s) +m,(1,),
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where V,(s), F,(s), C,(s), and m,(s) are the Laplace transforms of F(r),
F(1), C(t), and m(t), respectively. Further, V(t,), F;(t,), C,(to), m,(t,) are
non-negative. Also

Solving the system (4.8), for any one of the variables, say #,(s), we obtain

g(s)

ST ECE)

(4.9)

where % (-) is the quasicharacteristic polynomial given by (4.5(a)) and

g(s)=E[A,p(F*)(Dye "V +a(V*, F*)e "F,,, + C (1))

+V, (t){(s — Ba)(s + ) — (p(F*)a V%, F*) + Dye™ ™)}
+ (EoF(s) +my(20)) Z (5)]. (4.10)
For the state E*(V*, F* C* m*) to be locally asymptotically stable,
m(s) should have the poles with terms that exponentially decrease with
time so that their real parts are negative. This can be achieved by employ-
ing the Nyquist’s criterion, which states that, if s is the arc length along a
curve encircling the right half plane, then the curve m,(s) will encircle the
origin a number of times equal to the difference between the number of
poles and the number of zeros of m,(s) in the right half plane. Following

[4-6], the conditions for asymptotic stability of E*(V*, F* C* m*) are
given by

Im F(ivy) >0
and

Re F (iv,) =0. (4.11)

In the present case, these conditions reduce to
—v3+evy+ yvo Cos voT— ¢ Sin vy 7> 0
and

—vE+60+ ¢ Cos voT+ yv, Sin vy T=0. (4.12)
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5. CONDITIONS FOR STABILITY OF THE DISEASED STATE

In this section, we derive two conditions for the asymptotic stability of
E*(V*, F* C* m*) by using the results of the above section. The first
condition gives an estimate for the length of time-delay to preserve the
stability in an interval [0, T*) where 7% is the maximum value of T and
the second one yields a criterion for no stability change in an interval
[0, v*] where v* is the maximum value of v. A numerical example is

identified to illustrate the analysis carried out in this section.
From the equality of (4.12),

Wi=0+¢ CosvoT+ v, Sin vy T< 0] + (4] + x| vo-
So if

S+l + /1x1? + 45301 +14D)
B 25

then vy <v*. From the inequality of (4.12),

¢ Sin v, T

vi<e+yCosvyT— .
1]

Substituting the equality of (4.12) in (5.3) and simplifying,
P(T, v,) < Z,
where
P(T,vy)=(x0—¢)1—CosvyT)+ (xv0+¢;0é> Sinv, T

and
Z=0e+y)—(0+¢)>0.
Using the inequalities

(x0—@)1 —CosvoT)=2(x6—¢) Sinz%—]:
(v+7)?
2
¢6 i +32
<X”°+v_) Sin voT'< (17l () +141 )T,

0

<

lxé—dl;

(5.1)

(5.2)

(5.4)

(5.5)

(5.6)
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the inequality (5.4) reduces to
XT*+ YT<Z, (5.7)
where
X=3101—8l (v*)%
and
Y=xl (v*)*+I¢l é. (58)

From the inequality (5.7), we notice the maximum time-delay to be
1
T+sﬁ(—Y+~/Y2+4ZX). (59)

The diseased state E* maintains its stability if (5.9) is satisfied in the
interval of time-delay 0< T<T™.

Further, the stability of E* can change only when u=0. This is true
because the equations (4.7) will have purely imaginary roots, ie., the
perturbed system is oscillatory with finite amplitude. In what follows we
derive a criterion under which this cannot happen for an arbitrary time-
delay.

Let T and ¥ satisfy the equations (4.7) with p=0, i.e.,

— 69240+ ¢ Cos ¥T+ y SinvT=0
and
— 9% + &9 + y¥ Cos T — ¢ Sin 7' =0. (5.10)
We rewrite these equations as
¢ Cos 6T + %9 Sin #T' = 69> — 0
and
¢ Sin vT'— y¥ Cos ¥T =¥ — #°. (5.11)
Choosing R and ¥, such that,
¢=RCos ¥ and xv=RSin ¥, (5.12)

then

R=J#+7% and W=tan”’(%>. (5.13)
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Substituting (5.12) into (5.11), we get

82
Cos(vT — Y’)=5v b
and
C e — 73
Sin(vy7— ¥) = . (5.14)
R
From (5.14), we can write
R>Max{|69>— 0], ¥ |e —v?| }, (5.15)
ie.,
V8 + = Max{ |69 — 6], ¥ |e —v?|}. (5.16)

There can be no change in stability if (5.16) is satisfied for 0 <V <v

ExampLE. Consider the system
V(1)= {¥(2)~ (F(t) = V(1)) } V(1)

F'(t) = 5gF(t) C(t) = 3(F(1) — V(1)) V(1) — u, F(1)

C'(1)=(—2V(1)+8F(t — TH) V(1 — T) — u(C(1) - C)

m'(t) = (V(1)/F(1)) V(1) — p,,m(2).

For the above set, E*(V* 2V* 24V* +16u,, V*/2u,) is an interior
equilibrium point. Let the following inequality hold:

]

12 /12
M = ==
ax{7, :

He 2 1 /2
V*<M Spot= [ u(13u.+42) 5.
u}< < m{7 Tkt 3ﬂc( Het )}

Now
\=2V*, A= —V*, B, =0, B,=-3V*, D, = =-2V*,
1 1 1
D2=8V*, El=_<1+'l‘/"‘*‘>, E2= _Z'
Further,
p*3
S=(h+ V¥, e=(uV*—6V*), 9=‘<wuV*+7F>

x=—V*, ¢—5V“
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So
1
e V¥ VR L8V *(u + V(B + 2V )
Ve Y (1 +V*)Gp )}
Also
1 19
== V¥ g +—V*) (v*)*>0
X=3V (u(+4 )(v)
15 3 2 +32
Y= VP (ot V) + V07 >0
and
2 21 3
Z=u (6+p)V*—6u V* - V*°>0.
Hence
TY= I

(4. + 19V*)(v ¥ )?
—15(u, + V*)V*—4(v+ )
+<{15(u(.+ V¥)V* 4 4(v*)?)?

2# 1/2
+4(u.+ 19V*) {—21 V*—12u,+ V*‘ (6+uc)}>

The state E* cannot get destabilized for 0< T< T* and there can be no
change in stability if

1
Z./225V*2 + 1672 > Max {| —(6V*2— 324 u, V*)| ¥,
y*
O V¥ + =+ (u+ V*)v‘z},

<vt.

<>

for 0 <

6. CONCLUSIONS
In this work, a generalization of Marchuk’s model for a virus disease has

been proposed giving due importance to the mutual interference among the
viruses attacking the organ and the organ’s immune system. The solutions

409/170/1-20
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are observed to be non-negative, by inspection. The stability analysis of the
diseased equilibrium state has been carried out by deriving its characteristic
equation as the function of time-delay. It is observed that the state cannot
get destabilized in the time-delay interval [0, T "), where the estimated T+
is given by (5.9). Further, there can be no change in stability if (5.16) is
satisfied for [0, v*], where v* is given by (5.2). An explicit numerical
example satisfying these criteria is presented.

More realistic models with multiple delays can be proposed with more
generalised, yet reasonable, restrictions such as (H,)-(H,,) on the mutual
interference functions and the stability anaiysis of the diseased state can be
carried out on similar lines.

APPENDIX: MARCHUK’S CLASSIFICATION ON THE MODEL OF
A VIRUS DISEASE

The well-known four forms of a disease are (i) subclinical, (ii) acute with
recovery, (iii) chronic, and (iv) lethal outcome.

(i) The subclinical form. In this case, the viruses attacking the
organ cannot break the immunologic barrier. The virus concentration
tends to zero with time, regardless of the dose of viruses, which could cause
infection or the extent of the organ-damage or the delay as well as the
degree of immune response. In this state, there may be a bleak chance of
having a considerable damage to the organ attacked by viruses.

(i) Acute with recovery. This is a case in which the growth of virus
concentration with time would be followed by a sharp drop of the concen-
tration. This may sometimes result in complete elimination of viruses from
the organ. Hence it may be possible to have a recovery from an acute state
of the disease.

(iii) Chronic. It is this form of the disease which is more important
and needs more attention in the analysis. In this case, the virus concentra-
tion tends to a constant nonzero level. The viruses, while attacking the
organ, break the immunologic barrier to offer resistance to antibodies. The
antibodies improve their population, with immunocompetent cells, sup-
plied by plasma-cells. There could also be a continued growth, which may
not be rapid, in the relative characteristic of the damaged organ. It would
result in the existence of a non-washed-out equilibrium state, i.e., a state in
which the viruses and antibodies can coexist in the damaged organ. The
stability of this state depends very much upon the strength of the immune
system contained in the organ. The destability of this state may result as
the lethal outcome.
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TABLE 1
Form of the Condition for
disease occurrence Special features
Subclinical B <yF V(t)—»0ast— oo
Acute with B>vF Rapid reduction of
recovery _ p>Phm, V(1) after increase
B> (0, 33) days !
Chronic B>vF, V(ty - V*ast— oo
ap > p.ny,
B <(0,33)days ™!
Lethal B>vF, V(t) = o0 as t = ©
p <P

Note. f=p—yF, F=pC/u,, where “stands for the value at normal level.

(iv) Lethal outcome. This occurs when the stimulation coefficient is
small or the time-delay is large. This results in further weakening of the
immune system and the unlimited growth of the viruses in the organ.

From a qualitative analysis of the basic model proposed by Marchuk
[7] for constant values of f, y, n, a, p, o, it is possible to distinguish the
above four forms of the development of the disease, when the organ is
slightly damaged. The results of the analysis are given in Table L
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