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Abstract

Multimedia applications involving digital audio and/or digital video transmissions require strict QoS constraints (end-to-end delay bound,
bandwidth availability, packet loss rate, etc.) to be met by the network. To guarantee the real-time delivery of packets satisfying these
constraints, areal-time channel(D. Ferrari and D.C. Verma, A scheme for real-time channel establishment in wide-area networks. IEEE
JSAC, 8(3), 368–379, 1990) needs to be established before the transmission of packets of a connection can begin. The establishment of such
channels requires the development of efficient route selection algorithms that are designed to take into account the QoS constraints.

The general problem of determining a least-cost delay-constrained route in a given communication network has been proved to be NP-hard
(M.R. Garey and D.S. Johnson, Computers and Intractability: a guide to the theory of NP-completeness, W.H. Freeman, 1979). In this paper,
we describe a preferred link approach to distributed delay-constrained least-cost routing in order to establish real-time channels. The
approach attempts to combine the benefits of probing and backtracking based algorithms (better adaptiveness and wider search) with the
advantages of distance-vector type algorithms (lower setup time). The scheme is flexible in that a variety of heuristics can be employed to
order the neighbouring links of any given node. Three heuristics are proposed and their performance is studied through simulation experi-
ments. The simulation results indicate that the proposed heuristics provide better performance than other preferred neighbour methods, in
terms of increased call acceptance rate and lower average route cost. The heuristics are also shown to adapt much better to dynamic variations
in network and link characteristics.q 1998 Elsevier Science B.V. All rights reserved
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1. Introduction

Packet switched networks are increasingly being used to
transmit multimedia traffic such as video and audio streams
besides supporting traditional data communication applica-
tions. These multimedia applications require stringent qual-
ity of service (QoS) constraints to be met by the underlying
network in terms of end-to-end delay bound, delay jitter,
bandwidth availability, packet loss rate, etc. For such a net-
work to provide performance guarantees, it is necessary that
efficient route selection strategies are employed to deter-
mine routes between sender and destination nodes in the
network [1].

In traditional computer networks, routing algorithms
attempted to optimize a particular metric, such as message
delay or routing distance, for a single connection. However,
the overall performance of the network is enhanced only if
global metrics such as average call acceptance rate, average
call setup time, and average route distance are optimized

[2]. At the same time the algorithms must attempt to ensure
that each accepted call is assured of the agreed-upon (by call
admission control) QoS. From the point of view of overall
network efficiency and efficient management of the network
resources, it is important to model the utilization of the
network by each call, in terms of a cost for the call to use
the chosen route. Routing algorithms must therefore also
attempt to minimize the cost of using a particular route to
connect the source and destination nodes.

Routing algorithms are expected to satisfy certain
additional constraints to make them suitable for actual prac-
tical implementation on wide area networks. Typically the
routing algorithms must attempt to minimize the extent to
which they rely on global state information. The algorithms
must also scale well to larger networks, by minimizing the
call setup overhead and call setup time. Since transmission
of state information across wide area networks takes a fair
amount of time, routing algorithms must also be designed to
be adaptive to changes in network characteristics and must
be capable of working with out-of-date information.

In this paper, a new distributed route selection method,
which employs the idea of preferred neighbouring links at
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each network node, is described. The rest of the paper is
organized as follows. In Section 2, we discuss the existing
routing strategies and the motivation for our work. The
proposed routing method is presented in Section 3. In
Section 4, we present a simple example that illustrates the
algorithm. In Section 5, we compare the performance of our
algorithm with that of an existing algorithm, and also
present and discuss the simulation results. Section 6 con-
cludes the paper, highlighting the advantages of the pro-
posed approach.

2. Background and motivation

2.1. Constrained-optimization routing problems

Traditionally, path selection within routing is formulated
as a cost-optimization problem. The objective function for
optimization could be any one of a variety of parameters,
such as number of hops, delay, and cost. However, in the
context of real-time networks, with many channel-
establishment requests being simultaneously active, each
specifying diverse QoS requirements, algorithms become
increasingly complex as constraints are introduced into
these optimization problems. Typically, this makes the
problem intractable [3]. Wang and Crowcroft [1] have
studied the QoS routing problem, and have classified
metrics into additive, multiplicative, and concave metrics.
They have shown that the problem of finding a path sub-
ject to constraints on two or more additive and multi-
plicative metrics in any possible combination is NP-
complete [3]. As a result, heuristic methods need to be
employed to attempt to achieve performance close to
optimal.

A number of heuristic routing algorithms for such con-
strained optimization problems have been proposed. In a
flooding based approach, a packet is forwarded to all (or
some) of the neighbours of a given node, except the node
from which the packet was received. A distributed route
selection scheme, based on flooding, that tries to bound
the number of messages used to establish a call, is discussed
in [4]. In a preferred neighbour based approach, a packet is
forwarded to a preferred neighbour that is chosen based on
certain heuristics. Such an approach has been proposed in
[2], where heuristics such as shortest path first (SPF), lightly
loaded link first (LLF), and two-level shortest path first (TSPF)
have been analysed. The advantage with the flooding based
approach is that it performs an extensive search of the various
possible routes, enjoys smaller setup times, and is more adap-
tive to dynamic link parameter variations than the other
approaches. However, it suffers from excessive resource
reservation, which results in lower call acceptance rates. The
preferred neighbour approaches overcome this problem at the
cost of overhead for table maintenance. However, the depen-
dence of these algorithms on the accuracy of the tables reduces
their efficiency in the case of dynamic networks.

One of the problems studied in this class of constrained
optimization problems is the least-cost delay-constrained
routing problem [5]. Delay constraint is a very common
requirement of many multimedia applications. Cost mini-
mization captures the need to distribute the network
resources efficiently amongst the various calls. Cost of a
link is intended as an abstraction which could, in practice,
be mapped to a variety of link parameters such as the
reciprocal of available bandwidth and the number of calls
using the link.

Widyono [6] has proposed an optimal centralized delay-
constrained least-cost routing algorithm known as the con-
strained Bellman–Ford algorithm, which performs a
breadth-first search to determine the optimal path. However,
because of its optimality, the worst-case running time of the
algorithm grows exponentially with network size. Jaffe [7]
studied a variation of the problem, in which both cost and
delay were specified as constraints, and proposed pseudo-
polynomial-time and polynomial-time heuristics for solving
the problem. A recent method, proposed in [5], that
addresses the least-cost delay-constrained routing problem,
uses entries in the cost and distance vector tables maintained
at each node to decide on the next node to which the routing
packet is to be passed. Every node initially attempts to for-
ward the packet to the next node along the least cost path to
the destination. However, if the least delay from the next
node to the destination is such that the delay constraint is
violated, then the node attempts to forward the packet to the
next hop along the least delay path to the destination. Each
node therefore makes a choice only between the next node
on the least cost path and the next node on the least delay
path to the destination. The algorithm, by restricting the
choice to these two nodes, fails to consider links that
could potentially offer a better overall cost–delay perfor-
mance. In addition, because of its reliance on cost and dis-
tance vector tables, the algorithm is dependent on the
accuracy of these tables. For dynamic networks, whose
link parameters vary frequently, this accuracy cannot be
guaranteed.

2.2. Motivation for our work

It is clear from the above discussion that though a number
of algorithms for delay-constrained least-cost routing (and
other QoS routing problems) have been developed, they
have generally tended to concentrate purely on the optimi-
zation aspects of routing. For an algorithm to actually per-
form well in practice, it is necessary to also take into
account factors such as overall network performance, pos-
sibility of out-of-date information in the routing tables, fre-
quent changes in link parameters and resource reservation
during channel establishment.

We believe that routing algorithms that are intended to be
used as route selection mechanisms for real-time channel
establishment in wide area networks must possess the
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following characteristics:

1. They must be able to maximize the overall performance
of the network without sacrificing the requirements of
any particular call.

2. They must be designed to enable resource reservation to
be built into the routing strategy [8].

3. The algorithms must be able to function with as little
global state information as possible.

4. They must be adaptive to changes in link parameters
such as link delay and available bandwidth.

5. They must be able to optimize on multiple constraints,
which is required in the case of QoS routing [1].

As discussed in Section 2.1, flooding is better suited for
achieving properties 3 and 4, whereas preferred-neighbour-
or distance-vector-based algorithms are suitable for satisfy-
ing properties 1, 2, and 5. As an attempt to satisfy all the
objectives set forth above, in this paper we propose a flex-
ible preferred link based approach to distributed path selec-
tion for setting up cost-minimized delay-constrained paths.

3. The proposed routing approach

3.1. Network model

In this paper, the network is modelled as an undirected
graphG ¼ (V,E), whereV is the set of nodes andE is the set
of interconnecting links. We associate the following four
functions with each linke [ E.

Delay function D : E → Rþ

Cost function C : E → Rþ

Total Bandwidth function TB : E → Rþ

Available Bandwidth function AB : E → Rþ

A pathP ¼ (v0,v1,v2,…,vn) in this network, has two asso-
ciated characteristics:

Cost C(P) ¼
∑n¹ 1

i ¼ 0
C(vi , vi þ 1)

Delay D(P) ¼
∑n¹ 1

i ¼ 0
D(vi ,vi þ 1)

In the case of thestatic network model,we assume that for
eache [ E, C(e), D(e) and TB(e) are fixed, though AB(e)
varies depending on the usage of the link. In the dynamic
network model, C(e) and D(e) are also allowed to vary.
When the parameters C(e) and D(e) of a particular link,e,
change, we assume that this change is known to the nodes
attached toe immediately, even though update of tables in
remote nodes (to reflect these changes) may be delayed.
This is a reasonable assumption to make, since nodes can
be expected to monitor the state of their adjacent links and
register changes in the link parameters immediately.

Propagation of this information either directly or indirectly
(by executing distributed Bellman–Ford Algorithm [9]) to
other nodes will generally be delayed.

3.2. Problem formulation

We model a channel-establishment request (also referred
to as a call) in the network described above, as a 5-tuple:

R¼ (id,s, d,B,D),

where:id is the call-request identification number;s [ V is
the source node for the call;d [ V is the destination node for
the call;B is the bandwidth requirement; andD is the delay
constraint to be satisfied.

Let Psd denote the set of all paths of the formP ¼ (s ¼

v0,v1,v2,…,vn ¼ d) between sources and destinationd that
satisfy the following two conditions:

• AB(e) $ B, ; e ¼ (vi ,vi þ 1), 0 # i # n ¹ 1
• D(P) # D.

The delay-constrained least-cost routing problem can
now be formulated as

Find P9 [ Psd such that C(P9) ¼ min{C(P):P [ Psd}

3.3. The routing strategy

The preferred neighbour approach to distributed route
selection is a general framework for the construction of
routing algorithms. This framework was used in [2], along
with heuristics such as SPF and LLF, to establish real-time
channels. In this paper, we propose to adapt this framework
for constructing delay-constrained least-cost paths. For this,
three new heuristics are described, which are used to decide
on the ordering of neighbouring links of a node. In the
following sections, we will first informally describe the
preferred-link routing framework. We will then present
the three heuristics to be used in conjunction with this
framework and also describe the data structures to be pre-
sent at each node in order to implement the routing heuris-
tics. Finally, we will formalize the algorithm.

3.3.1. The preferred link routing framework
The preferred link routing framework is fundamentally a

backtracking-based route selection method. This framework
describes a set of actions to be performed by each node
whenever it receives a call setup or a call reject packet.
When a nodev receives a call setup packet, it forwards it
along the first preferred link. If a reject packet is received
from the node at the other end of this link, then nodev
attempts to forward the packet along the next preferred
link and so on, until a specified number of links have been
tried out. If all such attempts result in failure, thenv sends
back a reject packet to the node from which it received the
call setup packet. If the call setup packet reaches the
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destination, then the call is successfully setup. If the source
gets rejected on all attempts, the call is rejected.

3.4. Data structures at each node

To implement the proposed heuristics in conjunction with
the preferred link routing framework, each node in the net-
work is equipped with two data structures, namely, ahistory
buffer and apreferred link table .

3.4.1. History buffer
The history buffer (HB) at each node,v, contains one

entry for every call for whichv has received a call setup
packet. Each entry contains a pair of elements (packet, tried)
wherepacketis the call setup packet received by this node
and tried is the number of preferred neighbour links on
which v has tried to forward the request. Therefore, the
HB at nodev contains the complete status information for
every call that was handled byv. The entry corresponding to
a call is removed when the call is either accepted or rejected.

3.4.2. Preferred link table
The structure of the preferred link table (PLT) to be main-

tained at each node depends on the nature of the heuristic
function that is employed to construct the table. For describ-
ing the structure of the PLT, we classify all heuristic func-
tions into two major categories, namelydestination-specific
heuristicsandcall-specific heuristics.

Destination-specific heuristicsare those, whose com-
putation is specific to each destination. Therefore if the
destination nodes of two different call-requests arriving
at a given node are the same, then the two calls will
share an identical list of preferred links. Each node,v, in
the network is equipped with a PLT that contains one
row for every destination. Each row contains the pre-
ferred links for that particular destination ordered in
terms of decreasing preference. The maximum number
of entries per row is denoted byk. Obviouslyk is upper-
bounded by the maximum degree of any node in the
network. The preference for a link will be decided
based on the value of a heuristic function that is com-
puted for each (link, destination) pair.
Call-specific heuristicsare those whose computation
depends on the particular parameters carried by a call
setup packet arriving at the node. In such cases, the list
of preferred links is individually computed for each call
request. As a result, the ordering of the links will be
call-specific instead of being just destination
specific. For such heuristic functions, the number of
rows in the PLT table will vary dynamically,
depending on the number of calls currently being
handled by the node. The table entries corresponding
to a particular call are removed when the call is
accepted or rejected.

3.4.3. Tests before forwarding
Before forwarding any packet along a link, each node

conducts three tests on the link parameters. The link is
used for forwarding the packet only if all the tests are suc-
cessful. The tests are described below.

Let R ¼ (id,s,d,B,D) be a call request, and letP be a call-
request packet arriving at a nodev. Let P.pathdenote the
path taken by the packet up to this point, and letP.delay
denote the cumulative delay along this path. Before for-
warding the packet along linkl ¼ (v,v9), nodev conducts
the following three tests.

Bandwidth Test : Verify that AB(l) $ B
Delay Test : Verify that P.delayþ D(l) # D

Loop Test : Verify that v9 is not a node inP.path

3.5. Proposed heuristic functions

In this section, we propose heuristics that are used to load
the PLT tables at each node in the network. We will also
describe the computation to be performed and the intuitive
reason behind the choice of each heuristic. For the descrip-
tion of the heuristics, we will use the following notation:

• LDELAY( x,d) ¼ the least delay from nodex to noded in
the network.

• LCOST(x,d) ¼ the cost of the least cost path from nodex
to noded.

• LDNHOP(x,d) ¼ the first link on the least delay path
from x to d.

• LCNHOP(x,d) ¼ the first link on the least cost path from
x to d.

These values are assumed to be available at each node as
a result of executing a distributed distance vector algorithm
like the Bellman–Ford algorithm [9].

1. Residual delay maximizing (RDM) heuristic: this
heuristic is a call-specific heuristic. Let a call setup
packetP belonging to the call-requestR ¼ (id,s,d,B,D)
arrive at nodev. For each linkl ¼ (v,x) atv, let RDM(l,R)
denote the value of the heuristic for linkl corresponding
to the call requestR. Then, we define

•

RDM(l, R) ¼
C(l)

D ¹ P:delay¹ D(l) ¹ LDELAY (x,d)

• where C(l) and D(l) respectively denote the cost and
delay of link l. If, in the calculation of the function, a
particular link l produces a negative denominator, then
that link is not included in the preferred list. The links
are arranged in increasing order of their RDM values, so
that the links with lower RDM values are given greater
preference. The intuitive idea underlying this function is
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to maximize the residual delay (i.e. the delay available
for setting up the rest of the path) while at the same time
minimizing the cost of the link chosen. A similar idea of
residual delay has also been used by Kompella et al. [10]
in their multicast routing algorithm.

2. Cost delay product (CDP) heuristic: this is a destina-
tion-specific heuristic. We define the cost–delay product,
corresponding to the destination,d, of a link l ¼ (v,x) to
be

•

CDP(l) ¼ C(l) p (D(l) þ LDELAY (x,d))

• where C(l) is the cost of the link and D(l) is its delay. To
load the PLT entries corresponding to the destinationd,
the following steps are performed:

• The links adjacent tov are arranged in increasing order
of their CDP values and firstk links are chosen.

• If this chosen set does not contain LCNHOP(v,d), then
LCNHOP(v,d) is placed as the first preferred link and the
last link in the originally chosen set is dropped.

• If now the set does not contain LDNHOP(v,d), then
LDNHOP(v,d) is used to replace the last preferred link
in the chosen set.

• This final set of links is used to populate the PLT entry
for destinationd.

3. Partition-based ordering (PBO) function: this heuris-
tic is a destination-independent and call-independent
heuristic. Let avg(v) denote the average cost of all the
links adjacent tov. The links adjacent to a nodev are
partitioned into two setsbelowandabove, where:

below(v) ¼ { l : C(l) # avg(v)}

above(v) ¼ { l : C(l) . avg(v)}

The links in the two sets are then separately sorted in
increasing order of their delay values. A new list is then
created containing the sortedbelow set followed by the
sortedaboveset. The firstk links from this new list are
chosen and used to populate the table (which in this case
reduces to a single-row table).

In all cases, ties between two links are resolved by giving
preference to the link with larger available bandwidth.

3.5.1. Formal algorithm description
The algorithm is described as a pair of procedures, action-

on-reject and action-on-setup, which outline the steps to be
taken by a node on receiving a call reject and call setup
packet, respectively.

Notation

• We will use the notation HB(v,I) to specify a function
that accesses the history buffer of nodev and returns the

buffer entry corresponding to a call-request with
identifier I. Each such entry will contain a tuple
(packet,tried) as defined earlier.

• In the case of destination-specific heuristics, we will use
the notation PLT(v,i,d) to denote a function that accesses
PLT and return theith preferred link at nodev for rout-
ing a packet to a destination noded.

• For call-specific heuristics, PLT(v,i,j) will denote a func-
tion that accesses the PLT and returns theith preferred
link at nodev for routing a packet belonging to a call
with call-id j.

• To represent theBandwidth, Loop, and Delay tests
conducted on a linkl, we will use three functions, Band-
width(l), Loop(l) and Delay(l), each of which will return
true if l passes the test andfalseotherwise.

• For a packetP, P.callid will denote the identifier of the
call to which P belongs andP.prev will denote the
penultimate node in the current path travelled byP.

Action-on-reject(v,P) /* reject packet P arrives at
node v*/
begin

BufferEntryQ ¼ HB(v,P.callid);

Boolean sent¼ false;

while ((Q.tried, k) and not(sent))
begin

Q.tried¼ Q.triedþ 1;

Link l ¼ PLT(v,Q.tried,x)
/* x ¼ destination node of the call if destination-specific
heuristic

x ¼ P.callid if call-specific heuristic*/
if (Bandwidth(l) and Loop(l) and Delay(l)) then

begin
Forward Q.packet along linkl;
sent¼ true;

end;

end;
if not(sent) then
begin
if (v ¼ source node for the call) then call is rejected;
else send reject packet to Q.packet.prev;
end;
end;

Action-on-setup(v,P) /* call setup packet P arrives at
v */
begin

If (v ¼ destination for the call) then call is accepted
else begin

Add a new entry to HB containing the pair (P,0);

Let Q be this new entry;

1659R. Sriram et al. / Computer Communications 21 (1998) 1655–1669



If (call-specific heuristic is being used) then
begin
Create a new PLT entry corresponding to this call;

Evaluate heuristic for each link and populate this new
entry;
Boolean sent¼ false;
end;
repeat
Q.tried¼ Q.triedþ 1;
Link l ¼ PLT(v,Q.tried,x)
/* x ¼ destination node of the call if destination-specific
heuristic
x ¼ P.callid if call-specific heuristic*/
If (Bandwidth(l) and Loop(l) and Delay(l)) then
begin
Forward Q.packet along linkl;
sent¼ true;
end;
until ((Q.tried. k) or (sent¼ true));
if not(sent) then begin
if (v ¼ source node for the call) then call is rejected;
else send reject packet to Q.packet.prev;
end;
end;
end;

4. Example

In this section, we will describe how a set of five call-
requests in a small five-node network are handled by the
delay-constrained unicast routing (DCUR) algorithm [5].
We will then illustrate how the same requests are
handled by our proposed algorithm using the RDM

heuristic. The 5-node network is shown in the above figure.
Each edge is labelled with an ordered pair representing the
(cost, delay) values of the link. Each edge is assumed to
have a total bandwidth of 30 units. Consider the following
five call-requests, which occur one after another in the
specified order.

Call Id Source Dest. B/W D

1 1 3 10 6
2 2 4 10 7
3 2 4 10 6
4 2 4 10 6
5 2 4 10 7

Table 1 contains the least-cost and least-delay paths
between every pair of vertices.

4.1. Route selection by the DCUR and RDM algorithms

In the following description of the steps executed by both
the algorithms, we will use the notations LDNHOP(x,d),
LCNHOP(x,d), LDELAY(x,d), and LCOST(x,d) defined
previously. We will also use D(a → b) and C(a → b) to
denote the delay and cost of the link connecting verticesa
andb.

4.1.1. Routes chosen by DCUR

1. Call 1: source¼ 1; destination¼ 3; D ¼ 6;

At node 1:

• Attempt along the least cost path using the link
LCNHOP(1,3) ¼ (1 → 2)

• Calculate minimum possible delay if (1→ 2) is chosen.
D(1 → 2) þ LDELAY(2,3) ¼ 3 þ 4 ¼ 7
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• Since 7. D and LDELAY(1,3) , D, node 1 chooses
LDNHOP(1,3)¼ (1 → 4).

• Forward packet to node 4.

At node 4:

• Receive a packetP from node 1 withP.delay¼ D(1 →
4) ¼ 2.

• Attempt along least cost path. LCNHOP(4,3)¼ (4 → 3).
• SinceP.delayþ D(4 → 3) , D forward packet to node 3

which is also the destination.

Hence the selected route is1 → 4 → 3; Cost ¼ 8

2. Call 2: source¼ 2; destination¼ 4; D ¼ 7;

The algorithm proceeds as in the previous call.
The route that is chosen is2 → 1 → 4; Cost ¼ 10

3. Calls 3,4, and 5: all use the pair of vertices (2,4) as the
source–destination pair. These set of calls were chosen
to illustrate how the algorithms deal withhot-pair com-
munication (HPC) wherein a large number of calls are
generated for a given (source,destination) pair. The
DCUR algorithm will choose the path 2→ 1 → 4 for
each of these calls, as the delay constraint for each of
them is less than 8 (which is the delay along the least-
cost path between 2 and 4). However, after call 3 is
accepted, link (1,4) will have no available bandwidth
as it is supporting calls 1, 2, and 3, each of which requires
10 units. Therefore, calls 4 and 5 will be rejected by the
DCUR algorithm.

4.1.2. Routes chosen by RDM heuristic

1. Call 1: Source¼ 1; Destination¼ 3; D ¼ 6;

At node 1:The RDM value is computed for each of the
three links adjacent to node 1.

• For link (1→ 2): RDM(1→ 2) ¼ 3=ð6¹ 0¹ 3¹ 4Þ , 0;
skipped as it fails delay test.

• For link (1 → 5): RDM(1 → 5) ¼ 3=ð6¹ 0¹ 3¹ 2Þ ¼ 3
• For link (1→ 4): RDM(1→ 4))¼ 7=ð6¹ 0¹ 2¹ 2Þ ¼ 3:5

The lowest value is for link (1→ 5). Hence packet is
forwarded to node 5.
At node 5:Here again the RDM values are computed
for the three links adjacent to node 5.

• For link (5 → 1): skipped because of the loop test.
• For link (5 → 2): RDM(5 → 2)) ¼ 1=6¹ 3¹ 2¹ 4 , 0;

skipped
• For link (5 → 3): RDM(5 → 3) ¼ 2=6¹ 3¹ 2¹ 0¼ 2;

Hence the packet is forwarded via link (5→ 3).
The selected route is1 → 5 → 3; Cost ¼ 5.

2. Call 2: source¼ 2; destination¼ 4; D ¼ 7;

At node 2:

• For link (2→ 1): RDM(2→ 1)¼ 3=ð7¹ 0¹ 3¹ 2Þ ¼ 1:5
• For link (2 → 5): RDM(2 → 5) ¼ 1=ð7¹ 0¹ 2¹ 4Þ ¼ 1
• For link (2→ 3): RDM(2→ 3) ¼ 1=ð7¹ 0¹ 6¹ 2Þ , 0;

skipped

The packet is forwarded to node 5 via link (2→ 5).
At node 5:

• For link (5→ 2): RDM(5→ 2) ¼ 2=ð7¹ 2¹ 2¹ 5Þ , 0;
skipped

• For link (5 → 1): RDM(5 → 1) ¼ 3=ð7¹ 2¹ 3¹ 2Þ ¼ `
• For link (5 → 3): RDM(5 → 3) ¼ 2=ð7¹ 2¹ 2¹ 2Þ ¼ 2

The packet is forwarded to node 3 via link (5→ 3).
At node 3:

• For link (3 → 2): skipped because it fails loop test
• For link (3 → 5): skipped because it fails loop test
• For link (3 → 4): RDM(3 → 4) ¼ 1=ð7¹ 4¹ 2¹ 0Þ ¼ 1

The packet is forwarded to node 4 which is the
destination.
The chosen route is2 → 5 → 3 → 4; Cost ¼ 4

3. Calls 3,4, and 5:RDM will route call 3 along the path
2→5 → 3 → 4 path similar to call 3. After this, link (5,3)
will now be saturated as it is used by calls 1,2, and 3.
When call 4 arrives, RDM will choose (2,5) and forward
the packet to node 5. At 5, link (5,3) will fail the

Table 1
Least-cost and least-delay values

Vertex Pair Least-cost path Least cost Least-delay path Least delay

(1,2) 1→ 2 3 1→ 2 3
(1,3) 1→ 2 → 3 4 1→ 4 → 3 4
(1,4) 1→ 2 → 3 → 4 5 1→ 4 2
(1,5) 1→ 5 3 1→ 5 3
(2,3) 2→ 3 1 2→ 5 → 3 4
(2,4) 2→ 3 → 4 2 2→ 1 → 4 5
(2,5) 2→ 5 1 2→ 5 2
(3,4) 3→ 4 1 3→ 4 2
(3,5) 3→ 5 2 3→ 5 2
(4,5) 4→ 3 → 5 3 4→ 3 → 5 4

1661R. Sriram et al. / Computer Communications 21 (1998) 1655–1669



bandwidth test and link (5,1) will fail the delay test.
Therefore backtrack to node 2. The link (2,1) will be
the next preferred link at node 1 and the path 2→ 1 →
4 will be selected. The same path will be chosen for call 5
also. Hence all the calls will be accepted. In fact, RDM
will be able to accomodate another call between (2,4)
with the same bandwidth requirement.

4.2. Comments

The following table summarizes the performance of the
two algorithms in the above example.

Call number DCUR performance RDM performance
1 Accepted; Cost¼ 8 Accepted; Cost¼ 5
2 Accepted; Cost¼ 10 Accepted; Cost¼ 4
3 Accepted; Cost¼ 10 Accepted; Cost¼ 4
4 Rejected Accepted; Cost¼ 10
5 Rejected Accepted; Cost¼ 10

The above example clearly illustrates where our proposed
approach using the RDM heuristic scores over the DCUR
algorithm. In the case of calls 1 and 2, the DCUR algorithm,
at each node, attempted to forward the packet via the least-
cost route. However, since the delay constraint was not
satisfied it finally chose only the least-delay route between
the source and destination. The RDM algorithm however
was able to find a route that was neither the least-cost nor
the least-delay route, but which satisfied the delay constraint
without excessive cost. Calls 3, 4, and 5 illustrate that
because of its ability to search for alternate paths, the
RDM algorithm is able to distribute the hot-pair communi-
cation load between nodes 2 and 4 among two different
routes, thus providing greater call acceptance.

5. Experimental results

In this section, we present the results of the simulation
experiments that were conducted to analyse and compare
the performance of the proposed algorithms with the DCUR
algorithm of Salama et al. [5]. We will first define the per-
formance metrics, then describe the simulation model and
finally present and discuss the results.

5.1. Performance metrics

For an accepted call-request ‘R’, let us define the
functions:

• accepted(R) ¼ 1.
• cost(R) ¼ cost of the path chosen forR.
• setup(R) ¼ number of vertices visited by the call setup

packet.
• diet(R) ¼ length of the path (in terms of hop-count)

chosen forR.

For a call request,R, that is rejected, all the functions
return a value of 0. Let ‘N’ be the total number of call
requests generated. The following metrics were used to
analyse the performance of the routing algorithms.

• Average call acceptance rate (ACAR):the average
probability of accepting a real-time channel establish-
ment request.

ACAR¼

∑
N
i ¼ 1accepted(R)

N

• Average cost (AC):the average cost of the established
channels.

AC¼

∑
N
i ¼ 1cost(R)∑

N
i ¼ 1accepted(R)

• Average call setup time (ACST): the average time
required to setup a real-time channel measured in
terms of number of vertices visited by the call setup
packet.

ACST¼

∑
N
i ¼ 1setup(R)∑

N
i ¼ 1accepted(R)

• Average routing distance (ARD): the average hop-
count of the established channels.

ARD¼

∑
N
i ¼ 1dist(R)∑

N
i ¼ 1accepted(R)

The first metric is important, as it is a measure of network
throughput. The second metric is also important, because
cost minimization is one of the stated goals. Metric 3 is
important in the context of real-time multimedia appli-
cations that require a call to put through quickly. Metric 4
is also important in the sense that a shorter route will in
general consume less network resources and will therefore
contribute towards improving network throughput and
lowering cost.

5.2. Simulation model

To conduct the simulation studies, we have used ran-
domly generated networks on which the algorithms were
executed. The reason for using random networks instead
of using existing real networks was to make the results
independent of the characteristics of any particular network
topology. Using randomly generated network topologies
also provided the necessary flexibility to tune the network
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parameters such as average degree, number of nodes, and
number of edges, and to study the effect of these parameters
on the performance of the algorithms.

5.2.1. Random graph generation
In generating random graphs, we have adopted the

method used in [11], where vertices are placed randomly
in a rectangular coordinate grid by generating uniformly
distributed values for theirx andy coordinates. The graphs’
connectivity is ensured by first constructing a random span-
ning tree. This tree is generated by iteratively considering a
random edge between nodes and accepting those edges that
connect distinct components. The remaining edges of the
graph are chosen by examining each possible edge (u,v)
and generating a random number 0# r , 1. If r is less
than a probability function P(u,v) based on the edge distance
betweenu andv, then the edge is included in the graph. The
distance for each edge is the Euclidean distance (denoted as
d(u,v)) between the nodes that form the end-points of the
edge. We used the probability function

P(u,v) ¼ be

¹ d(u,v)
2an

wherea andb are tunable parameters, andn is the number
of nodes in the graph.

5.2.2. Simulation parameters
Except in the case of Fig. 1, all the networks used for

simulation had 60 vertices. The parametersa and b were
tuned to produce networks with average node degree 4.
Random edge costs were generated uniformly from the set
[1,10]. Edge delays were made proportional to the
Euclidean distance of the edges in the coordinate plane.
Each link in the network was assigned a total bandwidth
of 100 units. Every simulation run consisted of a batch of
5000 call requests. Each point in every plot is the average

over the values generated by 20 random networks with the
above specified characteristics. Each plot compares the per-
formance of the proposed algorithm using heuristics RDM,
CDP, and PBO with the DCUR algorithm described in [5].

The call requests were generated with the following
parameters.

• Source and destination nodes were chosen uniformly
from the node set, except in the case of the hot-pair
communication plot in Fig. 1b. In this plot, a specified
p% of the calls always used one of three specifically
chosen source-destination pairs, whereas the rest of the
calls had randomly generated source and destination
vertices. These specifically chosen vertex pairs therefore
acted as hot-pair vertices.

• Call duration, bandwidth requirement, and delay con-
straint were uniformly distributed between their respec-
tive maximum and minimum values.

• The inter-arrival time of call establishment requests fol-
lowed exponential distribution with mean 1/l.

The parameters used for simulation are summarized in the
Table 2. Each entry represents the default values used for
the specified parameter (i.e. when that parameter is not
being used as thex-axis parameter).

5.3. Discussion of results

The performance of the proposed heuristics (RDM, CDP,
and PBO) and the DCUR algorithm [5] were studied under
two different network models, static and dynamic.

5.3.1. Static model
In this model, of the four link parameters (cost, delay,

available bandwidth and total bandwidth) only the available
bandwidth value changes as calls dynamically reserve

Fig. 1. (a) Effect of network size on average number of messages. (b) Effect of HCP percentage on ACAR.
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resources during setup and release them when they are torn
down.

1. Effect of bandwidth requirement: Fig. 2a–d represents
the effect of bandwidth requirement of the calls on the
performance metrics. The parameter that is varied on the
x-axis is the maximum bandwidth requirement.

• Effect on ACAR: as the bandwidth requirement
increases, the ACAR decreases for all the algorithms
as it becomes increasingly tough to find links with the
required available bandwidth. The PBO, RDM and CDP
algorithms perform better than the DCUR algorithm,
because they probe for alternative paths much better
than DCUR does. In the case of DCUR, there is atmost
a two-way probe. As multiple calls between a given pair
of nodes are generated, after a while, the least delay path
and least cost path between these two nodes become
saturated, thus preventing further calls from being
accepted. The PBO, RDM, and CDP algorithms how-
ever probe for alternate paths and thereby distribute the
load more uniformly.

• Effect on AC: as the bandwidth requirement gets tighter,
higher cost edges might need to be chosen in favour of
lower cost edges, because the latter might already be
saturated. Hence the general trend is an increase in AC

Table 2
Parameters and default values

Parameter Default values

Inter-arrival time of call requests Exponential distribution with mean
1/l ¼ 2

Delay constraint Uniformly distributed in (20,30)
Bandwidth requirement Uniformly distributed in (4,8)
Call duration Uniformly distributed in (100,200)
Number of preferred links(k) 3
Table Update periodicity (Tupdate) Every 300 calls
Perturbation periodicity (Tperturb) Every 300 calls

Fig. 2. (a) Effect of max b/w on ACAR. (b) Effect of max b/w on AC. (c) Effect of max b/w on ACST. (d) Effect of max b/w on ARD.
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with increase in bandwidth requirement. However, the
more extensive search of alternate paths by the proposed
algorithms accounts for the improved performance over
DCUR.

• Effect on ACST and ARD: similar to the case of AC,
shorter routes might not be available with the required
bandwidth and hence ACST and ARD increase. Heur-
istics RDM and CDP provide performance that is close
to the DCUR algorithm which, because of its restricted
search, provides lowest ACST values.

2. Effect of delay constraint: the plots in Fig. 3a–d present
the effect of increasing delay-constraint.

• Effect on ACAR: as the delay constraint becomes less
tighter the acceptance rate increases.

• Effect on AC: as the delay constraint becomes less tigh-
ter, the algorithms are able to choose low-cost edges
even if the they have a higher delay value. Therefore
AC decreases for all algorithms.

3. Effect of call arrival rate: the plots in Fig. 4a–d present
the effect of increasing the call-arrival rate. As call
arrival rate increases there is a drop in ACAR and
increase in AC, ACST, and ARD. This is due to more
calls competing for the network resources. The proposed
heuristics are able to manage the resources more effi-
ciently than DCUR and hence exhibit higher ACAR
and lower AC.

4. Effect of k: the plots in Fig. 5a–d present the effect ofk

on the performance parameters. The plots in Fig. 5a and
b show that as the maximum number of preferred links
increase, there is a general increase in ACAR and a drop
in AC. However, this trend continues only up to a value
of k ¼ 4. Fork . 4, the plots flatten out. This observation
is consistent with the intuitive reasoning that choosingk

much larger than average degree (¼ 4 in this case) will
not yield too much improvement. Ask increases, there is
scope for a larger number of links to be attempted at each
node. This could result in a larger setup time, as indicated

Fig. 3. (a) Effect of delay constraint on ACAR. (b) Effect of delay constraint on AC. (c) Effect of delay constraint on ACST. (d) Effect of delay constraint on
ARD.
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in Fig. 5c. Fig. 5d illustrates the fact that a destination-
independent heuristic like PBO produces longer routes
(larger ARD) when compared with destination-
dependent heuristics like RDM and CDP. It also indi-
cates that, as expected,k does not influence the ARD
metric as significantly as it influences the other three
metrics.

5. Effect of average degree:the effect of average node
degree on the ACAR metric is plotted in Fig. 6. As the
average degree of the nodes in the network increases, the
RDM, PBO, and CDP heuristics utilize the greater con-
nectivity in the network much better than DCUR does.
Hence they exhibit much higher ACAR compared with
the DCUR algorithm with the performance gap widening
as the degree increases.

6. Effect of network size on number of messages:the plot
in Fig. 1a indicates that the three heuristics do not gen-
erate any message explosions and scale well to larger
networks. Heuristics RDM and CDP are powerful enough
to keep the search directed towards the destination and

provide performance comparable to DCUR (which,
because of its restricted search, is expected to provide
the best performance). PBO, which is destination- and
call-independent, provides the least impressive perfor-
mance with regard to number of messages per call.

7. Effect of hot-pair communication: the plot in Fig. 1b
portrays the influence of hot-pair communication on the
call acceptance rate of the algorithms. As the hot-pair
communication percentage increases, there is a general
decline in the acceptance rates of all the algorithms,
because of saturation of the links connecting the two
hot-pair vertices. However, it is seen that the proposed
heuristics, because of their ability to adapt and search
alternative paths, perform better than the DCUR
algorithm.

5.3.2. Dynamic model
In the dynamic model of the network, besides the

variation in the available bandwidth at each link, the cost

Fig. 4. (a) Effect of call arrival rate on ACAR. (b) Effect of call arrival rate on AC. (c) Effect of call arrival rate on ACST. (d) Effect of call arrival rate on ARD.
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and delay values are also allowed to vary with time. This
model attempts to capture the variations in link parameters
with time, either because of physical reasons or because of
the network traffic characteristics that result in certain areas
of the network getting congested. We assume that in order to
maintain routing tables consistently, there is an underlying
protocol which executes to exchange and disseminate infor-
mation about link changes to all nodes in the network. In
order to quantify the dynamic nature of the network and the
periodicity of information exchange, two new parameters
Tperturb and Tupdate were introduced. Since call arrivals are
distributed with fixed arrival rate, these parameters were
defined in terms of number of calls rather than in terms of
timing parameters. For allTperturb calls, the cost and delay
values of various links in the network were changed. For
this, an edge was chosen at random and its cost was arbi-
trarily increased or decreased by a fixed percentage. A simi-
lar process was done for the delay values of the links. The
percentage of edges to be perturbed and the extent of per-
turbation were chosen (after some experimentation) to be

20% and 35%, respectively. EveryTupdatecalls, the entries in
the distance vector tables (namely theLDNHOP, LCNHOP,
LDELAY,andLCOSTfunctions defined in Section 3.5) of
all the nodes were updated to reflect the changed link
parameters.

1. Effect of periodicity of perturbation: the plots in
Fig. 7a and b represent the effect ofTperturbon acceptance
rate and average cost. The performance of the DCUR
algorithm shows a marked improvement as the frequency
of perturbation is decreased (i.e. asTperturb is increased).
The proposed heuristics show much less dependence on
this parameter, and adapt to link state changes better than
DCUR. The reason for this lies in the fact that DCUR
uses the cost and distance vector tables to decide the next
node to which the routing packet is to be forwarded.
Hence the final path produced by DCUR is restricted to
being an interleaving of the least-delay and least-cost
paths. When these paths become out-of-date, the
resultant path chosen by DCUR is also poor. The PBO

Fig. 5. (a) Effect ofk on ACAR. (b) Effect ofk on AC. (c) Effect ofk on ACST. (d) Effect ofk on ARD.
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heuristic, which is destination- and call-independent
shows a flat response as expected. The RDM heuristic
uses only theLDELAYvalues to guide the routing deci-
sion and does not directly use theLDNHOP values as
used by DCUR. Therefore it does not suffer as much as
DCUR if the tables are out-of-date. Of the three heuris-
tics, only CDP uses theLDNHOP and LCNHOP func-
tions and hence provides the least impressive
performance even though it is still better than DCUR.

2. Effect of table updates: the explanation for the trends
exhibited in plots in Fig. 8a and b is identical to the
explanation for the plots in Fig. 7a and b.

5.3.3. Overall comparison with DCUR
DCUR works by essentially restricting its search to least-

cost and least-delay neighbours (i.e. at nodev, the route is
extended via either LCNHOP(v) or LDNHOP(v)). The main
requirement for the execution of DCUR is the need to store

two distance–vector tables, one each for the delay and cost
metrics. Our algorithm, on the other hand, requires the
maintenance of a PLT, which is constructed using any of
our proposed heuristics. Besides the information required to
construct the DCUR tables, our heuristics only require
knowledge of local link properties (such as the cost and
delay of links adjacent to a given node) which can be easily
and accurately monitored. Hence, without additional over-
head, our heuristics provide the following benefits: higher
acceptance rates; lower costs; lower routing distances; bet-
ter utilization of network resources; facility to achieve a
trade-off between optimality and setup time (usingk), and
better adaptation to variations in link parameters. We have
also shown, through simulation, that the RDM and CDP
heuristics provide setup times that are comparable to those
of DCUR. This indicates that the two heuristics provide the
above-mentioned benefits by only visiting, on average, as
many nodes as DCUR visits. The PBO heuristic is useful
when the network is highly dynamic, but is generally quite
poor with regard to ACST and ARD, as its search is unrest-
ricted and independent of the destination.

6. Conclusion

In this paper, we adapted the preferred link routing
approach to delay-constrained least-cost routing for real-
time channel establishment and presented a set of heuristics
that could be employed with this approach. We also pre-
sented simulation results that have shown that the suggested
heuristic functions are able to provide increased netwok
throughput, better adaptiveness, and lower average cost
than DCUR [5], a recently proposed algorithm. Our simula-
tion studies have revealed the following advantages of our
proposed algorithm:

• Since the route search is essentially by probing and there
is no fixed precalculation, as is the case with distance

Fig. 7. (a) Effect ofTperturb on ACAR. (b) Effect ofTperturb on AC.

Fig. 6. Effect of average degree on ACAR.

1668 R. Sriram et al. / Computer Communications 21 (1998) 1655–1669



vector based algorithms, the proposed approach is more
responsive to network changes.

• The heuristic functions use a minimum of global infor-
mation, basing most of their decisions on local informa-
tion at each node. Therefore there is less overhead
required to communicate link state changes to the rest
of the network.

• The approach combines resource reservation with prob-
ing thus avoiding a separate reservation phase.

• The algorithm provides for trade-off between lower
setup time and optimality of the route by suitably select-
ing the maximum number of preferred links to be used at
each node.

Areas for future research include development of
improved heuristic functions that exploit the possibility of
adaptively using different heuristics at different nodes along
a route. We are also currently investigating the extension of
this approach to constrained multicast routing.

References

[1] Z. Wang, J. Crowcroft, Quality-of-service routing for supporting mul-
timedia applications, IEEE JSAC 14 (7) (1996) 1228–1234.

[2] N. Huang, C. Wu, Y. Wu, Some routing problems in broadband ISDN,
Computer Networks and ISDN Systems 27 (1994) 101–116.

[3] M.R. Garey, D.S. Johnson, Computers and Intractability: A guide to
the theory of NP-completeness, W.H. Freeman, 1979.

[4] K.G. Shin, C. Chou, A distributed route-selection scheme for
establishing realtime channels, High Performance Networking
(1995) 319–330.

[5] H.F. Salama, D.S. Reeves, Y. Viniotis, A distributed algorithm for
delay-constrained unicast routing. IEEE INFOCOM, 1997.

[6] R. Widyono, The design and analysis of routing algorithms for real-
time channels. Tech. Rep. ICSI TR94-024, University of California at
Berkeley, International Computer Science Institute, June 1994.

[7] J. Jaffe, Algorithms for finding paths with multiple constraints, Net-
works 14 (1) (1984) 95–116.

[8] S. Shenker, L. Breslau, Two issues in reservation establishment. ACM
SIGCOMM, 1995.

[9] D. Bertsekas, R. Gallager, Data Networks, 2nd edn. Prentice-Hall
International, 1992.

[10] V.P. Kompella, J.C. Pasquale, G.C. Polyzos, Multicast routing for
multimedia communication, IEEE/ACM Trans. on Networking 1
(1993) 286–292.

[11] B.M. Waxman, Routing of multipoint connections, IEEE JSAC 6
(1988) 1617–1622.

[12] C.M. Aras, J.F. Kurose, D.S. Reeves, H. Schulzrine, Real-time com-
munication in packet-switched networks, Proc. IEEE 2 (1) (1994)
122–139.

R. Sriram obtained the B.Tech. degree in Computer Science and Engi-
neering from Indian Institute of Technology, Madras, in 1998. He is a
recipient of President of India Gold Medal for academic excellence in
the B.Tech programme. Currently, he is a research student at the
Computer Science Department, Stanford University, USA. His research
areas of interests are routing, multicasting, and fault-tolerance in real-
time networks.

G. Manimaran obtained the B.E. degree in Computer Science and
Engineering from Bharathidasan University, Thiruchirappalli, in
1989, M.Tech. in Computer Technology from the Indian Institute of
Technology, Delhi, in 1993, and Ph.D in Computer Science and Engi-
neering from the Indian Institute of Technology, Madras, in 1998. His
research interests are resource management in parallel and distributed
real-time systems, real-time networks, and fault-tolerant computing.

C. Siva Ram Murthy obtained the B.Tech. degree in electronics and
communications engineering from Regional Engineering College, War-
angal, in 1982, M.Tech. in computer engineering from Indian Institute
of Technology (IIT), Kharagpur, in 1984, and Ph.D. in computer
science from Indian Institute of Science (IISc), Bangalore, in 1988.
From March 1988 to September 1988 he worked as a Scientific Officer
in the Supercomputer Education and Research Centre at IISc. He sub-
sequently joined IIT Madras as a Lecturer of Computer Science and
Engineering. He became an Assistant Professor in August 1989 and is
currently an Associate Professor at the same place. He has held visiting
positions at German National Research Centre for Information Tech-
nology (GMD), Sankt Augustin, Germany, University of Washington,
Seattle, USA, and University of Stuttgart, Germany. He is a recipient of
the Seshagiri Kaikini Medal for the best Ph.D. thesis and also of the
Indian National Science Academy Medal for Young Scientists.

Fig. 8. (a) Effect ofTupdateon ACAR. (b) Effect ofTupdateon AC.

1669R. Sriram et al. / Computer Communications 21 (1998) 1655–1669


