Int. J. Engng Sci. Vol. 33, No. 6, pp. 867877, 1995

Pergamon Copyright © 1995 Elsevier Science Ltd
0020-7225(94)00091-3 Printed in Great Britain. All rights reserved

0020-7225/95  $9.50 + 0.00

SLOW STEADY ROTATION OF AN APPROXIMATE
SPHERE IN AN INCOMPRESSIBLE MICROPOLAR FLUID
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Abstract—The flow generated by the slow steady rotation of an approximate sphere about its axis of
symmetry in an incompressible micropolar fluid is studied. Expressions for the velocity and
microrotation components are obtained in terms of modified Bessel functions and Gegenbauer’s
functions. The couple experienced by the approximate sphere is evaluated and the effects of the
polarity parameters and deformation parameters on the couple are numerically studied. It is noticed
that under the Stokesian assumption, the deformation in the body has no great influence on the couple
experienced. The flows generated by a rotating sphere and a rotating oblate spheroid are obtained as
special cases.

INTRODUCTION

Payne and Pell, in their classic paper [1] discussed the Stokes flow of a viscous liquid past a
class of axially symmetric bodies with uniform streaming at infinity parallel to the axis of
symmetry and obtained a general formula for the drag experienced by the body in terms of the
stream function. The Stokesian flow of a viscous liquid generated by the slow steady rotation of
an axisymmetric body placed in an incompressible viscous liquid which is otherwise at rest was
studied by Kanwal [2]. An expression for the couple experienced by the rotating body was also
derived by Kanwal in terms of the toroidal velocity component [2]. Ramkissoon and Majumdar
[3] and Ramkissoon [4] studied these respective problems in the case of an incompressible
micropolar fluid whose study was initiated by Eringen [5, 6] and obtained elegant formulae for
the drag and couple experienced by the bodies under consideration. Though Stokes flows are
somewhat rare, their mathematical analysis has received considerable attention in view of their
occurrence in the important field of small particle dynamics. In some of the fluid mechanical
operations such as sedimentation, particles of highly irregular shapes are encountered and it is
very difficult to estimate the drag or couple experienced by the submerged particles. In such
cases particles are assumed to be regular spheres and the evaluation of the drag or couple is
carried out with considerable ease. However a reasonably more realistic formulation is by
taking them to be approximate spheres rather than spheres.

Happel and Brenner have studied in detail the Stokes flow of an incompressible viscous
liquid past an approximate sphere [7] and Ramkissoon has recently discussed the flow of a
viscoelastic fluid of Oldroyd type past a spheroid, treating the spheroid as an approximate
sphere [8]. Iyengar and Srinivasa Charya have studied the Stokes flow of an incompressible
micropolar fluid past an approximate sphere and obtained expressions for the velocity and
microrotation components and the drag experienced by the approximate sphere [9].

In this paper, we study the flow generated by the slow steady rotation of an approximate
sphere about its axis of symmetry in an incompressible micropolar fluid. The field equations of
micropolar fluids involve the velocity vector ¢ and microrotation vector v and the theory
provides for six material constans. The field equations for an incompressible micropolar fluid
flow are

divg=0 (1)
p dg/dt = pf —gradp + k curl ¥ — (u + k)curl curl § + (A + 2 + k)grad div ¢ (2)
pj dv/dt = pl — 2k¥ + k curl § — y curl curl ¥ + (a + B + y)grad div 7. (3)
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In the above, the scalar quantities p and j are respectively the density and gyration
parameters and are assumed constant. The vectors g, ¥, f, [ are the velocity, microrotation,
body force per unit mass and body couple per unit mass. The material constants A, u, k and a,
B, v denote the viscosity and gyroviscosity coefficients and these are subject to the inequalities

k=0; 2u +k=0; 3A+2u +k=0;
y=0; |B]=0; 3a+p+y=0. 4)
The stress tensor 1; and the couple stress tensor my;; are given by
ty=(—p+Adivg)d; + Qu + k)d; + k€ (@ — V,n) 5)
my; = a(div V)8, + Bv;; + vv;. (6)

In (5) and (6), v; and 2w, are the components of the microrotation vector and the vorticity
vector respectively, d; are the components of the rate of strain and a comma denotes covariant
differentiation.

STATEMENT OF THE PROBLEM

Let (r, 8, ¢) be a spherical polar coordinate frame with origin at the centre of a sphere r = a.
Consider the body r =a(1 + f(8)) where f(0) is a function of 6 which can be expressed as
f(8)=2% B, 9,,({) where 9,,()=[P,-2({)— P,.()]/2m —1), {=cos@ in which P,({) is
Legendre function of the first kind. In this paper for small B8,,’s we refer to this body as an
approximate sphere. We assume that the approximate sphere is rotating stowly with angular
speed Q about the axis of symmetry 6 =0 in an infinite expanse of an incompressible
micropolar fluid which is otherwise at rest. Since the rotation is assumed to be slow, the
velocity (g) has its only component along the vector e, and the microrotation vector (¥) lies in
the meridian plane. The flow is time independent and all the quantities are independent of ¢.
Thus we choose ¢ and ¥ in the form

q=V(r, 0)e, 7
V= A(r, 0)¢, + B(r, 0)é,. (8)

Assuming the flow to be Stokesian, neglecting the inertial and gyroinertial terms, the field
equations reduce to the form

grad p = k curl v — (u + k)curl curl ¢ )
2kv =k curl g — y curlcurl v + (a + B + y)grad(div ¥). (10)

There is no loss of generality in neglecting the gradp term and hence the equations
governing the flow are equations (10) and (11):

k curl ¥ — (u + k)curl curl g = 0. (11)
Introducing

divv=f(r, 0); curl v=g(r, 0)é, (12)
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we find that the basic equations reduce to

khsg + (1 + k)E*(h3v) =0 (13)
k o vy 9 a+pB+yof
=—— ————(hyg)+————— 14
kA= 36" T 00 PO T T o (14)
-k d vy 9 a+B+yif
= + = (hyg) + ——— L= 15
B = ) T o 8 T e (15)
where the Stokesian stream function operator E? is given by
hy [d(h, 0\ 9 ( h 8
R .
Using (14) and (15)
2k
= 17
Ve (17)
where
1 3 (hyhsy 9 d (hih, 9
V=i o Char) ¥ 36 e 26 ) 1
h1h2h3 ar hl or a6 hz 06 ( )

Eliminating grad(div ¥) from (10) and using the resultant equation with (11) we can
eliminate the term involving curl v. We then get

curl curl curl curl g + (A%/a®)curlcurl g =0 (19)
where
ANla* =kQu + k)/[y(u + k)]. (20)
Using (7) we see that V can be determined from
E*(E*— (A%/a®))(rsin 6V) =0. (21)
Thus determining V from the above and f from the equation
(V2= (c*/a®))f =0 (22)
where
cla*=2k/(a+B+7v) (23)

we can write the expressions for microrotation component A and B using (14) and (15).

The arbitrary constants that arise in solving the equations (21) and (22) are to be determined
subject to the hyperstick condition on the rotating body and the regularity condition at infinity.
This means that

qboundary =Qr SiIl 06—4, (24)
17boundary = (1/2)0111'1 q_boundary = (1/2)curl(Qr Sin 96_4,) (25)
on the solid body [10, 11].

SOLUTION OF THE PROBLEM

For simplicity, we first consider the approximate sphere given by the equation r =a(l +
Bm9..({)), where the coefficient B,, is sufficiently small so that its squares and higher powers
can be neglected. Later we can adopt the same procedure to obtain the solution for more
general surface r =a(1 + X B,,3({)).
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The solution of (21) is obtained by superimposing the solutions of
E¥rsin9V)=0 (26)
and
(E* = (A*/a®))(rsin 8V) =0 27
and using the standard technique of method of separation of variables, the solution of (21)

which vanishes at infinity is seen to be

o

rsin 8V = [B,/r + Cz\/;Ka/z()\r/a)]ﬁz(g) + 2 [B,r "'+ Cn\/;Kn—l/z()‘r/a)]ﬁn(g)- (28)

n=3

The solution of (22) which is regular at infinity is seen to be

oc

f(r, 0)= 2 (1/VNEK, in(cr/a)P, ({). (29)
n=2
The function g(r, 8) can be obtained as
-1 Butk &
800 0) = i 2 GV in(ar/a)9,(0). (30)

Thus, using the expressions for g, fand V in the equations (14) and (15), the expressions for
A and B are obtained as
2a

> Ez\/;{ZKyz(Cr/a)

1 B
A(r, 9) = E—'rz' {I:Tz"i" AZCZ\/;K3/2(/\V/CI) - c_

+ (cr/a)Kl,z(cr/a)}]Pl({) + i l:B,,r*’”1 + A2C, VK, \p(Arla)

- %a; Fz\/;{”Knﬂ/z(C’/a) + (Cr/a)Kn_yz(cr/a)}]P,,,1({)} (31)
B(r, 8) = 1 [{—B./r* — A2 Cor "A(Ksp(Ar/a) + (Ar/a)K (Ar/a))

2rsin 6

+(4a° /) Er TP Ksp(er/a)}dx({) + i {(1=n)B,r " = N°CVr{(n = DK, _,n(Ar/a)

+ (/@)K snAr/a)}9,(0) + 2a*[)F,(1/VNK, -1 p(cr/a) sin® 0P, ,(£)] (32)
where AZ=2(u + k)/k.
Using the relation
(1= Pp-i(&) = n(n = 1)9,(0) (33)

the expression for B(r, 8) can be written as

B(r, 6)=

27 sin @ [{_Bz/"2 - Azczril/z(Km()\r/a)

+ (Ar/a)K p(Ar/a)) + (4a2/c2)Fzr7'/2K3,2(cr/a)}192(§) + 2 {1—n)B,r™"

~ A2C,Vr{(n — DK, _(Arla) + (Ar/a)K, _sp(Ar/a)]
+(2a*[cHn(n — VDE,(1/VP)K,-1n(cr/a)d,({)]. (34)
Let us introduce the following non-dimensional scheme
r = af; V=aV: B,=Qa""'B,; C,=Qa*?C,; E, = Qa~V2F,
A=QA; B=QB (35)
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and later drop the tildes. We notice that the expressions for non-dimensional velocity and
microrotation components are given by

=]

rsin 8V = [B,/r + Cz\/;Kg/z(Ar)]ﬁz({) + Z [B,r~"*'+ Cn\/;Kn—llz(Ar)]an(f) (36)

n=3

A(r, 0) = 2% {[% + AZCZ\/;Ks/z(/\r) - ;‘2_2 Fz\/;{2K3/2(C") + (Cr)lez(C’)}]Pl(f)

+ E [Bnr_"ﬂ + Azcn\/;Kn-llz()V) - %Et\/_r_{nKn—I/Z((:r) + (Cr)Kn~3/2(Cr)}:|Pn-1({)} (37

n=3

2rsin 6

B(r, 6)= [{_Bz/"2 - Azczr_llz(Ks/z()\r) + (Ar)K p(Ar)) + (4/c2)Fzr"”2K3,2(Cr)}1‘}2(§)

+ i {(1 =n)Br™ = NCVH(n = DK,—1n(Ar) + (Ar)K,3(Ar)]

+(2/An(n = DE(/VDK,_12(cr)}9,(0)]. (38)

Let us compare the above solutions with those obtained in the case of slow steady rotation of
a sphere rotating in an infinite expanse of micropolar fluid which is otherwise at rest [12]. The
expressions in our present problem are obtained from [12] just by adding the expressions
involving B,, C, and F, for n>2. The body that we are considering now is an approximate
sphere and the flow generated is not expected to be far different from the one generated by a
rotating sphere. Also the coefficients B,,, C,, F, for n >2 will be of order 8,,. Therefore as in
Happel and Brenner [7] and in the case of Stokes flow of a micropolar fluid past an
approximate sphere [9], in the terms involving B,, C,, F, for n>2, we ignore the departure
from the spherical form and set » =1 while implementing the boundary conditions.
On the boundary r = (1 + B,,3,,({)), the non-dimensional version of the boundary conditions
is
V =rsin 6, A =cos 6, B = —sin 6. 39)

These respectively yield
(B2 + C2K30(A) = 2)05(¢) = (B2 + 4)Bn9:({)Bml{) + 2 [Bu + CuK, 12(A)]8,(£) =0 (40)
(B, + A2C2K3/2()‘) - (Z/Cz)Fz{ZKyz(C) + cKi(c)} — 2)Pi(£)

+(-B;~- (2/c2)cmK],2(c) — 4B, 0. ({)P(L)

+ 2 [By + A2CK i 1p(A) = (2/PHNK,_1(C) + K —3p(c}]Po-1(£) =0 (41)

(—4-8B,—- A2C2{K3,2()\) + AK (M)} + (4/C2)F2K3/2(C))192({)
+(-4+2B,+ A2C2K3/2()\) - (4/62)172](3,2(6))[3,,, 92(L)Bn({)
+ 2, (1 =n)B, = A*C,{(n = K,-12(A) + AK,_3n(A)}

+(2/c)En(n — DK, -12(c))9,(£) = 0. (42)

Equating leading coefficients to zero »
B, + CoK3p(A)—2=0 (43)
B, + A’CyK;30(A) — (2/c)E{2K3(c) + cK 1 x(c)} —2=0 (44)

—4-B,— A2C2{K3/2()\) + AK p(A)} + (4/C2)F2K3/2(C) =0. (45)
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Solving these for B,, C,, F; we have

B, =2+ 6(2K;35(c) + cK12(c))K32(A)/D(A) (46)
C, = —6(2K;,(c) + cK p(c))/D(A) 47
F, = —6A*K;,(A)/D(A) (48)
where
D(A) = A’AK 1 ,(A)[2K3(c) + cK0(c)] + (A* = 1)eK35(A)K 1 15(c). (49)

Substituting these values in (40), (41) and (42), we have

> [Bn + CuKuo1n(M)]94(L) = (B2 + 4B ®:() (L) (50)

Z [B, + AzCnKn—l/Z(/\) - (Z/Cz){nKn—l/z(C) + CKn—3/2(C)}]Pn~1(§)
= (B, + (2/c*)FxcK () + 4)Bm 3 (OPI()  (51)

S (1 = n)B, — A°CA(n — DK, 1n(A) + AK, _3o(A)} + /A En(n — 1)K,,_12(c)]9.(0)

= (4 - 2B, — N’CoK3p(A) + (4/c*)BK3(€))Br 32(£) 9m(L). (52)
Using the standard identities

(m —2)(m —3) m(m —1)

Fn()920) = — 202m —1)@2m - 3) Bp-a({) + 2m + 1)em - 3) $n()
_ (m+1)(m+2)
22m - 1)2m +1) Imald) (53)
and
_ (m—2) 1
P00 = @m - 1)2m = 3) Pn_s(f) + m + 1)(2m - 3) Pn1({)
(m+1)

T em+1)@2m—1) Pra(®) - (54)

in (50), (51) and (52), we notice that
B,=C,=F,=0 for n#m—-2,mym-+?2
and forn=m -2, m, m +2 we get
B, + C,K,_1n(A) =a,¢, (55)
B, + A’C,K,-1n(X) = QIc*HnK,—11(c) + cKno3p(c)} = bue, (56)

(1 - n)Bn - Azcn{(n - 1)Kn—l/2(A) + A1<n—3/2()‘)} + (2/(,‘2)1:;,"('1 - 1)Kn-1/2(c) = ap€;3 (57)

where
__ (m=2)m-3) _ m(m —1) ) _ _(m+1)(m+2) 58)
Im2= T Som-1)@em-3) T em+)@Em-3 T T 22m-1)2m+1) (
m-2) L b o= (m + 1) (59)

b= o —Dom -3 " T Gminam-3) S @m+1)@2m-1)
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and
€1 =6+ 6(2K3,(c) + cK2(c))K3,(A)/D(A) (60)
£2= 6+ CK3n(A)(—2K3(c) + (A% = 2)cK 15(c)) 12K 35(c) + cK 1 5(c)} (61)
€3 = CoK5,(A)(2K35(c) — (AZ = 2)cK,(c))/{2K3(c) + cKp(c)}. (62)

Solving these equations, we get the expressions for B,, C, and F,.

Thus the velocity component V(r, 8) and the microrotation components A(r, 8), B(r, 6) are
determined completely. In case the approximate sphere is r =a(1 + I B,,9,,({)), we employ
the above technique for each m and obtain the expressions for V, A and B by superimposition
of the expressions thus obtained.

DETERMINATION OF THE COUPLE

An elegant formula for the couple N acting on an axisymmetric body, rotating about its axis
of symmetry in a micropolar fluid has been derived by Ramkissoon [4] and is given by
rv

N =4n(2p + k) Lt 63
R ey )

where V and r are dimensional. After lengthy, but straightforward calculation the couple on the
body is seen to be

Couple =27(2u + k)(32 + <§)B§’Bz + (3—25>B§B4)Qa3 (64)
where
By =(2(c? + 2¢ + 2)(A’A* + 31 + 3) + 2(A2 = 1)c3(A + 1))/D'(A) (65)
By =(3(c* +2c + 2)(A +1 - A2A%) + c*(A + 1)(A% - 12))/D' (1)
+3(A + 1)3[2c +2 — (A’ - 2)c?(c? +2¢ +2) + [~6(c + 1) + (2A% — 5) B [D' (M) (66)
Bj = ((c® +2c + 2){12A°A% + 18(A + 1)} + c3(A + 1)(A2 + 3))/D'(A)
— (A +1)%[6{2c +2 — (A* = 2)c?H(c? + 2c +2) — 6{2(c + 1) + ASAN/I[D'W)]P? (67)
and
D'(A) = AA*(c* +2¢ +2) + (A% = 1)c*(A + 1). (68)
Defining the non-dimensional couple as
Cxp = (couple)/4n(2u + k)Qa® (69)

we see that
1
Cnp = (5){(2@2 +20+ 2)(A’A% + 34 +3) + 2(A? - 1)c3(A + 1))/D'(A)

+ (£/35)((c* + 2 + 2)[132(A + 1) + T8A2AY)] + c2(A + 1)(9A% - 3))/D'(A)

e(A+1)?

35D W {24[2(c* + ¢ + 1) — A%c?)(c® + 2¢ +2) — 48(c + 1) — 54A%c* + 30c2}} (70)

where

B=Bs=¢
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Couple
>
I

Fig. 1. Variation of couple with A (approximate sphere) ¢ =1.0, e =0.1.

It is interesting to note that though the boundary surface is r=a(l + 2 B,,9,,({)), the
coefficients B, and B, only contribute to the couple [see equation (65)). This implies that in
Stokes flow the couple on the approximate sphere is relatively insensitive to the details of the
surface geometry. This was observed to be true even in the case of drag experienced by an
approximate sphere when there is a flow of micropolar fluid past the body with uniform stream
at infinity [9].

If B,, =0, for m >2, the above couple simplifies to

((c* +2¢ + 2)(A*A? + 31 +3) + (A2 — 1)c* (A + 1))/D'(A) (71)

which is the same as the couple experienced by a sphere rotating in a micropolar fluid [12].
However, this expression differs from the one given in [12] due to the revised boundary
conditions that were employed in our present work.

The variation of the non-dimensional couple for various values of A%, ¢, A and € = 8, = 8, is
studied numerically and the results are presented through a representative set of graphs given
in Figs 1, 2 and 3. The following observations are worth noticing:

(i) For a fixed ¢, €, A® as the micropolarity parameter A increases, the couple decreases.

(i) For fixed ¢, A, € as micropolar viscosity parameter A” increases, the couple decreases.

These two features are same as those observed in the case of drag experienced by an
approximate sphere when there is a flow past the body [9].

(iii) For fixed ¢, A, A* as the deformity parameter ¢ increases, the couple increases.

However, when there is a uniform flow of micropolar fluid past an approximate sphere, for
fixed A%, A as the deformity parameter ¢ increases, the drag on the body decreases.

(iv) For fixed g, A, A” as ¢ increases, the couple decreases.

It is to be noticed that ¢ is an extra micropolarity parameter which does not enter into the
analysis in [9].

COUPLE ON AN OBLATE SPHEROID

The polar equation of an oblate spheroid is given by
2 + 2 2

= 2y = : ;=1

a a’(1—¢)

(72)
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Couple

0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 4.5

Fig. 2. Variation of couple with A (approximate sphere) ¢ = 1.0, A2 =4.0.

whose equatorial radius is ‘a’ in which ¢ is so small that £ and higher powers may be neglected,
can be put in the form r = c(1 + 2e9,(¢)) where ¢ = a(1 — €) (see [7, p. 144]). This is like
r=c(l+ B29(Y)) (73)
where
a=c and B,=2e (74)

Using (36), (37) and (38), the expressions for V(r, 8), A(r, 6) and B(r, ) can be determined.
Using the formula (63), the non-dimensional couple is seen to be

Cor=(5)1B: + (-2, + @/9)BD)e] 75)

where B,, Bj are given by (65) and (67).
The couple on the spheroid is less than that would be exerted on the sphere of radius equal

6 —
5_
4_
L
E)
2 3
&)
2 —
l_
0 ] | { | | 1 ] | J
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Fig. 3. Variation of couple with A (approximate sphere) A2=2.5, £ =0.01.

ES 33:8-H
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Couple

Fig. 4. Variation of couple with A (oblate spheroid) ¢ =1.0, ¢ =0.1.

to the equatorial radius of the spheroid. The authors obtained a similar result in the case of the
drag experienced by a spheroid when there is a uniform flow of micropolar fluid past the body
[9].

We notice that the volume of the spheroid is (4/3)ma*(1 — €) and a sphere of equal volume
can be obtained by choosing its radius equal to a(1 —&/3) (with £ and higher powers
neglected). The non-dimensional couple on such a sphere is

(% +2¢ + 2)(A2A% + 34 + 3) + (A2 — 1)c3(A + 1))(1 - £/3)/D'(A) (76)

and this is greater than the couple on the spheroid. Similar comment holds good concerning the
couple on the sphere of equal surface area as that of the spheroid. This couple is numerically
evaluated for sets of values of A, A%, € and c and the variation is peresented in Figs 4, 5 and 6.

The evaluation of the couple on the oblate spheroid here is based on the neglect of £ and
higher terms, while the calculation of the couple in {13] is based on a truncation of an infinite
system of simultaneous equations.

2.5 —

2.0 —

Couple
&
I

0.5 |~

0.0 1 | | | | | 1 1 |

Fig. 5. Variation of couple with A (oblate spheroid) ¢ = 2.0, A2 = 40.
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Couple

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

A
Fig. 6. Variation of couple with A (oblate spheroid) A%=2.5, £ =0.1.
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