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Abstract - -The  flow generated by the slow steady rotation of an approximate sphere about its axis of 
symmetry in an incompressible micropolar fluid is studied. Expressions for the velocity and 
microrotation components are obtained in terms of modified Bessel functions and Gegenbauer's 
functions. The couple experienced by the approximate sphere is evaluated and the effects of the 
polarity parameters and deformation parameters on the couple are numerically studied. It is noticed 
that under the Stokesian assumption, the deformation in the body has no great influence on the couple 
experienced. The flows generated by a rotating sphere and a rotating oblate spheroid are obtained as 
special cases. 

INTRODUCTION 

Payne and Pell, in their classic paper [1] discussed the Stokes flow of a viscous liquid past a 
class of axially symmetric bodies with uniform streaming at infinity parallel to the axis of 
symmetry and obtained a general formula for the drag experienced by the body in terms of the 
stream function. The Stokesian flow of a viscous liquid generated by the slow steady rotation of 
an axisymmetric body placed in an incompressible viscous liquid which is otherwise at rest was 
studied by Kanwal [2]. An expression for the couple experienced by the rotating body was also 
derived by Kanwal in terms of the toroidal velocity component [2]. Ramkissoon and Majumdar 
[3] and Ramkissoon [4] studied these respective problems in the case of an incompressible 
micropolar fluid whose study was initiated by Eringen [5, 6] and obtained elegant formulae for 
the drag and couple experienced by the bodies under consideration. Though Stokes flows are 
somewhat rare, their mathematical analysis has received considerable attention in view of their 
occurrence in the important field of small particle dynamics. In some of the fluid mechanical 
operations such as sedimentation, particles of highly irregular shapes are encountered and it is 
very difficult to estimate the drag or couple experienced by the submerged particles. In such 
cases particles are assumed to be regular spheres and the evaluation of the drag or couple is 
carried out with considerable ease. However a reasonably more realistic formulation is by 
taking them to be approximate spheres rather than spheres. 

Happel and Brenner have studied in detail the Stokes flow of an incompressible viscous 
liquid past an approximate sphere [7] and Ramkissoon has recently discussed the flow of a 
viscoelastic fluid of Oldroyd type past a spheroid, treating the spheroid as an approximate 
sphere [8]. Iyengar and Srinivasa Charya have studied the Stokes flow of an incompressible 
micropolar fluid past an approximate sphere and obtained expressions for the velocity and 
microrotation components and the drag experienced by the approximate sphere [9]. 

In this paper, we study the flow generated by the slow steady rotation of an approximate 
sphere about its axis of symmetry in an incompressible micropolar fluid. The field equations of 
micropolar fluids involve the velocity vector ~ and microrotation vector ~ and the theory 
provides for six material constans. The field equations for an incompressible micropolar fluid 
flow are 

d i v ~ = O  (1) 

p d q / d t = p f  - g r a d p + k c u r l v - ( I x  +k )cur l cur lg l+(A  + 2# +k)graddivgl  (2) 

pj dg/dt  = pl  - 2k~ + k curl ~ - 3, curl curl 9 + (o~ + 13 + 3~)grad div ~. (3) 
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In the above, the scalar quantities p and j are respectively the density and gyration 
parameters  and are assumed constant. The vectors q, v, f, 1 are the velocity, microrotation,  
body force per  unit mass and body couple per  unit mass. The material  constants A, /z, k and a, 
/3, 3" denote  the viscosity and gyroviscosity coefficients and these are subject to the inequalities 

k -> 0; 2/x + k -> 0; 3A + 2/z + k -> 0; 

3'->0; 1/31->0; 3a  +/3 + 3'->0. (4) 

The stress tensor t 0 and the couple stress tensor mij are given by 

tij = ( - p  + A div q)6ij + (2/x + k)d~j + ke~j,,(OJm - Vm) (5) 

m 0- = a (d iv  9)6 o +/3vi,j + yvj,~. (6) 

In (5) and (6), vi and 2to~ are the components  of the microrotat ion vector and the vorticity 
vector respectively, d o are the components  of the rate of strain and a comma denotes covariant 
differentiation. 

S T A T E M E N T  OF T H E  P R O B L E M  

Let  (r, O, 49) be a spherical polar coordinate f rame with origin at the centre of a sphere r = a. 
Consider the body r = a(1 +f(O) )  where f (O)  is a function of 0 which can be expressed as 

f (O)  = ~/3mO,,(ff) where Om(~) = [Pm-2(~') - Pm(~)]/(2m - 1), g" = cos 0 in which Pm(~) is 
Legendre function of the first kind. In this paper  for small /3m's we refer to this body as an 
approximate  sphere. We assume that the approximate  sphere is rotating slowly with angular 
speed t2 about  the axis of symmetry  0 = 0 in an infinite expanse of an incompressible 
micropolar  fluid which is otherwise at rest. Since the rotation is assumed to be slow, the 
velocity (~) has its only component  along the vector g~ and the microrotat ion vector (9) lies in 

the meridian plane. The flow is time independent  and all the quantities are independent  of 49. 
Thus we choose ~ and 9 in the form 

F 1 = V(r, O)~ep (7) 

= A(r, O)g~ + B(r, O)eo. (8) 

Assuming the flow to be Stokesian, neglecting the inertial and gyroinertial terms, the field 
equations reduce to the form 

grad p = k curl 9 - (/x + k)curl curl (9) 

2k9 = k curl ~ - 3' curl curl 9 + (a  +/3 + 3")grad(div 9). (10) 

There  is no loss of generality in neglecting the grad p term and hence the equations 
governing the flow are equations (10) and (11): 

k curl 9 - (Iz + k)curl curl ~ = O. (11) 

Introducing 

div 9 = f (r ,  0); curl V = g(r, O)g 4, (12) 
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we find that the basic equations reduce to 

khag + (IX + k)E2(hav) = 0 (13) 

k 0 y O a + / 3 + y O f  
2kA=h2h3-~ (h3v )  h2h300 (h3g)+ hi Or (14) 

2kB - - -  
- k  O y O a + / 3 + y O f  

hah30r (h3v) + h~h3 ~r (h3g) -t hi 00 (15) 

where the Stokesian stream function operator E 2 is given by 

Using (14) and (15) 

where 

E z = h 3 f S ( h 2 0 ~  0 ( h i  0 ] ]  
h l h 2 L -~r \ -h"--"l h 3 "-Srr / + "0-0 \ h 2 h 3 O O ] J " 

(16) 

2k 
V2f - f (17) 

a + / 3 + y  

V2 - 1 (h2h3 0__] a (h3hl 0 ~] 
hlh2h-------3[~r\ hi Or/+O-O\---~2 -~/J" (18) 

Eliminating grad(div 9) from (10) and using the resultant equation with (11) we can 
eliminate the term involving curl 9. We then get 

curl curl curl curl • + (A2/a2)curl curl t~ = 0 (19) 

where 

)tZla: = k(2/x + k ) / [ r ( ~  + k)]. (20) 

Using (7) we see that V can be determined from 

EZ(E 2 - (AZ/ae) )(r sin OV) = 0. (21) 

Thus determining V from the above and f from the equation 

(V 2 - ( c2 [ aZ) )f = 0 (22) 

where 

c 2 / a  2 = 2k/ (a  +/3 + y) (23) 

we can write the expressions for microrotation component A and B using (14) and (15). 
The arbitrary constants that arise in solving the equations (21) and (22) are to be determined 

subject to the hyperstick condition on the rotating body and the regularity condition at infinity. 
This means that 

qb°unOary = f~r sin 0~-,~ (24) 

9bo..dary = (1/2)curl qbo.,d,ry = (1/2)curl(f~r sin Og~,) (25) 

on the solid body [10, 11]. 

SOLUTION OF THE P R O B L E M  

For simplicity, we first consider the approximate sphere given by the equation r = a(1 + 
fl,,Om(~')), where the coefficient/3,, is sufficiently small so that its squares and higher powers 
can be neglected. Later we can adopt the same procedure to obtain the solution for more 
general surface r = a(1 + ~]/3mO(~)). 
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The  solut ion of  (21) is ob ta ined  by super impos ing  the solut ions of  

E2(r sin OV) = 0 (26) 

and 

(E  2 - (AZ/a2))(r sin OV) = 0 (27) 

and using the s tandard  technique  of  m e t h o d  of  separa t ion  of  variables ,  the solut ion of (21) 
which vanishes  at infinity is seen to be  

r sin OV = [Bz/r + C2~rrK3/z(Ar/a)]O2(~) + ~ [Bnr ~+1 + Cn~rKn 1/2(Ar/a)]On(~). (28) 
n = 3  

T h e  solut ion of  (22) which is regular  at infinity is seen to be  

f(r, O)= ~ (1/~/-rr)FnK, 1/2(cr/a)Pn-i(~). (29) 
n - - 2  

The  funct ion g(r, O) can be ob ta ined  as 

g(r, O) = -1 h 2 tx + k ~ CnX/rrK~_l/z(Ar/a)O,(~). (30) 
r s i n 0 a  2 k ~=2 

Thus,  using the express ions  for g, f and V in the equat ions  (14) and (15), the express ions  for  
A and B are ob ta ined  as 

2a 2 

n = 3  

2a2F2X/rr{nKnc2 1/2(cr/a) + (cr/a)Kn_3/2(cr/a)}lPn 1(5)} (31) 

-1  
B(r, O) 2r s i n ~  [{-B2/r2- A2C2r 1/2(K3/2(Ar/a) -t- (Ar/a)K1/2(Ar/a)) 

~c 

+ (4a2/c2)F2r-l'2K3/2(cr/a)}02(() + ~. {(1 - n)Bnr ~ - A2CnX/rr[(n - 1)K~_,/2(Ar/a) 
n = 3  

+ (Ar/a)K, 3/2(Ar/a)]}O~(~) + (2a2/c2)F~(1/N/rr)Kn_l/2(cr/a) sin 2 0 P "  1(st)] (32) 

where  A 2 = 2(Ix + k)/k. 
Using the re la t ion 

(1 - ( 2 ) p , _ ~ ( ~ )  = n ( n  - 1)O.(~')  (33)  

the express ion  for  B(r, O) can be wri t ten as 

- 1  
B(r, O) - - -  [{-B2/r 2 - A2C2r l/2(K3/2(Ar/a ) 

2r sin 0 

+ (Ar/a)K1/2(Ar/a)) + (4a2/c2)F2r '/2K3/2(cr/a)}02(¢) + ~ {(1 - n)Bnr -~ 

- A2CnXFrr[(n - 1)K,  1/2(Ar/a) + (Ar/a)K,_3/2(Ar/a)] 

+ (2aZ/c2)n(n - 1)F~(1/~rr)K,_,/2(cr/a)}O,,(~)]. (34) 

Let  us in t roduce the fol lowing non-d imens iona l  scheme 

r = a?; V = alT"; B,, = ~"~an+l/~n; Ct, = ~2a3/2C,,; Fn = ~.'~a-1/2Fn 

A = EL4; B = E~/~ (35) 
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and later drop the 
microrotation components are given by 

r sin OV = [B2/r + C2VTrK312(Ar)]02(~) + ~ [B .r  -~+~ + CnX/TrKn- l /2 (Ar)]On(~)  n=3 
__ 1 {[_B~+ A2C2X/Trg3/2(Ar)_~ feVTr{2g3/2(cr)+ (cr)gl/2(cr),Jel(,) A(r ,  O) - 2r 2 

2 

n=3 

B(r ,  O) 

tildes. We notice that the expressions for non-dimensional velocity and 

(36) 

(37) 

- 1  
2r sin O [ { - B 2 / r 2  - A2C2r-1/2(K3/2(Ar) + (Ar)K1/2(Ar)) + (4 / c2 )F2r - l / 2K312(c r ) }02 (~ )  

+ k {(1 - n ) B , r  -n - A2C,,'V'Tr[(n -- 1)K,_I/2(Ar) + (ar )K,_3a(ar )]  
n=3 

+ (2/c2)n(n - 1)Fn(1/VTr)Kn_l/2(cr)}O~(~)]. (38) 

Let  us compare the above solutions with those obtained in the case of slow steady rotation of 
a sphere rotating in an infinite expanse of micropolar fluid which is otherwise at rest [12]. The 
expressions in our present problem are obtained from [12] just by adding the expressions 
involving Bn, Cn and F~ for n > 2. The body that we are considering now is an approximate 
sphere and the flow generated is not expected to be far different from the one generated by a 
rotating sphere. Also the coefficients Bn, C,, Fn for n > 2 will be of order tim. Therefore  as in 
Happel  and Brenner  [7] and in the case of Stokes flow of a micropolar fluid past an 
approximate sphere [9], in the terms involving B,,  C,, F~ for n > 2, we ignore the departure 
from the spherical form and set r = 1 while implementing the boundary conditions. 

On the boundary r = (1 + flmO,,(~')), the non-dimensional version of the boundary conditions 
is 

V = r sin 0, A -- cos O, B = - s i n  O. (39) 

These respectively yield 

(B 2 q-  C2K3/2(~t ) - 2)02(~') - (B2 + 4) f lm02(~)0 . . (~)  + ~ [B. + CnKn_l/2(A)]On(~) = 0 (40) 

(B2 + A2C2K3a(A) - ( 2 / c 2 ) F 2 { 2 K 3 a ( c )  + c K , / 2 ( c ) }  - 2)P1(~) 

+ ( - B 2  - ( 2 / c 2 ) F 2 c K , / 2 ( c )  - 4 ) f l m O m ( ~ ) P ~ ( g )  

"}- E [Bn q'- A2CnKn-1/2(A) - (2/c2){?lKn-1/2(c) + cKn-312(c)}]Pn-l(~) = 0 (41) 

( - 4  - B2 - A2C2{K3/2(A) + AK,/2(A)} + (4/c2)F2K3/z(C))02(() 

+ ( - -4  + 2B 2 + A 2 C 2 K 3 , 2 ( a )  - (4/c2)&K,a(c))~m o ~ ( ¢ ) o m ( ? )  

+ ~ ((1 - n ) B .  - A 2 C . { ( n  - 1)K._, /2(a)  + aK._3,a(a)} 

+ (2/c2)Fnn(n -- 1)Kn_l/2(C))'On(~) = O. 

Equating leading coefficients to zero 

B2 + CzK312(A)  - 2 = 0 

B2 + A2C2K3/2( A ) - (2/c2)F2{2K3/2(c) + cK~/2(c)} - 2 = 0 

- 4 - B2 - AZC2{K3,2(A) + AKI/2(A)} + (4/c2)F2K3/2(c) = O. 

(42) 

(43) 

(44) 

(45) 
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Solving these  for  B2, Cz, F2 we have  

Be = 2 + 6(2K3/2(c) + cK1/2(c))K3/e(a)]D(a) 

Ce = -6(2K3/z(C) + cK~/2(c)) /D(A) 

F2 = -6A2K3/2(A ) / D ( A  ) 

where  

(46) 

(47) 

(48) 

D(A)  = AeAK,n(A)[2K3/2(c) + cK,,2(c)l  + (A 2 - 1)cK3/2(A)K,n(c). (49) 

Subst i tut ing these  values  in (40), (41) and (42), we have 

[B,, + CnKn_l/2( A )]O'n(~) = (B2 + 4)[3m'O2(~)'Om(~) (50) 

[B,, + A2C.,K,,_~/z(A) - (2/cZ){nK,,-~/2(c) + cK,,-3/2(c)}]P,,-~(~) 

= (Be + (2/c2)F2cK,n(c)  + 4)~m'Om(~)Pl(~) (51) 

~]  [(1 - n)B,,  - A2C,,{(n - 1)K,, ,/2(A) + AKn-3/2(A)} + (2/c2)F,,n(n - 1)K,,_~/e(c)]O,,(~r) 

= ( 4 -  2B2 - AZCzK3n(A) + (4[c2)FzK3/z(C))~mOe(~)Om(~). (52) 

Us ing  the  s tandard  identi t ies 

( m  - 2 ) ( m  - 3 )  
,19m(~")02(~" ) = -- ,0m_2(~" ) + 

2 ( 2 m  - 1 ) ( 2 m  - 3 )  

(m - 2) 

(2m - 1)(2m - 3) 
Pm--3(¢) + 

m ( m  - 1) 
o, . (0  

(2m + 1)(2m - 3) 

(m + 1)(m + 2) 

2(2m - 1)(2m + 1) 

and  

PI(~)Om(O = 
( 2 m + l ) ( 2 m - 3 )  

e m -  1 (~') 

(m + 1) 
(2m + 1)(2m - 1) 

for  n ¢ m - 2, m,  m + 2 

in (50), (51) and (52), we not ice that  

B . = C . = F . = 0  

and for  n = m  - 2, m, m + 2  we get 

B,, + C,,K,,_In(A) = a~el 

B .  + AZC,,K,,_I/z(A) - (2 /c2){nK._ ,n (c )  + cK,,-3/e(C)} = bn62 

where  

(1 - n )B,, - AZC,,{(n - 1)K,,_I/z(A) + }kKn-3/2( t~ )} + (2]ce)F,,n(n - 1 )K ._  ~n(c ) = a.e3 

m ( m -  1) 

a m = ( 2 m + l ) ( 2 m - 3 ) '  am+ 2 = 
( m +  1 ) ( m + 2 )  

2 ( 2 m -  1 ) ( 2 m +  1) 
(m - 2)(m - 3) 

a.,,-2 = - 2(2m - 1)(2m - 3 ) '  

bm = 
(2m + 1)(2m - 3 ) '  

bm+ 2 
(m + 1) 

(2m + 1)(2m - 1) 

o.,+e(~') (53) 

Pm+,(~) (54) 

( m -  2) 
b m - z - ( 2 m - 1 ) ( 2 m - 3 ) '  

( 5 5 )  

(56) 

(57) 

(58) 

(59) 
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and 

61 = 6 + 6(2K3r2(c) + cK,/2(c))K3/2(A)/D(A) (60) 

e2 = 6 + C2K3n(A)(-2K3/2(c) + (A 2 - 2)cK,/2(c))/{2K3/2(c) + cK,/2(c)} (61) 

e3 = C2K3rz(A)(2K3/2(c) - (A 2 - 2)cK,/2(c))/{2K3/2(c) + CKl/2(c)}. (62) 

Solving these  equat ions ,  we get  the express ions  for  B , ,  C,  and F,. 

Thus  the veloci ty  c o m p o n e n t  V(r, O) and the mic ro ro ta t ion  c o m p o n e n t s  A(r,  0), B(r,  O) are 
d e t e r m i n e d  comple te ly .  In  case the a p p r o x i m a t e  sphere  is r - - a ( 1  + Y~ BmOm(¢)), we e m p l o y  
the above  technique  for  each  m and ob ta in  the express ions  for  V, A and B by super impos i t ion  
of  the express ions  thus obta ined .  

D E T E R M I N A T I O N  OF T H E  C O U P L E  

A n  e legant  fo rmula  for  the couple  N acting on an ax i symmet r ic  body ,  ro ta t ing  abou t  its axis 
o f  s y m m e t r y  in a mic ropo la r  fluid has been  der ived by  R a m k i s s o o n  [4] and  is given by 

r3V 
N = 47r(2/x + k)  Lt  - -  (63) 

r--~ r sin 0 

where  V and r are  d imensional .  Af t e r  lengthy,  but  s t ra ight forward  calculat ion the couple  on the 
b o d y  is seen  to be  

where  

/ 2 \  , \ 3 Couple  = 2n'(2/z + k)(a2+(~)a~132+~-~)a2[34)~a (64) 

B2 = (2(c 2 + 2c + 2)(A2A 2 + 3A + 3) + 2(A 2 - 1)cZ(A + 1 ) ) / D ' ( A )  (65) 

B-; = (3(c 2 + 2c + 2)(A + 1 - A2A 2) + c2(A + 1)(A 2 - 12 ) ) /D ' (A)  

+ 3(A + 1)2{312c + 2 - (A 2 - 2)cZ](c 2 + 2c + 2) + [ - 6 ( c  + 1) + (2A 2 - 5)c2]}/[O'(A)] 2 (66) 

B~ = ((c 2 + 2c + 2){12A2A 2 + 18(A + 1)} + c2(A + 1)(A 2 + 3 ) ) / 3 ' ( A )  

- (A + 1)216{2c + 2 - (A 2 - 2)c2}(c 2 + 2c + 2) - 6{2(c + 1) + A2c2}]/[D'(A)] 2 (67) 

and  

D ' ( A )  = AZAZ(c z + 2c + 2) + (A 2 - 1)c2(A + 1). (68) 

Defining the non-d imens iona l  couple  as 

CND = (couple ) /4z(2 /x  + k)D.a 3 (69) 

we see that  

CND = (~){(2(C2 + 2C + 2)(A2A2 + 3A + 3 ) +  2(A 2 -  1 ) c 2 ( A + I ) ) / D ' ( A )  

where  

+ (e/35)((c  z + 2c + 2)[132(A + 1) + 78AZA2)] + c2(A + 1)(9A z - 3 ) ) / D ' ( A )  

e(A + 1) 2 ] 
+ 35~7~- -~2  {2412(c 2 + c + 1) - A%2](c 2 + 2c + 2) - 48(c + 1) - 54A2c 2 + 30c 2}j (70) 

/32=/34= e. 
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Fig. 1. Variation of couple with A (approximate sphere) c = 1.0, e = 0.1. 

I 
4 . 5  

It is interesting to note that though the boundary  surface is r = a ( 1  +~/3,,,Om(~)), the 
coefficients /32 and /34 only contribute to the couple [see equat ion (65)]. This implies that in 
Stokes flow the couple on the approximate  sphere is relatively insensitive to the details of the 
surface geometry.  This was observed to be true even in the case of drag experienced by an 
approximate  sphere when there is a flow of micropolar  fluid past the body with uniform stream 
at infinity [9]. 

If/3,,, = 0, for m > 2, the above couple simplifies to 

((c 2 + 2c + 2)(A2A 2 + 3A + 3) + ( A  2 - 1)C2(A + 1)) /D' (A)  (71) 

which is the same as the couple experienced by a sphere rotating in a micropolar  fluid [12]. 
However ,  this expression differs from the one givea in [12] due to the revised boundary 
conditions that were employed in our present  work. 

The variation of the non-dimensional couple for various values of A 2, c, A and e =/32 =/34 is 
studied numerically and the results are presented through a representat ive set of graphs given 
in Figs 1, 2 and 3. The following observations are worth noticing: 

(i) For a fixed c, e, A 2 as the micropolari ty paramete r  a increases, the couple decreases. 
(ii) For fixed c, A, e as micropolar  viscosity paramete r  A 2 increases, the couple decreases. 
These two features are same as those observed in the case of drag experienced by an 

approximate  sphere when there is a flow past the body [9]. 
(iii) For fixed c, A, A 2 as the deformity pa ramete r  e increases, the couple increases. 
However ,  when there is a uniform flow of micropolar  fluid past an approximate  sphere, for 

fixed A 2, A as the deformity paramete r  e increases, the drag on the body decreases. 
(iv) For fixed e, A, A 2 as c increases, the couple decreases. 
It is to be noticed that c is an extra micropolarity pa ramete r  which does not enter  into the 

analysis in [9]. 

C O U P L E  ON AN O B L A T E  S P H E R O I D  

The polar equation of an oblate spheroid is given by 

x 2 + y2 Z2 
a ~  + a2(1 _ e) 2 -- 1 (72) 
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Fig. 2. Variation of couple with ;t (approximate sphere) c = 1.0, A 2 = 4.0. 

I 
4.5 

whose  e q u a t o r i a l  r ad ius  is ' a '  in which  e is so smal l  tha t  e 2 and  h igher  p o w e r s  m a y  be  neg lec t ed ,  

can  be  pu t  in the  fo rm r = c(1 + 2eO2(~')) w h e r e  c = a(1 - e)  (see  [7, p. 144]). This  is l ike 

r = c(1 +/3202(~'))  (73) 

w h e r e  

a = c and  BE = 2e. (74) 

Us ing  (36), (37) and  (38), the  express ions  for  V(r, 0), A(r, O) and  B(r, O) can be  d e t e r m i n e d .  

Us ing  the  f o r m u l a  (63), the  n o n - d i m e n s i o n a l  coup le  is seen  to be  

Co~ = (~)[B2 + (-2B2 + (2/5)B~)e] (75) 

w h e r e  B2, B~ a re  given by  (65) and  (67). 

T h e  coup le  on  the  s p h e r o i d  is less than  tha t  would  be  e x e r t e d  on  the  sphe re  of  r ad ius  equa l  
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Fig. 3. Variation of couple with A (approximate sphere) A 2 = 2.5, e = 0.01. 
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F i g .  4. Variation of couple with A (oblate spheroid) c = 1.0, e = 0.1. 

to the equatorial radius of the spheroid. The authors obtained a similar result in the case of the 
drag experienced by a spheroid when there is a uniform flow of micropolar fluid past the body 
[9]. 

We notice that the volume of the spheroid is (4/3)zra3(1 - e) and a sphere of equal volume 
can be obtained by choosing its radius equal to a ( 1 -  e /3)  (with e 2 and higher powers 
neglected). The non-dimensional couple on such a sphere is 

((c 2 + 2c + 2)(A2A 2 + 3A + 3) + (A 2 - 1)c2(A + 1))(1 - e/3)/D'(A) (76) 

and this is greater than the couple on the spheroid. Similar comment holds good concerning the 
couple on the sphere of equal surface area as that of the spheroid. This couple is numerically 
evaluated for sets of values of A, A 2, e and c and the variation is peresented in Figs 4, 5 and 6. 

The evaluation of the couple on the oblate spheroid here is based on the neglect of e 2 and 
higher terms, while the calculation of the couple in [13] is based on a truncation of an infinite 
system of simultaneous equations. 

3.0 

2.5 

2.0 

1.5 
0 

L9 

1.o 

0.5 

o.o 

= 0 . 0 0 1  

£ = 0 . 1  

e = 0 . 2  

. . . . . . .  e = 0 . 4  

m 

I I I I I I I I I 
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

F i g .  5. Variation of couple with A (oblate spheroid) c = 2.0, A 2 = 40. 
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Fig. 6. Variation of couple with A (oblate spheroid) A 2 = 2.5, e = 0.1. 
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