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ABSTRACT

Orbital angular momentum (OAM) beams have the potential to increase the information-carrying capacity because of the
extra degrees of freedom associated with them. Traditional methods for mode detection and de-multiplexing are complex
and require expensive optical hardware. We propose a very simple and cost effective deep learning based model for
demultiplexing OAM modes at the receiver. In this method we have used a random phase mask of known inhomogeneity
to generate a scattered field of OAM mode and the intensity images of these scattered field are used as an input to the
Convolutional Neural Network. The model is trained for various Laguerre-Gaussian (LG,;) modes carrying OAM with
p=0and!=1,234,5,6,78. The model is tested for various set of images and the overall accuracy of each dataset is
>99%. To demonstrate the proof of concept we simulated an experiment to generate the speckle field at the receiver of
optical communication system for demultiplexing OAM modes and decoding the 3-bit information.

Keywords: Optical Communication, OAM beams, Deep Learning, Speckles, Singular optics.

1. INTRODUCTION

Beams carrying Orbital Angular Momentum (OAM) are extensively studied due to their wide applications. They are
used in areas such as Optical trapping™2, microscopy and imaging®, quantum entanglement* and quantum information
processing. Due to extra degree of freedom, the OAM beams are extensively used in optical communication to enhance
the bandwidth and information carrying capacity®>’. The traditional methods for generating and identifying these OAM
beams are very complex and the optical components required are also expensive. The OAM beams can be generated
using spiral phase plate, computer generated hologram, mode conversion, etc., whereas for their detection interferometer
and diffraction based methods, mode sorting methods are used. Since these methods require the precise alignment, the
accuracy of mode detection is less. Also fidelity is limited by the presence of noises as they introduces additional phase
resulting in hybrid modes. To overcome these difficulties machine learning and deep learning approaches has been
demonstrated which loosen the constrain of alignment by using intensity images of the received field®°. The machine
learning models deployed for demultiplexing in optical communication also reduces the need of physical components
reducing the cost of system. Even though these machine leaning and deep learning based models are simple and cost
effective, they are noise limited. In case of free space optical communication system, the noises introduced in the
transmitted beam due to atmospheric turbulence results in intermodal cross talks and reduces the fidelity and accuracy of
the mode detection.

To overcome this problem we propose a speckle field based deep learning model for OAM modes
demultiplexing for free space optical communication. In this method we use a random phase mask to generate a scattered
field of the received OAM beams. The intensity images of the scattered field are captured and used for training deep
learning model. To train the deep learning model we use Alexnet, a pre-trained network. We have chosen Alexnet
because of its moderate computational power and high accuracy. This method (also known as Transfer learning) of
utilizing the pre-trained network faster and more efficient than training the network from scratch. To build a 3 bit
information demultiplexing model, we modify the last layer of Alexnet to classify 8 (23) different OAM modes by
retaining the weights and biases learned by the network. The results shows that our model is able to classify the modes
with an overall accuracy > 99%. In addition to noise and alignment free, implementing this model discards the need of
capturing of whole field. Also a small region of the scattered field having sufficient number of speckles in enough for
identifying the mode as the speckles in the field have local correlation.
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2. ORBITAL ANGULAR MOMENTUM BEAMS

For complex scalar field, U(r), the scalar Helmholtz equation is given as
VZU(r) + k2U@) =0 (1)
For a field propagating along z-axis the U () can be approximated as
U(r) = u(r)e*? )
where, u(r) is the slowly varying function of z.
By substituting equation (2) in equation (1), we get,

ou(r) _

V2u(r) + 2ik 0

If u(r) is a slowly varying function of z then the resulting equation is the paraxial wave equation describing the wave
propagating tightly along z axis and is given as

62u+62u+2_k6u_0 @)
dx?  0y? oz~

The most obvious solution of this paraxial wave equation is the shape invariant Gaussian beams which retain their
Gaussian profile while propagating along z direction, These Gaussian beams are expressed as

ug (1) =Aoeid>z 1 eik(x2+yz)/2R(z) e—(x2+yz)/w2(z)

where, R(z) = z + z2/z, the wavefront curvature of the beam

w(z) = wo/1 + 22 /22, the effective width of the beam as a function of z,

®(z) = arctan(z/z,), Gouy phase shift

Ao = /1o, Amplitude

z, = mwg /A, Rayleigh range
Working in different coordinate systems gives rise to different shape invariant beams carrying OAM. For example in
Hermite — Gauss beams are the solution of equation (3) in Cartesian coordinate system whereas family of Laguerre —

Gauss beams carrying optical vortices are the solutions in cylindrical coordinate system.

For A, = 1, the expression for Laguerre — Gauss beams is given as

1 2o\ 502
Uy, (r) = p: ( ,0) il ( P )eil¢uG(r)e—i(zp+|L|)q>(z)
’ e+ D@/ P \wr@)

where, p is non-negative integer, [ is integer and L',ﬁ' is an associated Laguerre function of order p and L. Here p is termed
as radial mode index and [ as azimuthal mode index.

Proc. of SPIE Vol. 12126 121260A-2

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 31 Dec 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Intensity profile Phase profile

- &
0
-1
-2
-3
3
% &2
1
0
Rl
2
3
&3
. 2
1
0
El
2
-3
1
3
0.9
08 2
07
4
06
05 0
04
-1
0.3
0.2 2
0.1
3

Figure 1. The intensity and phase profiles of LG beams. (@) p =0,l=1,(b)p=0,l=2,c)p=11=2,(d)p =2,1l = 2. The
phase ranges from - 7t to m. At each dark ring the phase jumps by r and these dark rings are the phase singularities in the field.

(@)

03
0.2

0.1

(b)

0.7
06
0.5
04

0.3

(©)

O

0.5
04

Proc. of SPIE Vol. 12126 121260A-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 31 Dec 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3. PROPOSED EXPERIMENTAL SET UP FOR GENERATING SCATTERED FIELD

We have used a Spatial Light Modulator (SLM) to generate different OAM modes by displaying the binary phase
hologram of desired mode. A He-Ne laser (A = 632nm) is illuminated on SLM and the reflected beams from the SLM
carries the desired OAM. A ground glass of known inhomogeneity is used to generate a scattered field for a given OAM
mode. The ground glass acts as random phase mask and introduces the random phase in the incident OAM beams and
hence generating the speckle field. This speckle field is captured using a CCD and the intensity images are used for
further classification of beams. The 8 OAM beams with p = 0 and [ = 1,2,3,4,6,7,8 are generated to build a 3 bit
demultiplexing model.

Laser
Generated LG mode

SLM Beam .
Splitter Aperture Ground Glass Speckle Field D

Figure 2. Schematic of experimental arrangement to capture speckle field of LG modes. Ground glass is used as random phase mask
for generating speckle field.

4. DEEP LEARNING

Inspired from the structure of human brain, deep learning is a self-learning method developed for learning from large
data. Deep learning is essentially a neural network that mimic the human brain to identify, classify, and describe the
input data or objects. In the deep learning the features are automatically learned during the training. Convolutional
Neural Network (CNN), a type of neural network uses convolution operator for extracting the features by convolving
filters with input images. The initial layers of CNN extract the low level features whereas the deeper layers extract high
level features. In addition to convolution layers, non-linear activation function such as ReLU and pooling layers are also
added for effective learning. To combine all these features fully connected layers are used. At the end softmax layer and
classification layers are used to predict the class of the input data.

The deep learning models require huge data and large computational power. To avoid this problem we can use
the pre-trained networks which were trained for similar data. By modifying the last layers and retaining the weights and
biases we can utilize the power of trained networks. It is the fastest and efficient way of training. Networks such as
Alexnet, Resnet, VGG-16 can be used for training data for classification task as these have learned lots of feature during
training. They have good accuracy and moderate computational power.

Figure 3. Neural network attempt to mimic the human brain
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5. DEEP LEARNING BASED MODEL FOR OAM MODE DEMULTIPLEXING

In order to build a 3 bit demultiplexing model we utilize the Alexnet. The Alexnet is already trained for 1000 classes
over 1.2 million images, hence it has learned lot of features in terms of weights and biases. We can use this weights and
biases to train our model instead of training from scratch. Training in this way requires less computational power and
less number of data compared to training from scratch. Alexnet has 5 convolution layers and 3 fully connected layers. It
accepts images of size 227 x 227 x 3 and hence we will preprocess our data to this size. The last layers gives the
probabilities of 1000 classes, thus, we modify the number of neurons in the last layer to 8 as we have only 8 OAM
modes. Table 1 shows the detailed architecture of modified Alexnet network. In the network the convolution layers are
followed by number of non-linear activation layers and pooling layers to reduce the number of parameters by performing
down sampling. The images of the scattered field captured are fed to this network for training and testing the model. We
have trained the network over an 800 images and tested it for various datasets. We have used “The Stochastic Gradient
Descent with Momentum (SGDM) optimizer to train the network with learning rate of 0.0001 and 30 maximum epochs.
We have achieved an overall accuracy > 99% for each dataset.

Table 1. Alexnet Architecture modified for training 8 classes of LG Beam
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convs 256 3x3 1 1 13 x 13 x 256 MP + Relu
fc6 4096 - - - 1x1x4096 ReLU + Dropout
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Figure 4. Layer by layer visualization of modified Alexnet architecture.
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Figure 5. (a) Training and loss plots with number of iteration during the training. (b) Confusion matrix indicating the intermodal cross-
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6. CONCLUSIONS

We have successfully demonstrated a proof of concept of deep learning model for demultiplexing OAM modes using
simulated speckle images of the received field. Compared to the previous state of art, this method has an advantage that
we don’t need to capture the entire field of the received beam. The model is robust to noise as it is trained for images
having random noises. For robust training the number of hyperparameters can be increased but at the same time we have
to compromise with accuracy. The confusion matrix indicate that there is more confusion at the higher order modes and
it can be eliminated by optimizing the network or skipping some few modes. Our results shows that this model has
potential to deploy in free space optical communication systems for demultiplexing.
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