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In this Letter, we introduce a novel, to the best of our knowl-
edge, structured light recognition technique based on the
1D speckle information to reduce the computational cost.
Compared to the 2D speckle-based recognition [J. Opt.
Soc. Am. A 39, 759 (2022)], the proposed 1D speckle-based
method utilizes only a 1D array (1×n pixels) of the structured
light speckle pattern image (n×n pixels). This drastically
reduces the computational cost, since the required data is
reduced by a factor of 1/n. A custom-designed 1D convolu-
tional neural network (1D-CNN) with only 2.4 k learnable
parameters is trained and tested on 1D structured light
speckle arrays for fast and accurate recognition. A compar-
ative study is carried out between 2D speckle-based and 1D
speckle-based array recognition techniques comparing the
data size, training time, and accuracy. For a proof-of-concept
for the 1D speckle-based structured light recognition, we
have established a 3-bit free-space communication chan-
nel by employing structured light-shift keying. The trained
1D CNN has successfully decoded the encoded 3-bit gray
image with an accuracy of 94%. Additionally, our technique
demonstrates robust performance under noise variation
showcasing its deployment in practical cost-effective real-
world applications. © 2024 Optica Publishing Group

https://doi.org/10.1364/OL.514739

In structured light, the intensity and phase of the optical field
will be spatially varying. The most commonly known fami-
lies of structured light are Laguerre–Gaussian (LG) beams and
Hermite–Gaussian (HG) beams. Structured light has garnered
considerable significance encompassing fields like telecommu-
nications, quantum topography, optical trapping, and imaging
[1,2]. One of the emerging fields of structured light applications
is communication [3]. Theoretically, structured light can offer
infinite channels in a limited bandwidth by employing its infi-
nite orthogonal basis set [4]. As the mode-division-multiplexing
(MDM) is independent of wavelength and polarization multi-
plexing techniques [5], structured light provides an additional
degree of freedom to encode the information in multiple dimen-
sions simultaneously and increase the information exchange
capacity in free-space optical communication (FSOC) chan-
nels [6,7]. The traditional methods of structured light detection,
like interference [7,8] and diffraction [6,9], entail complexity
because they require high-quality sensitive optical components
and a high degree of alignment for accurate structure light

recognition. The complexity of the recognition is reduced by
introducing artificial intelligence (AI) models. The AI-based
structured light recognition models have increased the detec-
tion speed and accuracy, which leads to real-time optical
communication [10,11].

Various neural networks (NNs) have been proposed to decode
the information encoded in structured light beams from their
direct intensity profiles [12,13] or interferograms [14,15] and
are being deployed in optical communication links. However,
despite improved performance, existing methods face limita-
tions in detection accuracy due to alignment constraints. The
necessity to capture the entire beam restricts the number of
structured light beams that can be employed. This limitation is
attributed to the direct proportionality of mode order to beam
size, imposing constraints on the receiver aperture size. Address-
ing this challenge, a demultiplexing method based on speckle
patterns has been proposed [16–20] in fiber and FSO com-
munication. This method allows information decoding from a
smaller structure light speckle pattern region with a sufficient
number of speckle grains. By relaxing alignment constraints,
it enables intensity degenerate structure light recognition [12]
and non-line-of-sight optical communication [21,22]. Up to this
point, speckle-based demultiplexing techniques have utilized
2D speckle images and 2D neural networks (NNs) for OAM
beam recognition. The use of 2D images necessitates 2D-pixel
cameras, extensive storage capacity, computationally intensive
NNs, increased processing time, and advanced computational
resources for effective classification.

To decrease the computational cost/time and increase the
economic feasibility while maintaining the fidelity of the struc-
ture light demultiplexing, we are reporting a novel 1D far-field
speckle-learned recognizing (FSLR) method. In this method,
a custom-designed 1D convolutional neural network (CNN)
is trained and tested on randomly mapped 1D arrays of the
2D far-field structured light speckle patterns. The 1D speckle
arrays have been mapped at a random angle from the captured
Laguerre–Gaussian (LG) beam’s speckle pattern images, which
showcases the alignment and rotational independence of the 1D
FSLR method. The minimum data requirements are optimized
by computing the accuracy and training time as a function of
the number of observations per class and the size of the 1D
arrays. A comparison of 2D speckle-based recognition and 1D
FSLR methods is also carried out to demonstrate the advan-
tage of the 1D FSLR method. For proof of concept, a 3-bit
100× 100 pixel gray-level image has been sent across an FSOC
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channel. The image has been encoded using the structured light-
shift keying (SL-SK) method and decoded with 94% accuracy
with the 1D FSLR method. Finally, the structured light speckle
patterns have been simulated with white Gaussian noise and
Kolmogorov turbulence to resemble the real-world background
noise. The 1D FSLR method has been performed on simulated
noisy speckle patterns, showcasing its robust performance under
noisy conditions.

The complex amplitude of the LG beams is expressed as
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where L l
m, W(z), and R(z) represent the Laguerre polynomial,

beam width, and wavefront’s radius of curvature, respectively.
Integers l and m are azimuthal and radial indices, respectively.
The intensity of the speckle fields corresponding to the LG beam
is given by

IS = [F {u(r)eiφRi (r)}] × [F {u(r)eiφRi (r)}]∗, (2)

where IS represents the intensity of the simulated speckle field,
u(r) represents the complex amplitude of the LG beam, ϕRi

represents the spatially varying random phase across the plane,
and F represents the Fourier transform.

The experimental realization of the 1D FSLR method is shown
in Fig. 1(a). The spatial light modulator’s (SLM) active area is
illuminated with a 3 mW Gaussian laser beam through a beam
splitter, and the required vortex phase hologram is updated at the
SLM. The required LG beam is isolated using an aperture from
the diffracted beams of the SLM. The LG beam is propagated
through the free space and passed through a rotating diffuser
placed at the front focal plane of the convex lens of focus f =
12.5cm. The generated far-field speckle pattern is imaged by
using a CMOS camera (Thorlabs-CS235CU) at the back focal
plane of the convex lens.

Experimentally captured LG beams, their speckle patterns,
and randomly mapped 1D speckle arrays are shown in Fig. 1(b).
We have captured 2000 far-field speckle pattern images per beam
for eight LG beams (m = 0; l = 1 − 8); in total, we have cap-
tured 16,000 (2000× 8) images. The 1D cross-line arrays have
been mapped at a random angle across the captured 2D far-field
speckle pattern images. In the 1D FSLR, only 1D speckle arrays
are used to classify the LG beams with the 1D CNN.

CNNs have performed exceptionally well in OAM classifi-
cation with multiple degrees of freedom in communication,
imaging, data encryption, etc. [23]. Among CNNs, 1D CNNs are
specifically designed for processing 1D data such as audio sig-
nals, health monitoring, or other types of 1D signals that vary
over time. The architecture of the custom-designed 1D CNN
consists of a sequential input layer, three sets of 1D convolu-
tional layers, a ReLu layer, and a normalization layer, followed
by a 1D global average pooling layer, a fully connected layer, a
SoftMax layer, and a classification layer. The numbers of filters
and filter sizes of the three 1D convolutional layers are 4, 8, 16
and 5, 10, 15, respectively. The designed 1D CNN is trained
by using an Adam optimizer with a constant learning rate of
0.0001 for 200 epochs and has only a maximum of 2.4 k total
learnable parameters. The 1D CNN is trained and tested on the
1D arrays extracted from the experimentally captured far-field
speckle patterns.

Fig. 1. (a) Experimental setup to generate structured light beams
and their speckle patterns. (b) Top row: intensity images of LG01−06
beams (left to right). Bottom row: intensity images of the speckle
patterns and randomly mapped 1D speckle arrays. (c) Classification
accuracy and training time versus the size of the 1D array for differ-
ent observation samples per class. The results shown are computed
on a workstation with a GPU (Nvidia RTX A5000, 24 GB).

The classification accuracy and training time of the 1D CNN
will depend on the size of each 1D array and the number of sam-
ples (1D arrays) per class (LG beams). The size of the 1D speckle
arrays varied from 1 × 256 to 1 × 1920 pixels to optimize the
classification accuracy and training time. We also varied the
number of samples per class from 500 to 2000. The classifica-
tion accuracies and training time as a function of the size of
the 1D array and the number of samples per class are shown
in Fig. 1(c). One can conclude that increasing the length of the
arrays would significantly increase the classification accuracy
rather than increasing the number of samples per class. By trad-
ing off the size of the 1D array and the number of samples per
class, high classification accuracy can be achieved with minimal
data and computational cost.

To demonstrate the importance of the 1D FSLR method over
2D FSLR and to fairly compare the results between the 1D and
2D FSLR, a 2D CNN has been designed analogous to the 1D
CNN architecture. The sequential input, 1D convolutional, and
1D global average pooling layers in the 1D CNN are replaced by
the image input layer, 2D convolutional layer, and 2D global aver-
age pooling layer, respectively. The 2D data has been mapped
from the captured speckle patterns as a group of pixels of size
n× n at random places. The 1D data of size 1× n pixels arrays
has been mapped at random angles to perform the classification.
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Fig. 2. Size-dependent classification accuracies for experimen-
tally captured 1D arrays (1× n pixels) and 2D Images (n× n pixels)
and their corresponding network training times (TTs). The networks
are trained on a workstation with a GPU (Nvidia RTX A5000,
24 GB) with 1000 samples per class.

The classification accuracies and training time of the 2D CNN
and 1D CNN at different sizes of the images and arrays have
been shown in Fig. 2.

A similar accuracy can be achieved by employing the 1D
FSLR in less training time than the 2D FSLR. This effectively
shows the superiority of the 1D FSLR method over the 2D FSLR
method. The trained 1D CNN with the highest classification
accuracy is deployed in a 3-bit SL-SK FSOC channel for a
proof of concept of the 1D FSLR method. We have encoded
a 3-bit gray-level image in LG beams (m = 0; l = 1 − 8) using
the SL-SK encoding scheme. The trained 1D CNN on 1× 1920
pixels has successfully reconstructed the image with a 0.056 bit-
error rate (BER). The schematic diagram for the experimental
realization of the established 3-bit SL-SK FSOC channel using
the 1D FSLR method is shown in Fig. 3. To harness the full
spectrum of LG beams, astigmatic transformed speckle pattern
images have been captured by replacing the convex lens with
a cylindrical lens (f = 15cm) in the experimental setup shown
in Fig. 1(a). The 1000 astigmatic transformed speckle pattern
images have been captured for each LG modes (m = 0, l =

Fig. 3. The schematic diagram for the experimental realization of image encoding using SL-SK and decoding with the 1D FSLR method.

±1 − ±8). The 1D CNN trained on the 1D arrays from astigmatic
transformed speckle patterns achieved a classification accuracy
of 73% by optimizing the data size.

To check the validity and robustness under the real-world
noise, in the structured light beams, additive white Gaussian
noise (AWGN) has been added to the structured light, and corre-
sponding noisy speckle fields have been simulated. The values of
the SNR (in dB) are varied from 0 dB (power of signal= power
of noise) to 30 dB to study the effects of AWGN on the LG
speckle fields and their classification accuracy. The SNR value
in AWGN can be calculated using Eq. (3):

SNRdB = 10log10

(︃
Ps

Pn

)︃
, (3)

where Ps and Pn are the power of the signal and power noise,
respectively. The simulated noisy speckles of LG04 with different
SNRs are shown in Fig. 4. The 1D CNN is trained on simulated
noisy speckle arrays of LG beams of size 1× 1920 pixels for
1000 samples per class. The achieved accuracies by employing
the 1D FSLR method on simulated noisy LG beam 1D arrays are
given in Table 1. We also trained our model on Kolmogorov tur-

bulence (C2
n = 1.5e-4m

−2
/3) simulating atmospheric turbulence

and attained 79% classification accuracy with 1000 samples per
class wherein each sample has a length of 1× 1920 pixel array.

The 2D CNN performs the convolution, feature learning,
and pooling process at the 2D spatial dimension, which is
analogous to the parallel computing of the spatial pixels of

Fig. 4. Simulated AWGN LG04 beams and its speckle pattern
with different levels of SNR.



1048 Vol. 49, No. 4 / 15 February 2024 / Optics Letters Letter

Table 1. Achieved Classification Accuracies by 1D
CNN for Different SNR Levels on LG Beams Using the
1D FSLR Method

SNR (dB) No Noise 30 25 20 15 10 5 0

Accuracy (%) 95 91 88 73 44 18 14 13

captured speckle patterns and needs high-end computational
resources. The 1D FSLR uses only 1/nth of the data compared
to the 2D FSLR, which drastically reduces the computational
cost and can increase the training and recognition speed. The
1D FSLR method holds the potential to boost the real-time opti-
cal communication speed by employing the structured light’s
high spectral efficiency and the 1D FSLR’s low computational
cost and time. The proposed 1D FSLR can be easily deployed
in the non-graphical processing unit (GPU) low-end compu-
tational resource too. On Intel i7-9700 CPU-32-GB RAM, it
takes 3 and 35 min to train the 1D CNN on 1 × 32 and 1 × 1024
pixel speckle arrays, respectively with 1000 observations per
class.

In conclusion, we have successfully demultiplexed the struc-
tured light beams by employing only a 1D far-field speckle
array, which consists of less than 1/nth of the data employed in
traditional AI-based demultiplexing techniques using images of
size n × n. This marks a substantial leap in reducing the data
by 1/nth times thus significantly reducing computational cost
and training time and at the same time maintaining fidelity and
robustness. A custom design 1D CNN with only 2.4 k learnable
parameters is used for faster training and testing, which can be
easily supported on low-end computers without GPU. We have
also found the minimum data and the number of samples per
class required to achieve the optimum classification accuracy
by size-dependent classification accuracy study. The designed
1D CNN has achieved a maximum of 98% classification accu-
racy for 1× 1920 pixel length and 2000 observations per class.
The trained 1D CNN model has successfully demultiplexed the
encoded a 3-bit gray image with a 0.056 BER. This illustrates the
high fidelity of the 1D FSLR method in the established SL-SK
FSOC channel. Further, the noise-dependent study on various
simulated data proves the robustness and reliability of the 1D
FSLR in noisy FSOC channels with low computational cost and
high feasibility. The proposed 1D FSLR scheme is also applied
to the Hermite–Gaussian beam and gives similar results.

The proposed scheme could be a solution for high-capacity
information transfer optical communication channels due to
reduced training and classification time. The proposed 1D CNN
architecture holds promise for future optimization, enabling
heightened complexity while preserving network fidelity and
simultaneously reducing computational time. This method
can be augmented with wavelength and polarization division-
multiplexing techniques to increase the data transfer rates. The
1D FSLR method could be a viable solution for the low-
power consumption optical communication employing deep
learning, which can be deployed in energy-limited applica-

tions like ground-to-space, space-to-space, and satellite optical
communication.

The 1D speckle-based recognizing scheme could open a new
research field to extend it to other wavelength spectrums for
increasing the range and avoid atmospheric turbulence and scin-
tillation, which is quite common in the optical domain. Not only
limited to communication, but the 1D FSLR method could be
used in diverse applications like an alternative way to analyze
optical data in metrology, speckle-based bio-imaging, and other
relevant applications.
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