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We report an experimental proof of concept for speckle-based one-to-three non-line-of-sight (NLOS) free space
optical (FSO) communication channels employing structured light shift-keying. A 3-bit gray image of resolution
100× 100 pixels is encoded in Laguerre–Gaussian or Hermite–Gaussian beams and decoded using their respective
intensity speckle patterns via trained 1D convolutional neural network. We have achieved an average classification
accuracy of 96% and 93% using LGml and HGpq beams, respectively, among all three channels. It demonstrates
the directional independence and broadcasting capability of speckle-based decoding (SBD) in FSO communica-
tion using structured light. Further, we have extended the study from 2D to 1D SBD in one-to-three NLOS FSO
communication channels to decrease the computational cost and to emphasize the importance of the 1D SBD
approach. © 2023 Optica Publishing Group
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1. INTRODUCTION

With the rapid advances in technology, we are moving towards
an artificial intelligence (AI) driven society, which has led to a
massive increment in network traffic [1]. To avoid the capacity
crunch, many attempts have been made to develop networks
that provide substantially higher transmission capacity and
much lower latency. Over the past decade, structured light
beams have emerged as a viable candidate for increasing spectral
efficiency in free space and fiber optical communication links.
Structured light with tailored complex amplitude or polari-
zation, employed in space-division multiplexing (SDM), has
surged the data transmission rates up to terabit/s and petabit/s
by utilizing its spatial degree of freedom [2–5]. The prominent
advantage of these beams is that almost any complete orthogo-
nal modal basis set can be utilized for encoding information
in optical communication links by efficiently combining dif-
ferent fundamental modes. Various modal basis sets such as
Laguerre–Gaussian (LGml) and their superposition beams,
Hermite–Gaussian (HGpq), and Bessel–Gaussian beams have
been experimentally demonstrated in free space or fiber-based
communication links [6–8].

In general, structured light has been exploited in various
communication systems but the pioneering work was focused
on on-axis or line-of-sight (LOS) communication. On-axis
or one-to-one communication channels are established with
structured light in different encoding schemes using traditional

interference and diffraction techniques [9–11]. Recently, orbital
angular momentum (OAM)-based non-LOS (NLOS) has
been reported while demonstrating the broadcasting capability
of OAM beams [12]. Although structured light increases the
channel capacity by manyfold, its uses are limited by various
technological challenges. The optical communication chan-
nel’s information transfer rate is determined by the frame rate
at which the structured light beams are generated. The most
popular way to generate them is by using spatial light modulator
(SLM) and digital micromirror devices (DMD) , but the com-
mercially available SLM and DMD have very low frame rates,
thus limiting the bandwidth.

In NLOS communication, scattering effects and the
increased signal-to-noise ratio lead to high cross talk among
structured light beams. In the case of speckle pattern classifi-
cation using AI-based methods, the cross talk among beams
off-axis is much higher than that on-axis. The misclassification
or the cross talk among structured light beams is because of
the decrease in signal intensity and increase in noise at off-axis
receivers. In recent years, rapid advances in parallel computing
and low-cost computing hardware have made big data mod-
eling possible. With this development, AI has empowered a
wide range of aspects of optical communication by overcoming
technological challenges. Structured-light-employed commu-
nication links have been augmented and elevated with AI-based
decoding techniques for the past decade [13–16]. Making
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the most of this opportunity, optical engineers/researchers have
demonstrated structured light recognition and (de)multiplexing
using machine learning even under the presence of noise in
space, underwater, and in turbulence [13,17]. Machine learning
models have reduced the complexity of handling sensitive and
bulky optical instruments and boosted performance by increas-
ing noise tolerance. Such AI-based decoding schemes have
reduced the intricacy of the receivers and decreased the decod-
ing time. Because of the decreased decoding time, AI-based
decoding techniques have laid the foundation for real-time
FSO communication using structured light [18,19]. Recently,
the speckle-based decoding (SBD) technique has been intro-
duced in FSO communication channels and established an
“alignment-free” decoding technique [20–28]. SBD is proven
to identify the dislocations present in employed structured light
using far-field intensity speckle patterns rather than the direct
beam cross-sectional intensity profile.

Traditional AI-based demultiplexing method need a camera
preferably with a larger imaging area to capture higher-order
beams, which are comparatively larger in size than lower-order
beams, thus limiting AI-based demultiplexing techniques to
lower-order modes. The proposed model of the speckle-based
demultiplexing method has an advantage over traditional
AI-based demultiplexing methods. The speckle-based demulti-
plexing method can identify structured light even by capturing a
small part of the speckle field even in a high-noise environment
[27]. This proves that the proposed demultiplexing method
does not need a large imaging area camera. Commercially avail-
able cameras (Thorlab’s CMOS CS235CU) are good enough
for the present task. For 1D speckle-based demultiplexing, 1D
cameras can be a cost-effective alternative. The key takeaway
of this technique is that a small portion of the speckle field
having enough speckle grains is adequate for the recognition of
structured light.

Vizualizing lower-dimensional data (1D) in higher dimen-
sions (2D or 3D) gives us deeper insight to understand
lower-dimentional data, which makes complex features eas-
ily interpretable in higher dimensions. Such data visualizations
are very popular in health monitoring systems such as electrocar-
diograms (ECGs) [29,30], cardiovascular disease analysis [31],
and driving event analysis [32].

In the proposed method of structured light demultiplexing
in NLOS, classification of structured light beams has been
achieved by employing 2D speckle pattern images and 1D
speckle arrays. Rather than projecting the lower dimentions to
higher dimensions, we have reduced the dimentionality of the
raw data (2D to 1D) to achieve classification accuracy. In the
1D speckle-based demultiplexing method, the 1D speckle array
(1× 20 pixels) has less than one-by-thousandth of 2D speckle
data (1200× 1920 pixels). To the best of our knowledge, the
proposed method using 1D information (1D speckle array) and
2D information (2D speckle pattern image) in structured light
NLOS communication is the first to be reported. In this paper,
we extend one-to-one communication [25,26] to one-to-many
NLOS communication channels utilizing the speckle-based
information broadcasting capability of structured light beams.

We have used eight different LGml or HGpq beams to encode
a 3-bit gray image of 100× 100 pixel resolution. A 1D convolu-
tional neural network (CNN) is trained on the speckle features

of 2D intensity speckle images and deployed in one-to-three
NLOS FSO communication channels to decode the encoded
information. The trained network effectively classifies LGml and
HGpq beams with average classification accuracies of 96% and
93%, respectively, in 3-bit NLOS FSO communication chan-
nel links. Extending this study from 2D to 1D SBD, we have
trained and tested 1D CNN to classify structured light beams
using 1D speckle information and deployed it in the established
3-bit NLOS communication channel. Finally, we also explored
our approach of 2D and 1D SBD schemes to classify intensity
degenerate LGml beams to exploit the advantage of their full
modal spectrum.

2. STRUCTURED LIGHT

Structured light has played a vital role in different research areas
because of its flexibility in tailoring its phase and amplitude
according to the application. In a family of structured light
beams, LGml beams carry OAM and have been of great poten-
tial in communication. LGml beams can be tailored by using
the azimuthal index (l ) and radial index (m). The complex
amplitude of the LGml beam is given by
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beams have identical intensity profiles for a given value of l ,
and are called intensity degenerate beams. Decoding the infor-
mation in intensity generate beams is impossible just by using
a cross-sectional plane of their intensity profiles. Researchers
introduce astigmatic transformation to break the degeneracy
[24,33,34]. Information encoding using OAM beams can effec-
tively address spectral efficiency issues by utilizing its orthogonal
property.

Theoretically, infinite m values can be utilized to increase
the number of communication channels in a given bandwidth
per l value and decode the encoded beams with minimal cross
talk among channels. But in this work, we restrict ourselves to
m = 0 and utilize both sides of the OAM spectrum (±l ). Not
only OAM beams but also non-OAM beams have contributed
to establishing FSO communication links.

In this work, we have also explored HGpq beams to establish
FSO communication links. The complex amplitudes of HGpq
beams are expressed by the equation
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Fig. 1. Experimentally generated structured light beams and their corresponding speckles.

where Ao represents constant amplitude. Hp and Hq are
Hermite polynomials of orders p and q , and indices p and q
give the number of nodal lines along y and x axes in the beam
cross section, respectively. HGpq beams also possess orthogonal-
ity properties, which is a potent property to increase the spectral
efficiency of a communication link. Experimentally generated
LGml and HGpq beams and their corresponding speckle patterns
are shown in Fig. 1.

3. EXPERIMENTAL SETUP

An experimental setup for one-to-three NLOS FSO commu-
nication channel links is established and tested. A phase-only
SLM is illuminated using a 3 mW He–Ne laser. To realize shift-
keying, structured light beams are generated by updating the
corresponding fork pattern holograms onto the SLM. Speckle
patterns are generated by passing the beams through a rotating
ground glass. The ground glass is connected to a 12 V DC motor
with a speed controller. The RPM of the ground glass is adjusted
to be less than the camera exposure time (194 µs) to avoid blur-
ring speckles and to capture speckles with good contrast. The
ground glass is rotated to capture multiple intensity speckle
pattern images to train the CNN model.

The speckle pattern generated depends upon the beam size
and the ground glass. A fixed ground glass with varying beam
sizes will affect the speckle size, but not speckle pattern distri-
bution. Speckle size is inversely proportional to beam size. Even
though beam size affects speckle size, machine learning algo-
rithms learn from the multiple complex features representing
speckle distribution to classify structured light beams [21].
The change in beam size does not affect the machine learning
model’s classification accuracy as long as speckles are captured
with good contrast.

Speckle pattern images are captured using a CMOS camera
(Thorlab’s CMOS CS235CU) directly without any additional
lenses or filters at the rate of one image/s. The captured speckle
images has a resolution of 1200× 1920 pixels at three different
positions [C0(0◦), C+15(15◦), and C−15(−15◦)] within the
horizontal beam axis plane, maintaining the radial distance
of 26 cm from the ground glass plane as shown in Fig. 2. The
captured intensity speckle patterns are used to decode the
encoded information using the SBD technique. The 3-bit
structured light shift-keying is achieved using LGml beams with

Fig. 2. Experimental setup for speckle-based structured light shift-
keying for one-to-three NLOS FSO communication channels.

m = 0 and l = [+1, +8], excluding l = 0 or HGpq beams with
p = q = [1, 8].

We considered eight LG beams for 3-bit structured light
shift-keying. For each beam, we captured 500 images at each
receiver position. A total of 4000 (500× 8) speckle images
were captered for eight LG beams per receiver. At three different
receiver positions [C0(0◦), C+15(15◦), and C−15(−15◦)], we
captured 12,000 (4000× 3) speckle images for the LGml beam
data set. The same number of images were captured for HG
beams. For 1D SBD, an array of size only 1× 1920 pixels was
mapped from the captured images of size 1200× 1920 pixel res-
olution. First, the features were extracted from speckle images or
arrays via a wavelet scattering network (WSN), and the extracted
features were fed to train 1D CNN for beam classification.

4. DEEP LEARNING ANALYSIS

A. Wavelet Scattering Transform

The wavelet scattering transform is a well-known feature
extraction technique that has been used to generate scattering
coefficients to train machine learning and deep learning neural
networks. The wavelet scattering transform processes data
and extracts scattering coefficients at different frequencies.
Scattering coefficients represent data much better in frequency
and time domains than their raw representation [35]. As WSN
processes the data at different frequencies with different values
of scaling factors, it provides us with rich and enhanced data
interpretability through scattering coefficients. The Morlet
wavelet in the WSN goes through scaling and shifting while
striding over the input signal’s frequency and intensity. At each
scaling value, the network shifts the wavelet through the entire
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Fig. 3. 1D CNN architecture and corresponding channel
activations.

spatial or time domain of the data and extracts the scattering
coefficients at that frequency.

To capture scattering coefficients at higher frequencies,
the scaling factor goes down and extracts the scattering coef-
ficients at higher frequency domains or at smaller intervals of
time. Scattering coefficients extracted by the wavelet scattering
transform correspond to multi-resolution data interpretation
in frequency and time domains. This results in the accurate
classification of signals or images with high precision in machine
learning and deep learning networks [23,36–38]. At each level
of the scattering network, the input data go through convolu-
tion, non-linearity, and averaging operations. The scattering
coefficients for images of size 512× 512 pixels (cropped from
the original images of 1200× 1920 pixels) and cross-line arrays
of size 1× 1920 pixels were extracted and fed to the 1D CNN
network to train.

B. 1D Convolutional Neural Network

1D CNN has a compact and simple structure and can be trained
on both 2D images and 1D arrays. 1D CNN has advantages in
signal processing over other deep learning neural networks. It
has become a state-of-the-art technique for classifying signals
of various kinds with minimal computational resources. Using
1D CNN over conventional 2D CNN gives us the advantages
of fewer training data and computational resources and less
training time. Day-to-day life involves 1D signals as much as
2D signals such as high-power circuitry, acoustics, damage
detection in structures, vibrations, arrhythmia detection in
ECGs [39–41], etc. The designed architecture of our 1D CNN
is shown in Fig. 3. We have used a sequential input layer that
can accept the scattering coefficients of images and crossline
arrays without modifying 1D CNN architecture. To decrease
the computational load and to overcome the gradient vanishing
and the explosion issue at the same time, we have inculcated
only two 1D convolutional layers with 32 and 64 filters in the
1D CNN architecture.

Each 1D convolutional layer is followed by ReLu and nor-
malization layers. The ReLu layer uses a non-linear activation
function to threshold the values convolved from the convolu-
tional layer. The ReLu layer is followed by the normalization
layer, which independently normalizes input elements by cal-
culating the mean and variance for the possible dimensions
for every observation. After the two sets of 1D convolutional,
ReLu, and normalization layers, a 1D global averaging pooling

layer is used for subsampling by giving the average over the time
or spatial domain, followed by a fully connected layer for the
required number of classes followed by a SoftMax layer and clas-
sification layer. At the output layer, cross-entropy is minimized
by using the Adam optimizer. The defined hyperparameters
have a constant learning rate of 0.0001, a mini-batch of size
120, and 150 epochs with the necessary casual padding and
stride 1. The hypermeters are optimized manually as they are
case specific. The designed 1D CNN is always trained on 80%
of collected data and tested on the remaining unseen 20% of
data. The designed 1D CNN architecture gives high classifica-
tion accuracy on fewer training data with only 11.4 thousand
learnable parameters.

5. 3-BIT NLOS STRUCTURED LIGHT
SHIFT-KEYING

A. 2D Speckle-Based Decoding

A proof of concept to demonstrate NLOS optical communica-
tion through structured light shift-keying for a 3-bit image is
carried out using beams with m = 0 and l = [+1 to + 8], as
well as using HGpq beams with p = q = [1 to 8]. Figure 4 shows
its experimental realization. The eight gray levels of a 3-bit
image of 100× 100 pixels are encoded in the eight beams (LGml

or HGpq) via SLM. The information is encoded in structured
light beams, which are passed through the ground glass. The far-
field intensity speckles are collected at a beam on-axis position
(C0 channel) and at two beam off-axis positions (C+15 and C−15

channels) using a CMOS camera. A portion of 512× 512 pixels
is cropped from the originally captured image of 1200× 1920
pixels. The features are extracted from the cropped images of
all channels using WSN and fed to 1D CNN for training and
testing.

1D CNN is always trained and tested on 80% and 20% of
data, respectively. For 3-bit NLOS FSO communication, we
achieve a classification accuracy of >99%(96%) at the on-axis
channel C0 and 95%(92%) and 93%(93%) on the beam off-
axis channels C+15 and C−15, respectively, using LGml(HGpq)

beams as noted in Table 1. In 2D speckle-based demultiplexing,
the trained 1D CNN performs quite similarly in classifying LG
and HG beams among all three channels.

The accuracy achieved by the CNN model in 2D SBD tends
to decrease as the off-axis range increases. The off-axis range of
the NLOS communication channel is inversely proportional
to the grit size of the ground glass. Some diffusers have a range
of up to±25◦ depending upon the grit size, which will increase
the range of the NLOS communication. The range of off-axis
(±15◦) and the radial distance (26 cm) in NLOS communica-
tion are chosen appropriately to capture the speckle field with
good intensity and contrast.

B. 1D Speckle-Based Decoding

In this section, we report information decoding by using only
the 1D array in contrast to the previous section where we used
2D images for information decoding. This time, randomly
mapped 1D crossline arrays across the originally captured
intensity speckle images are used to extract the features and train
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Fig. 4. Speckle-based structured light shift-keying for NLOS optical communication using the HGpq beam. The blue box shows the encoded
image. The red box shows the encoded scheme and its experimental realization. The purple box shows the 2D SBD. The yellow box shows the
decoding scheme and the decoded images at channels C+15, C0, and C−15.

Table 1. Decoding Accuracies for 3-bit NLOS FSO Communication Using SBD

Accuracies in %

HG Beams (HG11 −HG88) LG Beams (LG01 − LG08) LG Beams (LG0−8 − LG0+8)

2D-SBD 1D-SBD 2D-SBD 1D-SBD 2D-SBD 1D-SBD

C+15 92 69 95 49 79 40
C0 96 72 99 72 96 61
C−15 93 49 93 35 76 22

Fig. 5. Structured light shift-keying employing 1D SBD in NLOS FSO communication.

the 1D CNN. Mapping a 1D array randomly across any direc-
tion from the captured speckle pattern proves the directional
independence of the modal information in intensity speckle
patterns. The schematic flow of the data in 1D SBD is shown in
Fig. 5. The maximum classification accuracy of 72% is achieved
at the on-axis channel C0 using both LGml and HGpq beams.
The accuracies at the off-axis channels (C+15 and C−15) are not
promising, but HGpq beams perform significantly better than
LGml beams (Table 1).

In 1D speckle-based demultiplexing, HG beams achieve
higher classification accuracy than LG beams in off-axis chan-
nels. 1D speckle array features represent the HG beam more
distinctively than LG. Off-axis, signal intensity drops and noise
increases, as HG beams are much more distinct and robust than
LG. CNN achieves higher classification accuracy for HG beams

than LG beams at off-axis channels in 1D speckle-based demul-
tiplexing. These accuracies can be improved by optimizing the
encoding/decoding scheme and using a deep neural network for
accurate classification.

6. NLOS CLASSIFICATION OF INTENSITY
DEGENERATE LGml BEAMS

We further extend our analysis to intensity degenerate LGml

beams with m = 0 and l = [−8 to+ 8], excluding l = 0. The
2D SBD technique adopted in Section 5.A. is followed for
this class of data. For the case of 2D speckle images of the cor-
responding intensity degenerate beams, 1D CNN achieved
classification accuracies of 79%, 96%, and 76% at C+15, C0,
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Fig. 6. Confusion matrix for channel C−15 employing (a) 2D SBD
and (b) 1D SBD in intensity degenerate LGml beams.

and C−15 channels, respectively. Figure 6(a) shows the con-
fusion matrix for the C−15 channel. It shows that free space
propagation breaks the degeneracy of intensity degenerate
beams. The confusion matrix in Fig. 5(a) exhibits less cross talk
among adjacent beams and high cross talk among±l beams for
lower-order beams and exhibits low cross talk among±l beams
and high cross talk among the adjacent beams for higher-order
beams. Similar cross talk is present in the C+15 channel as well.

The 2D SBD of intensity degenerate beams in NLOS FSO
communication is also extended to 1D SBD. Following the
methods described in Section 5.B, 1D crossline arrays randomly
picked from 2D speckle images are used to classify intensity
degenerate beams. The trained 1D CNN achieves classifica-
tion accuracies of 40%, 61%, and 22% on channels C+15,
C0, and C−15, respectively. The cross talk among the intensity
degenerate LGml beams in channel C−15 is shown in Fig. 6(b).

7. CONCLUSIONS

A proof of concept for NLOS FSO communication is demon-
strated by employing structured light shift-keying. The
proposed idea of one-to-“n” communication channel links
using speckle-based communication can multiply the advantage
by “n” times in the established NLOS FSO communication.
In 2D SBD, a small portion of the entire speckle is sufficient to

classify the structured light in contrast to a full beam intensity
image. The SBD also makes the employed communication
channel link alignment independent.

The proposed model of speckle-based demultiplexing
can impact FSO NLOS communication by increasing the
information transfer of the communication channel by 1× n
receivers. Realizing the potential of structured light (OAM)
beams in increasing spectral efficiency could add advantages
to the NLOS communication channel. The proposed NLOS
communication can be realized practically in the near future
as a short-range communication channel, for example, LiFi.
Employing a speckle-based demultiplexing method in the
NLOS communication channel has a potential impact on
reducing the computational load in demultiplexing the encoded
information.

The 2D speckle-based demultiplexing technique has high
fidelity and can be deployed in NLOS communication chan-
nels. The 1D speckle-based demultiplexing method uses only
one-by-thousandth of the 2D speckle pattern image, which
reduces the computational load drastically on deep learning
algorithms. The proposed 1D speckle-based demultiplexing
method can be realized with great feasibility, even in small-scale
deployment, and with minimal computational resources. Both
2D and 1D speckle-based demultiplexings in FSO NLOS com-
munication are practical solutions that can be implemented at
a low cost, thereby enhancing their accessibility and potential
impact.

Further research must be conducted on improving NLOS
communication. Extensive research must be done on increasing
the range and accuracies of NLOS off-axis communication
channels. A detailed study has to be conducted on different
preprocessing techniques to reduce the noise effects at off-axis
channels while employing 1D and 2D speckle-based demul-
tiplexing methods. The feature extraction techniques and the
network used in this research are basic and have a compact struc-
ture. Further improvements can be made by opting for different
feature extraction techniques and also by designing deep and
effective neural networks.
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