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Abstract. Intensity degenerate orbital angular momentum (OAM) modes are impossible to
recognize by direct visual inspection even using available machine learning techniques.
We are reporting speckle-learned convolutional neural network (CNN) for the recognition of
intensity degenerate Laguerre-Gaussian (LG, ;) modes, intensity degenerate LG superposition
modes, and intensity degenerate perfect optical vortices. The CNN is trained on the simulated
one-dimensional far-field intensity speckle patterns of the corresponding intensity degenerate
OAM modes. The trained CNN recognizes intensity degenerate OAM modes with an accuracy
>99%. Speckle-learned CNNs are also capable of recognizing intensity degenerate OAM modes
even under the presence of high Gaussian white noise and atmospheric turbulence with an
accuracy >97%. © 2023 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOL: 10.1117/
1.0E.62.3.036104]
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1 Introduction

In today’s world, artificial intelligence (AI) became an integral part of our life, and it is becoming
a very versatile tool for researchers to come up with better and more accurate results. Machine
learning and deep learning techniques are part of Al and augmenting complex physical systems
for better understanding, physics, and optics are no exception. For the past two decades, the
LG, beams' carrying orbital angular momentum (OAM) of /% per photon (where  is the topo-
logical charge and 7 is the reduced Planck’s constant) have gained prominence because of its
OAM degree of freedom. These beams are extensively used in the fields of optical trapping,’
optical communication,®> quantum entanglement, and quantum communication.® These OAM
beams reveal a subtle connection between macroscopic and microscopic optics, it became very
important to study and develop simple and feasible methods for the generation and detection of
OAM modes. Traditional methods like interference, diffraction, and other’™"> are cumbersome
and require a precise alignment for high recognition accuracy. Although it is easy to identify
distinct patterns by eye, the automation of the process for rapid detection is difficult. To over-
come this problem machine learning and deep learning methods are been proposed and dem-
onstrated for rapid detection of OAM modes with better accuracy.'*! Despite better accuracy,
these are alignment limited and one needs to capture the entire mode. These limitations were
overcome in the recent demonstration on the speckle-based CNN?*>~* and wavelet scattering
network.?

The LG, ; modes (with p = 0) are the special subset of OAM beams described by radial
index p and azimuthal index [/ (also called a charge). The LG, ; beams of the order p and
41/ have identical intensity distributions therefore they cannot be distinguished by their sole
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intensity images or their respective two-dimensional (2D) far-field speckle patterns**~> as well.

A lot of work has been developed to measure and quantify the charge of these modes. The LG,
beams, also known as optical vortices are the center of attraction for many researchers but many
times their use is limited because of their charge-dependent modal size. Using POVs, it becomes
possible to generate optical vortices of any charge with the same modal size.”® All the POVs
visually look identical because of their identical intensity pattern and hence, these are also inten-
sity degenerate OAM modes. The interference and diffraction-based methods are conventionally
used to distinguish OAM degenerate modes from the orientation of their respective astigmatic
transformed far-field patterns. The astigmatic transformation or the use of a cylindrical lens helps
to develop a machine learning model”’~%° for their classification.

In this paper, we demonstrate speckle-learned CNN for the recognition of intensity degen-
erate, (i) OAM modes, (ii) OAM superposition modes, and (iii) POVs. We have trained a CNN
on simulated one-dimensional (1D) far-field intensity speckle images of the respective intensity
degenerate OAM modes. The 1D far-field can be experimentally realized using a cylindrical
lens. To show the robustness of our model for experimental realization, we train and evaluate
the network on the speckle patterns having very high Gaussian white noise (GWN) and on
speckle patterns generated by modes distorted due to atmospheric turbulence effect.

2 Intensity Degenerate OAM Modes

2.1 Laguerre-Gaussian (LGp ;) Modes

The family of Laguerre-Gaussian (LG, ;) modes carrying OAM are the solutions of free space
paraxial wave equation in a cylindrical coordinate system. Mathematically these LG/, ; modes are
expressed as

() G5) ) ol o)

x exp(ilg) expli(|l| +2p + 1)®(z)]. (1)

where A is the amplitude, R(z) is the wavefront curvature of the beam, w(z) is the effective
width of the beam, wy is the beam waist at z = 0, ®(z) is the Gouy phase shift, p is a non-
negative integer, / is an integer and L‘,f‘ is an associated Laguerre function of order p and [.
For a given value of p, Eq. (1) gives the identical intensity profiles for modes LG, ; and
LG, _; since they are mutual conjugate modes. Using Eq. (1), we have considered eight such
pairs of intensity degenerate LG, ; modes with p =0 and [ = +1 to +8.

2.2 Superposition Modes

The superposition of any LG, ; modes with p = 0 are expressed as
SMy;(r) = ZCILGO,l(r)s 2
]

where subscript {/} denotes all the contributing LGy; modes and ¢; is their corresponding
weight. The modes SMy;, and SMy_;, are intensity degenerate mutual conjugate modes.
We have considered eight pairs of intensity degenerate superposition modes: [SMy; _3),
SMy_1 31, SMp261, SM{_2 6}, SMy3 _s53, SM_3 _s5y, SMy3 71, SMy_3 7y, SMyy 5.7y, SM(_; _5 7},
SMy38-4}> SM{_2 g4}, SMy14.2-53, SM(_1 425, SMy16-2-7;, SM{_1 _627}]-

2.3 Perfect Optical Vortices (POVs)

The LG, ; and SMy;, modal size is dependent on its charges, whereas in POVs the modal size is
charge independent. The complex field amplitude of POV with ring width 2w, and radius r, is
represented as*
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g W . P+ r% 2rr,
PV (r,¢) = ll_lw_g exp(ilg) exp(— ) )Il< ) )7 3)

r r r

where I; is the I’th order modified Bessel function of the first kind and w,, is the beam waist of the
Gaussian beam. It can be seen that all PV, are intensity degenerate modes. We have considered
16 intensity degenerate POVs with [ = +1 to +8.

2.4 Generation of 1D Far-field Speckles

The 1D speckle far-fields of the intensity degenerate OAM modes are calculated as
U (x.y) = Fip{U(r)e "}, )

where U(r) = {LG,, ;(r) or SMy;; (r) or PV,(r)}, Fp is 1D fast Fourier transform (FFT) in the
y-direction. The random phases, ¢ R, have uniformly distributed phase values between 0 and 2z

with the smallest unit of the randomness of 4 X 4 pixels (shown in Fig. 1). The 1D far-field
intensity speckle images (%) corresponding to the 1D speckle far-field U5 are simulated using,

the equation
I¥(x,y) = U (x,y) X U¥(x, ). S

Figures 2(a)-2(c) show the samples of the intensity, phase, and 1D far-field intensity speckle
patterns of intensity degenerate LG, ; SMy;, and PV, modes. Each pair of modes have an iden-
tical intensity profile and mutual conjugate phases. Since the Fourier transform is taken only
along one dimension, the speckles are not evenly distributed in vertical and horizontal directions,
and charge information of intensity degenerate modes is present in the distribution and orienta-
tion of the speckle patterns. This can be analogously visualized by taking 1D FFT of direct
modes: U;(x,y) = Fp{U(r)} [Fig. 1(b)]. It can be easily seen that different amount of shear
(dislocation in strips) is introduced in the beams carrying different OAM [It should be noted that
we only used 1D FFT speckles of direct beams for training in this paper, not those shown in
Fig. 1(b)]. For LG, ; and SMy;, modes, the speckle size in the vertical (y-) direction ranges from
14 to 22 pixels whereas in the horizontal (x) direction it ranges from 8 to 16 pixels. For PV,
modes the speckle size is ~24 pixels in the vertical direction and 8 pixels in the horizontal
direction for all the modes.

(b) Us(r) Fip{U+ ()}  Fip{U-()}

Fig. 1 (a) The random phase #r, (x,y) with the smallest unit of the randomness of 4 x 4 pixels
used to simulate the speckle patterns. (b) Intensity distribution of original OAM and their 1D FFT
field.

Optical Engineering 036104-3 March 2023 « Vol. 62(3)



Raskatla, Badavath, and Kumar: Speckle-learned convolutional neural network for the recognition. ..

(d)

> g

Noisy Random 1D FFT 5 X {Conv + MP + ReLu} 2 x{FC+ FC+
mode phase intensity ReLu + softmax
field mask speckle dropout}

1

Fig. 2 The intensity and phase patterns of the intensity degenerate modes and their respective
1D far-field intensity speckle images of (a) LG, (b) SMy;;, and (c) PV,. (d) OAM modes and their
respective speckle images in presence of GWN. For better visualization of the noise effect, the
modes are passed through the same random phase mask so that speckle distribution remains
the same and only the noise effect will vary. (e) Workflow for training CNN model for recognition
of PV, modes.

2.5 Gaussian White Noise (GWN)

To simulate realistic experimental scenarios and to make our model more robust, the GWN is
added to the modes. The GWN is quantified by specifying SNR (in dB)

Psignal
SNRdB = 1010g10 —_— . (6)

noise

Here, the power (P of signal and noise) is defined as

P:NZI(n). ™)

Here, I(n) is the intensity of n’th pixel in an image with total N pixels. We have generated data
and trained the network for seven different noise levels ranging from 0.1 to 10 times the input
signal power. The SNR values used for generating these seven datasets are 10, 7, 3, 0, =3, -7,
and —10 dB. Figure 2(d) shows the intensity distributions of the modes with additive noise and
the corresponding 1D far-field intensity speckle images.

2.6 Atmospheric Turbulence

For simulating atmospheric turbulence, we have generated a turbulence phase screen using
a modified atmospheric spectrum model.>! For this model, the refractive index power spectral
density is given as

% 2 11
@, (k) = 0.033C2 {1 +1.802 (5> —0.254 (5) ] exp (— Z—z) (2 +3)~%, ®)

K K ]

where C2 is the refractive index structure parameter determining the turbulence strength,
k; =3.3/1y, kg = 2z /Ly, ly and L are the internal and external scales, respectively. The phase
screen is synthesized by multiplying @, (k) by a complex random matrix, C, with mean 0 and
variance 1, and then taking its Fourier transform. Here, Fourier transforms produced two
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Fig. 3 The atmospheric turbulence effect is realized by passing LG, ; modes through turbulence
phase screen generated with C2 = 1 x 10~'* m=2/3, The resultant turbulated modes are then
passed through a random phase mask to generate a corresponding speckle field and the intensity
images of speckle patterns at a Fourier plane generated by taking 1D/2D FFT are fed to CNN to
build a classification model.

uncorrelated real and imaginary parts of the phase screen. We have taken only the real part and
discarded the imaginary part

¢n = real(Frp{Cr X D, (k)}). 9

For generating turbulated modes, the LG, ; and SMy;, are first multiplied with an atmos-
pheric turbulence phase screen synthesized by taking C2 = 1 x 1074 m~=2/3, [, = 0.001 m and
Ly = 100 m. These turbulated modes are multiplied with a random phase mask to generate the
speckle fields and then intensity images are saved to generate the corresponding dataset as shown
in Fig. 3.

3 Speckle-learned Convolutional Neural Network

For each mode, LG, ;,
far-field intensity speckle images corresponding to seven SNR levels and one without any GWN.
We have also simulated one dataset for LG, ; and SMy;; modes having distortion due to atmos-

SMy;;, and PV, we have simulated eight datasets {1’ }P5R uiorpy OF 1D

pheric turbulence. Datasets {Ijil_looo}ﬁlé%r sm belonging to LG, ; and SMy;; modes have 1000
images per class [16 LG, ; classes with [ = &1 to 8 and 16 SMy;; classes defined after Eq. (2)]
and datasets {1331_2000}%]{ belonging to PV, modes have 2000 images per class (16 PV, classes

with / = 1 to £8). In all the datasets, each speckle image is of size 256 X 256 X 3 pixels and
generated by taking the random phase (¢, (x,y)).

These datasets are fed to CNN to build a classification model. We have used Alexnet,’” a
pretrained CNN known for its moderate computational load and high accuracy. Alexnet has a
very simple architecture and it is trained for more than a million images to classify 1000 cat-
egories. It has five convolutional layers and three fully connected layers. Convolutional layers
perform convolution operations on input images using filters. Different filters are used to extract
different features as an image is passed through various convolutional layers. A large number of
convolved features are extracted during the convolution operation and hence, the pooling layers
are used to reduce computational load to process the data and to extract dominant features that
are positional and rotational invariant. In the Alexnet, max pooling layers have been used that
return the maximum value of the portion covered by the kernel.

For faster training, a rectified linear unit (ReL.U) is used as a non-linear activation function
that activates neurons by maintaining the positive values and clamping negative values to zero.
After this, a dropout layer is added with a dropout rate of 50%. This means each neuron is turned
off with a probability of 0.5 during each iteration and does not contribute to learning in that
iteration. This leads a neuron to learn more robust features as each iteration has used different
samples of the model’s parameters. The use of dropout layers avoids the overfitting of the model.
Two fully connected layers with ReLLU activation and dropout layers are used to combine all the
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Table 1 Comparison of classification accuracies of the networks trained on 1D and 2D far-field
speckle images.

Modes {I°)3e" U {Uast-
FFT 1D FFT (%) 2D FFT (%) 1D FFT (%) 2D FFT (%) 1D FFT (%) 2D FFT (%)
Without any noise (dB) >99 >50 >99 >50 >99 >40
With GWN SNR = 10 >99 >49 >99 >50 >08 >39
SNR=7 >99 >49 >99 >49 >98 >37
SNR=3 >99 >49 >99 >48 >98 >35
SNR=0 >99 >48 >98 >45 >97 >31
SNR = -3 >99 >46 >98 >40 >94 >26
SNR = -7 >99 >38 >97 >37 >78 >19
SNR =-10 >99 >33 >94 >27 >62 >12
Atmospheric turbulence, >97 50 >97 >49 — —

C2=1x10""* m=2/3

features extracted by convolutional layers. The softmax function is used as an activation function
for the final fully connected layer to give the relative probability of each class.

We have modified this last layer to classify 16 modes retaining the weights and biases learned
by the network. These weights and biases are updated during the training of our networks. The
size of the input layer of Alexnet is 227 X 227 X 3 pixels, hence it accepts images of this size
only. We have processed our datasets and resized all images to 227 x 227 X 3 pixels before
feeding them to the network. The network is separately trained and tested for each dataset.
Figure 2(e) shows the modified Alexnet network trained for the identification of POVs and
a similar network is used for the identification of LG,; and SMy;, modes. For each model,
80% of the images of the dataset are used for training and the remaining images are used for
evaluation purposes. We have used the “stochastic gradient descent with momentum” (SGDM)
algorithm with a constant learning rate of 0.0001 and momentum of 0.9. All processing, training,
and evaluation are done on a single i7 9700 CPU with 32 GB RAM in MATLAB 2021b.

4 Results and Analysis

Table 1 shows the classification accuracy obtained for each dataset. The results show that the
network classifies all the non-noisy modes with an accuracy of >99% indicating that it can very
well distinguish the intensity degenerate modes. As the noise level increases (decreasing SNR
values), the classification accuracy of the network for LG, modes are unaffected whereas it
decreases for SMy;,, and PV, modes. In a case, when the noise level is 10 times the input
(SNR = —10 dB), the accuracy drops to 94% for SMy;, and 62% for PV; modes. It also
shows that the network can recognize turbulated intensity degenerate LG,,; and SMy; with
an accuracy >97%.

5 Comparison with Network Trained on 2D Far-field Speckle Images

For comparison with the network trained on 2D far-field speckle images,>* wherein the CNN was
trained on intensity speckle images I*(x,y) [Eq. (5)], where, U (x,y) = Fp{U (r)e'? =y
All the hyperparameters are kept same, for generating 2D far-field speckles and for training the
networks. Figure 4 shows the 1D and 2D far-field speckle intensity distribution of LG, ;, SMy,

and PV, modes. From Fig. 4, it can be easily seen that the speckle distribution in 2D far-field
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Modes LGo,7 LGy SM,; _3 SM_; 3

Fig. 4 1D and 2D far-field intensity speckle patterns of OAM modes. The same random phase
mask is used for generating speckle fields of a given pair of degenerate modes. For better
visualization, the speckle pattern corresponding to the degenerate mode pair is generated using
the same random phase gij(X, y). The shown speckle patterns are without any GWN.
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Fig. 5 Confusion matrices for PV, modes with SNR = 10 dB. The confusion matrix to the left side
corresponds to the model trained using 1D far-field intensity speckle images and that on the right
side corresponds to the model trained using 2D far-field intensity speckle images.

speckle intensity images is the same for the degenerate mode whereas it is different in 1D far-
field speckle intensity images. The comparative results of the network trained using 1D and
2D far-field intensity speckle images are also shown in Table 1. Figure 5 shows the confusion
matrices of networks trained for 1D and 2D speckle images. From Table 1 and Fig. 4, it can be
seen that the network trained for 2D far-field speckle intensity images confuses degenerate
modes whereas the network trained on 1D far-field speckle intensity images accurately recog-
nizes them.

For LG,,; and SMy;, the speckle size varies with the modes and they remain the same for all
PV, modes. As the network has learned to recognize all three types of modes, we can conclude
that speckle size is certainly not the feature the model is looking for and the network has learned
the underlying features of speckle distribution to accurately recognize modes. The physical
understanding of the features learned by the network is an open research problem. Intuitively,
the features hidden in the 2D far-field intensity speckle patterns of degenerate modes have some
kind of spatial symmetry and hence, the network fails to recognize them. To break the symmetry,
we have taken 1D FFT in place of 2D FFT to perform the astigmatic transformation.

6 Summary and Conclusion

We demonstrated a speckle-learned CNN for the recognition of intensity degenerate OAM
modes. The network is trained and evaluated on the 1D far-field intensity speckle images
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corresponding to intensity degenerate OAM modes (LG, ;, SMy;;, and PV; without GWN) sep-
arately and achieved an accuracy of >99%. The 1D far-field intensity speckle images of the
respective OAM modes can be easily realized in experiments using a cylindrical lens. The main
idea behind this technique is to break the symmetry in speckle distribution of intensity degen-
erate modes by astigmatic transformation. For robustness and general experimental scenario, we
have also trained and tested the network for seven different noise levels and showed that network
works well even when the noise level is the same as that of the input signal (SNR = 0 dB). Thus
we believe that our method is powerful enough to recognize degenerate OAM modes or any
modes in general, even in the presence of large noise. This method is also robust against the
atmospheric turbulence effects as well. The network can be made more and more robust by
training it on the speckle patterns of the respective OAM modes using the random phase masks
with the different units of randomness.>* The proposed speckle-learned technique also lifts
the alignment constraint for modal recognition. It is already established that any region of the
speckle field containing sufficient speckle grains can be used for modal recognition,”** and we
strongly believe that the same holds for 1D speckle fields. However, a comprehensive study on
modal recognition using different regions of the speckle field is outside the scope of the current
paper and will be presented in future work along with additional results.

It is important to note that the method presented in this paper is different than those used for
noise removal.>*** Even though CNN-based speckle and Gaussian noise removal methods use
similar deep neural layers and activation functions, the presented speckle-based CNN method
learns differently. Here instead of removing noise, the CNN layers look for underlying OAM
features, and noises are automatically eliminated in the process as they do not possess any
specific pattern, and hence do not contribute to the key features of the OAM field. Compared
to these noise removal networks, our CNN network is much simpler and easy to train without
any loss of generality.
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