
Research Article Vol. 39, No. 4 / April 2022 / Journal of the Optical Society of America A 759

Speckle-based deep learning approach for
classification of orbital angular momentum modes
Venugopal Raskatla,1 B. P. Singh,1 Satyajeet Patil,2 Vijay Kumar,1,* AND
R. P. Singh2

1Department of Physics, National Institute of TechnologyWarangal,Warangal, Telangana 506004, India
2Physical Research Laboratory, Ahmedabad, Gujarat 380009, India
*Corresponding author: vijay@nitw.ac.in

Received 20 October 2021; revised 6 March 2022; accepted 8 March 2022; posted 8 March 2022; published 1 April 2022

We present a speckle-based deep learning approach for orbital angular momentum (OAM) mode classification. In
this method, we have simulated the speckle fields of the Laguerre–Gauss (LG), Hermite–Gauss (HG), and superpo-
sition modes by multiplying these modes with a random phase function and then taking the Fourier transform. The
intensity images of these speckle fields are fed to a convolutional neural network (CNN) for training a classification
model that classifies modes with an accuracy >99%. We have trained and tested our method against the influence
of atmospheric turbulence by training the models with perturbed LG, HG, and superposition modes and found
that models are still able to classify modes with an accuracy >98%. We have also trained and tested our model with
experimental speckle images of LG modes generated by three different ground glasses. We have achieved a maxi-
mum accuracy of 96% for the most robust case, where the model is trained with all simulated and experimental
data. The novelty of the technique is that one can do the mode classification just by using a small portion of the
speckle fields because speckle grains contain the information about the original mode, thus eliminating the need
for capturing the whole modal field, which is modal dependent. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.446352

1. INTRODUCTION

Beams having orbital angular momentum (OAM) have been a
subject of interest for the past few decades. These beams possess
an extra degree of freedom, which lends itself well to application
in communication for increasing bandwidth and information-
carrying capacity [1–4]. Apart from communication, they
can be found in applications such as optical trapping [5,6],
microscopy and imaging [7], quantum entanglement [8], and
quantum information processing. They have a helical phase
front with an azimuthal phase term exp(ilφ), where l is the
topological charge and φ is the azimuthal angle. These beams
have an OAM of l~ per photon. Depending on the topological
charge, the beam has different twisted wavefronts and can be
quantified as optical modes. These modes have orthogonality
properties while propagating coaxially. In general, any beam
having a helical phase structure can be referred to as an OAM
beam irrespective of its radial distribution. The paraxial solution
of the wave equation in a cylindrical coordinate system and
homogeneous media is a family of Laguerre–Gaussian (LG)
beams that possess a vortex within them. These are a special
subset of OAM beams whose azimuthal and radial wavefronts
are well defined with two indices l and p , respectively. Here p
refers to the radial nodes in the intensity profile [9].

One of the best ways for the generation and detection of the
OAM modes is using a spatial light modulator (SLM) [10].
Generally, the interference and diffraction properties of the
OAM modes are used to identify them [11,12]. However, these
traditional methods for mode detection and demultiplexing are
difficult to implement in real life. Mode detection using these
methods requires a precise alignment of high-quality optical
components to get the exact mode information. The machine
learning and deep learning approaches are being proposed and
demonstrated to reduce the complexity and increase the accu-
racy of the system for OAM mode demultiplexing [2,4,13–19].
The power of deep learning, specifically convolutional neu-
ral networks (CNNs), is utilized by using both direct OAM
intensity images and interferograms [20,21]. Various CNN
architectures and joint algorithms are being proposed to effi-
ciently classify OAM modes [22–25]. Although these methods
reduce the complexity and increase the accuracy of demultiplex-
ing, they are noise limited. The accuracy of mode classification
depends on the amount of distortion and noise introduced in
the input beam. In practice, when these models are deployed for
demultiplexing in free-space communication systems, due to
atmospheric turbulence, the modes get distorted and become
difficult to detect. Moreover, these techniques require capturing
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the full image of the mode for accurate classification. But cap-
turing the full modal image may not be feasible since mode size
increases with the azimuthal (l ) and radial (p) indices.

In this paper, we propose a speckle-based deep learning
approach [26,27] to address these issues. We have modified
Alexnet, a pretrained neural network for building a deep learn-
ing based classification model. Using the pretrained network
is a much faster and more efficient way to train the model than
building from scratch. It also reduces the need for a large amount
of data, as it has already learned a lot of features. Speckle inten-
sity patterns of Hermite–Gauss (HG), LG, and superposition
modes generated by multiplying with random phase function
are used as the input to this neural network. The advantage of
using a speckle pattern is to eliminate the need of capturing the
large full modal image. Using the proposed technique, the OAM
mode can be recognized just by using a small portion of the
speckle pattern. To test the generality, we have trained and tested
the model for speckle images generated by different random
phase functions and for experimental images of LG modes gen-
erated by different round glasses (GG). To test the robustness,
we have also trained and tested for the modes perturbed due to
atmospheric turbulence. This paper demonstrates the funda-
mental proof of concept of the proposed novel technique, which
is an add-on to the previously existing machine-learning-based
OAM demultiplexers.

2. OAM AND SUPERPOSITION MODES

The OAM modes are the solutions of a free-space paraxial wave
equation that has different solutions in different coordinate
systems. For example, the HG beams are the solution in the
Cartesian coordinate system, whereas the family of LG beams
carrying optical vortices are the solutions in the cylindrical
coordinate system.

The expression for HG modes is given as
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Similarly, the expression for LG beams is given as
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where p is nonnegative integer, l is an integer, and L |l |p is an
associated Laguerre function of order p and l . Here p is termed
as the radial mode index and l as the azimuthal mode index.

The superposition of LG modes for l = 1− 16 is given as [2]

SM−l ,l = LG0,−l + LG0,l . (3)

3. GENERATION OF OAM SPECKLE FIELD

A. Simulation

We have simulated speckle field for Eqs. (1)–(3) in MATLAB
2021a. For generating the speckles, we have multiplied the field
with random phase functions having uniformly distributed ran-
dom phase values between 0 and 2π and have taken its Fourier
transform. Mathematically, this can be expressed as

usc(r)=F{u(r)e iφRi (r )}. (4)

Here, u(r) takes HGm,n/LGp,l/SM−l ,l , F denotes the Fourier
transform, and φRi (r) corresponds to the random phase. The
intensity distribution of the speckle field is then calculated as

Isc(r)= usc(r)u∗sc(r). (5)

By varying the phase distribution in the phase function,
different speckle images are simulated. We have generated three
different datasets for three different phase functions [{φR1 },
{φR2 }, {φR3 }], each analogous to different ground glass. In each
phase function, the unit of the random phase is of the order of
2a pixels, where a = 0, 1, 2. The LG dataset has eight differ-
ent LGp,l modes with p = 0 and l = 1− 8, the HG dataset
contains 36 different HGm,n modes with m, n = 0− 5, and
the SM−l ,l dataset has 16 different superposition modes with
l = 1− 16. Each dataset includes 1000 images of each class.

The atmospheric turbulence effects on the modes are
incorporated by turbulence phase screens using the modi-
fied atmospheric spectrum model [28]. The equivalent phase is
given by the following expression:
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Here, C 2
n is the refractive index structure parameter indicating

the turbulence strength, kl = 3.3/l0, k0 = 2π/L0, and l0 and
L0 are the internal and external scales, respectively.

Figure 1(a) illustrates the simulation results for the speckles of
the LG, HG, and superposition modes through three different
random phase functions. Figure 1(b) shows the influence of
the turbulence phase screen on the original modes and their
corresponding speckle distribution. A small region from each
speckle images is fed to the CNN for training and testing the
classification model as shown in Fig. 1(c).

B. Experiment

Figure 2 shows the experimental schematic for generating and
capturing the speckle field of LG modes in the far-field region.
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Fig. 1. Simulation results for (a) LG, HG, and superposition modes and their corresponding speckles distribution for three different sets of
random phase functions; (b) turbulence phase screen and its manifestation on modes. (c) Modified Alexnet for training and testing the classification
model.

Fig. 2. Schematic of the experimental setup for the speckle-based deep learning approach for OAM mode classification.

A spatial light modulator (SLM) displaying a binary phase
hologram is illuminated by a linearly polarized 5 mW He–Ne
laser beam. Along with the desired mode, various higher-order
modes are also generated, and an aperture is used for isolating
the desired LG mode. Ground glass with grit 120 (GG120)
(DG10-120, Thorlab) that acts as a random phase mask is
placed in the path of the LG modes at the back focal plane of the
converging lens. The far-field speckle intensity patterns of the
LG modes with l = 1− 8 and p = 0 are captured by a CCD
camera (Spiricon SP620U) with a resolution of 1600× 1200
pixels and pixel spacing of 4 µm× 4 µm placed at the front
focal plane of the lens. By rotating the ground glass in the
vertical plane and thus exposing the input beam to different
random phase profiles, we have captured 1200 speckle images
for each mode. We have repeated the experiment to generate
1200 speckle images of each LG mode for ground glass grit
600 (GG600) (DG10-600, Thorlab) and 1500 (GG1500)
(DG10-1500, Thorlab).

Since every region of the speckle pattern contains informa-
tion about the input mode, instead of using a full image, we have
randomly selected a region of 512× 512 pixels (image size lower
than 512× 512 will lead to lower modal classification accuracy)
from each image and generated a dataset for training and testing
our model. Thus, we have three experimental datasets, each
having 1200 speckle images of LGp,l modes with p = 0 and
l = 1−8. The intention of randomly selecting a smaller region
of the complete speckle pattern is to demonstrate the fact that a
small portion of the speckle field will be enough for modal classi-
fication and thus reduce the computational load. Additionally, it
also demonstrates the non-line-of-sight communication.

During the experiment, the ground glass position (x , y ) is
taken into account, as we are generating different speckle images
by rotating the ground glass in a transverse plane. Since we
are capturing the speckles in the Fourier plane, the diffusor’s
position (z) relative to the camera and lens is an important
experimental parameter. Experimentally, it is very difficult to
rotate the ground glass in the exact transverse plane, and thus the
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Fig. 3. Experimental results for eight different LGp,l modes and their corresponding speckles generated from rotating ground glasses of grit 120,
600, and 1500. The speckle images are fed to the CNN network to train and test the classification model.

experimental parameters, such as angles (roll, yaw, pitch), are
also included in the experimentally generated dataset. Figure 3
illustrates the experimentally generated LGp,l modes and cor-
responding speckle images generated by passing them through
three different ground glasses. The speckle grain size ranges from
30 to 16 pixels, 36 to 16 pixels, and 40 to 16 pixels for GG120,
GG600, and GG1500, respectively.

4. DEEP LEARNING MODEL FOR OAM MODE
CLASSIFICATION

Inspired by the human brain, a CNN is a deep neural network
composed of multiple layers of artificial neurons. The layers in
a CNN include convolution layers, nonlinearity layers, pooling
layers, and fully connected layers. When the image propagates
through these layers, abstract features of the input image are
obtained. The first layer extracts the simple features, whereas
deeper layers extract higher-level features. Mathematically, as
the convolution is dot product multiplication of two sets of
elements, the features are self-learned by the CNN network
through several convolution operations between the filters and
images when passed through different convolution layers. Each
layer is associated with different filters, and therefore different

features can be extracted at different layers [29]. These filters are
convolved with the input image and activate a certain feature of
the image.

By adding pooling layers, nonlinear downsampling is per-
formed to reduce the parameters that the network needs to learn
as the pooling operation involves sliding a two-dimensional
filter over each kernel of a feature map and summarizing the
features lying within the region covered by the filter. Activation
functions such as the rectified linear unit (ReLU) help in faster
and more effective training by maintaining the positive values
and mapping negative values to zero. After several convolu-
tional, nonlinear, and pooling layers, all the features learned are
combined by a fully connected layer to identify larger patterns.
The output layers consist of softmax and classification layers (for
classification purposes). The softmax layer applies the softmax
function to the input and gives a normalized output, which is
then converted to output classes by the classification layer that
we wish to classify. For our scheme, we use such a pretrained
network Alexnet, which is trained over a million images for
1000 classes. It has five convolutional layers and three fully
connected layers. A softmax function is operated on the last
fully connected layer, which gives the prediction of the label
in terms of probabilities. Alexnet is well known for its simple

Table 1. Alexnet Architecture Modified for Training LG, HG, and Superposition Modes

Layer Name No. of Filters Filter Size Stride Padding Size of Feature Map Activation Function

data — — — — 227× 227× 3 —
conv1 96 11× 11 4 — 55× 55× 96 MP+ReLu
conv2 256 5× 5 1 2 27× 27× 256 MP+ReLu
conv3 384 3× 3 1 1 13× 13× 384 ReLu
conv4 384 3× 3 1 1 13× 13× 384 ReLu
conv5 256 3× 3 1 1 13× 13× 256 MP+ReLu
fc6 4096 — — — 1× 1× 4096 ReLU+Dropout
fc7 4096 — — — 1× 1× 4096 ReLU+Dropout
fc8 8/36/16 — — — 1× 1× 8/32/16 Softmax
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architecture, moderate computational speed, and high accuracy.
The details of the Alexnet architecture are presented in Table 1.

We have modified the last layer of Alexnet to classify OAM
modes and superposition (8 for LG, 32 for HG, and 16 for
superposition modes). Use of the pretrained network is a much
faster and more efficient way to train the model than building
from scratch. It also reduces the need for a large amount of data,
as it has already learned a lot of features. We have preprocessed
our data before feeding it to the network, as the input layer of
Alexnet only accepts images of the size 227× 227× 3. We
have trained and tested the network separately for all three types
of modes using simulation images. In addition, we also have
trained and tested the network for LG modes using experimen-
tal images. For more robustness, we have also trained the LG
classification model for all datasets collectively (simulation +
experiment). In each case, 80% images of the dataset are used
for training, and the remaining 20% are used for testing. The
network is trained using the Stochastic Gradient Decent with
Momentum algorithm with a constant learning rate of 0.0001
and momentum 0.9 on a single i7 9700 CPU with 32 GB RAM
in MATLAB 2021a.

5. RESULTS AND ANALYSIS

Table 2 shows the classification accuracies for the model trained
with simulated and experimental images of LG modes. We have
achieved an accuracy of >99% for the HG and superposition
modes’ classification models trained on an individual dataset as
well as for a cumulative dataset.

Table 2. Classification Accuracies for LG Mode
Classification Models Trained on Different Datasets

Data Used for Training Accuracy

{φR1 } >99%
{φR2 } >99%
{φR3 } >99%
{φR1 } + {φR2 } + {φR3 } 99%
GG120 92%
GG600 94%
GG1500 94%
GG120+ GG600+ GG1500 96%

To test the generality of our technique, we have tested the data
generated by one ground glass on the network trained using the
data generated by others. The Table 3 shows the classification
accuracy for each combination. To increase the generality of our
model, we have first trained the network using data generated
by two ground glasses and tested the data generated by a third
one. As shown in Table 3, the accuracy is improved significantly.
So for a more general model, the training should be done on the
cumulative data generated by different ground glasses.

Figure 4(a) shows the training progress of the LG classifica-
tion model trained for all datasets collectively (simulation +
experiment) to make the model more general. The accuracy
(blue curve) and loss (orange curve) are plotted against the
iterations during training. In the beginning, the training starts
by assignment of random weights and biases (learning param-
eters), resulting in less accuracy and high loss. As the training

Fig. 4. (a) Training progress with accuracy and loss plotted against iterations during the training of the LG classification model for a cumulative
dataset of experiment and simulation. (b) Confusion matrix indicating misclassification.
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Table 3. Classification Accuracies of Different Trained
Models to Test Generality

Data Used for Training Data Used for Testing Accuracy

GG120 GG600 41%
GG120 GG1500 54%
GG600 GG120 14%
GG600 GG1500 87%
GG1500 GG120 25%
GG1500 GG600 78%
GG120+ GG600 GG1500 89%
GG120+ GG1500 GG600 92%
GG600+ GG1500 GG120 48%

progresses, the weights and biases are adjusted using the back-
propagation algorithm so that loss is reduced and reaches zero,
whereas the accuracy of classification reaches the maximum
value. Figure 4(b) shows the confusion matrix for the same case,
indicating the prediction of OAM modes with an accuracy of
>96%.

To test the robustness and the influence of atmospheric
turbulence, we have trained and tested our model using simu-
lated speckle images of perturbed LG, HG, and superposition
modes. The perturbation is introduced by passing these modes
through a turbulence phase screen generated by Eq. (6) with
C 2

n = 1× 10−14 m−2/3, l0 = 1 cm, and L0 = 100 m as shown
in Fig. 1(b). We have achieved an accuracy>98% for each types
of mode (LG, HG, SM) and found that distortion introduced
by turbulence (that will affect the modal energy distribution
at the detector) will not affect the classification accuracy, if it is
included in the training itself. Our results show that the CNN
network is learning the underlying distribution of OAM modes
but more robustness and generality the network should be
trained with a variety of data for learning maximum features.

6. SUMMARY AND CONCLUSION

We have presented a novel approach for classification of OAM
and superposition modes based on speckle patterns and deep
learning. To train the classification model, the last layer of
Alexnet is modified to classify 8 LG, 36 HG, and 16 super-
position modes. These modes are multiplied with different
random phase functions to simulate the speckle field. The
speckle images generated are then used for training and testing
the model. The LG mode classification model is also trained and
tested on experimental images generated by different ground
glasses. To make our model more general, we have trained it on
a cumulative dataset by including all the images generated by
different ground glasses and random phase functions. We have
also trained our model by including the atmospheric turbu-
lence effect by multiplying the modes with turbulence phase
screens. Our technique stands out as different than previous
studies because, in contrast to feeding the full direct OAM mode
images to a deep learning model for classification, a small region
randomly selected from the speckle patterns of the respective
OAM modes is used. The main advantage of our methodol-
ogy is that a portion of the captured field having a sufficient
number of speckle grains is sufficient for mode identification.
Our study shows that these modes need not be pure, and this
technique can also be used for noisy modes. Thus, we believe

that our approach is noise and alignment independent, and it
has the capability to be deployed for demultiplexing the OAM
modes for line-of-sight as well as non-line-of-sight free-space
optical communication. It will increase the fidelity and accu-
racy of demultiplexing along with the speed of the system. We
have modified and implemented a pretrained network that
reduces the computational load (i.e., it requires a smaller num-
ber of images for training) and power for training compared to
the network trained from the scratch. Hence, it can be easily
implementable in any standard computer without a GPU.
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